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Abstract Introduction: The objective of this study was to assess the utility of novel verbal fluency scores for
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predicting conversion from mild cognitive impairment (MCI) to clinical Alzheimer’s disease (AD).
Method: Verbal fluency lists (animals, vegetables, F, A, and S) from 107 MCI patients and 51 cogni-
tively normal controls were transcribed into electronic text files and automatically scored with tradi-
tional raw scores and five types of novel scores computed using methods from machine learning and
natural language processing. Additional scores were derived from structuralMRI scans: region of inter-
est measures of hippocampal and ventricular volumes and gray matter scores derived from performing
ICA on measures of cortical thickness. Over 4 years of follow-up, 24 MCI patients converted to AD.
Using conversion as the outcome variable, ensemble classifiers were constructed by training classifiers
on the individual groups of scores and then entering predictions from the primary classifiers into regu-
larized logistic regression models. Receiver operating characteristic curves were plotted, and the area
under the curve (AUC) was measured for classifiers trained with five groups of available variables.
Results: Classifiers trained with novel scores outperformed those trained with raw scores (AUC
0.872 vs 0.735; P, .05 by DeLong test). Addition of structural brain measurements did not improve
performance based on novel scores alone.
Conclusion: The brevity and cost profile of verbal fluency tasks recommends their use for clinical
decision making. The word lists generated are a rich source of information for predicting outcomes
in MCI. Further work is needed to assess the utility of verbal fluency for early AD.
Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keywords: Alzheimer’s disease; Cognitive neuropsychology; Dementia; MCI (mild cognitive impairment); Machine
learning; MRI (magnetic resonance imaging); Natural language processing
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1. Introduction

Alzheimer’s disease (AD) is a major socioeconomic
crisis for the 20th century, with a projected 14 million cases
by the year 2050 [1]. The dominant hypothesis for the
. This is an open access article under the CC BY-NC-ND license (http://
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pathogenesis of AD involves early deposition of beta-
amyloid in the brain, but clinical trials targeting amyloid
during the past decade have not met primary endpoints
[2–4]. There is now evidence that beta-amyloid accumulates
in the brain .10 years before the onset of cognitive symp-
toms [5,6]. Although cognitive symptoms appear late,
studies in autosomal dominant AD suggest that individuals
with mutations have measurable changes in cognition
several years before onset of symptoms, when compared to
mutation-free individuals [5]. These discoveries raise the
concern that if treatments targeting beta-amyloid are to
work, it might be necessary to implement them before the
onset of symptoms. Two practical challenges arise. First,
what is the best way to design clinical trials to ensure that
pathophysiological changes of AD are occurring, if the indi-
viduals we would like to enroll are asymptomatic and cannot
be expected to seek medical attention? Second, if a beta-
amyloid targeted treatment is proven to work in the asymp-
tomatic or early symptomatic stages of the disease, how can
we identify individuals in the general population who will
benefit from them?

There is an imminent need for new methods of detecting
the earliest changes of AD, as the available biological
methods are expensive, invasive, or entail exposure to radi-
ation. Candidate methods under investigation include brief
neuropsychological tests, ocular imaging, speech signal
analysis, and computerized assessment of gait [7]. Structural
MRI has been evaluated for this purpose, but the typical
approach requires more than one image over a 6–12-month
period, making it relatively expensive for a single patient
[8]. Another approach is to use machine learning methods
to train a classifier to discern between amyloid-positive
and amyloid-negative individuals using available predictor
variables, such as demographic data, structural brain imag-
ing, cognitive tests, and blood tests. This approach has
shown some success in a recent analysis of individuals
with mild cognitive impairment (MCI—a condition thought
to be a risk state for dementia [9,10]) whowere studied in the
AD Neuroimaging Initiative study [11]. The classifier
achieved 0.78 area under the receiver operating character-
istic curve (AUC) on a test set and 0.76 AUC when predict-
ing conversion from MCI to AD.

The current work focuses on verbal fluency tasks—very
brief cognitive measures in which the participant is given
1 minute to generate as many words as possible within a
certain category, such as animals, or that start with a specific
letter. The traditional method of scoring these tests is to sim-
ply count the number of unique, valid items in the list. The
raw score obtained has proven clinical value [12–14], and
as a result, verbal fluency tasks are performed in many
research studies on AD or other cognitive disorders.
However, there is strong evidence that careful examination
of the words produced during the tasks may have
additional clinical value, apart from or in addition to the
raw score. The classic method for studying the explicit
word content of these lists is to identify clusters of
consecutively listed words that are related in some way
(e.g., they have similar meaning, rhyme, or start with same
two letters) [15–18]. The average length of these clusters
is termed the clustering score and is thought to relate to
spreading activation in a semantic or lexical network. The
number of transitions between clusters is termed the
switching score and is thought to relate to an individual’s
ability to deliberately change the subcategory of items that
is currently being searched. Investigators have found that
each of these scores has value for predicting dementia in
longitudinal studies [19,20]. Some investigators have made
use of unsupervised learning methods either on a corpus of
fluency word lists [21] or on large English-language corpora
[19,22] to improve prognostications.

In the present study, we develop new models for esti-
mating risk of dementia conversion in MCI patients using
measures derived from structural brain images and novel
verbal fluency scores. In the statistical sub-discipline of ma-
chine learning, classification is often enhanced through
expansion of the set of predictive features. This approach
differs from the traditional inferential statistical approach,
in which the primary goal is to identify statistically signifi-
cant relationships between the independent and dependent
variables. A potential weakness of the traditional approach
is that one may develop a model with very poor predictive
accuracy although it contains only statistically significant
predictors. In machine learning, there is no immediate ambi-
tion to explain the relationship between the outcome and in-
dividual predictors—instead, the model is justified through
the quality of predictions it yields. With this goal in mind,
we developed a large set of novel predictive scores for five
fluency tasks (categories animals and vegetables, and letters
F, A, and S). Some of these novel predictive scores have
roots in previous work (e.g., based on clustering, switching,
or independent components analysis [ICA]), whereas others
were developed specifically for this project. Some of the new
scores are based on fundamental lexical qualities, such as
syllable counts or frequencies of the words generated.
Both of these quantities have good face validity and are
easy to obtain, and the machine learning approach permits
us to consider several possible ways of using them, such as
(for a given fluency word list) taking the average, taking
the sum, or subtracting the minimum value from the
maximum value (i.e., metric range).

We based several novel scores on graph theory, a branch
of discrete mathematics that provides techniques for
analyzing networks. For this approach, we viewed the words
in each list as nodes in a network and created weighted
graphs by assigning numerical values to the edges or connec-
tions between the nodes. These values corresponded to the
semantic, orthographic, or phonologic similarity between
the two words being connected. Several scores were derived
directly from these weighted graphs. The computation of
other measures depended on conversion of each weighted
graph into an unweighted graph by first identifying a
threshold of the similarity metric and then creating a new
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graph containing only the edges that met the threshold. For
further details and rationale behind the predictor variables,
see the Supplementary Methods (available online). In addi-
tion, we derived several cerebral measurements from struc-
tural MRI scans, including hippocampal atrophy and
patterns of cortical thinning.

Following trends in machine learning research [23], we
took the approach of developing ensemble classifiers. In
the case of this work, the ensemble classifiers were con-
structed by training several initial classifiers and then
training a final classifier using estimates of risk from the
initial classifiers. Our goal was to compare the major subsets
of the predictor variables in terms of their value for predict-
ing conversion to dementia from MCI. This goal will be an
important step if detailed verbal fluency word list analyses
are to contribute to future efforts for identification of early
symptomatic or pre-symptomatic AD.
2. Methods

2.1. Neurocognitive testing and consensus diagnoses

One hundred fifty-eight individuals met the inclusion/
exclusion criteria set by the UCLA Imaging and Genetic
Biomarkers for AD (ImaGene) study. ImaGene prospec-
tively enrolled and followed individuals recruited from
two sources: (1) referring UCLA and outside neurologists
and (2) our Alzheimer’s Disease Research Center (ADRC)
ongoing longitudinal database study. The latter group con-
sists of existing research participants who agreed to be con-
tacted for future research opportunities and met ImaGene
inclusion and/or exclusion criteria. All subjects provided
informed consent after detailed explanation by a study clini-
cian, and the UCLA Institutional Review Board approved
the study.

To be included, subjects had to be aged at least 50 years,
able to independently carry out daily activities of living
based on interview, and score �24 on the mini-mental state
examination (MMSE) [24]. MCI diagnosis was based on Pe-
tersen criteria [25] and required an objective cognitive
deficit of at least 1.5 SD below age-adjusted and
education-adjusted neuropsychological norms on at least
one neuropsychological test, global clinical dementia rating
(CDR) score ,1, preserved general cognitive function, and
intact activities of daily living. Cognitively normal partici-
pants performed above the21.5 SD cutoff on the neuropsy-
chological tests (adjusting for age and education) and had a
global CDR of 0. Exclusionary criteria for both groups were
concurrent medical problems of sufficient severity to impact
cognition, history of alcohol or drug abuse in the past 2
years, concurrent neurologic or psychiatric illnesses, contra-
indications to MRI, cortical strokes or significant white mat-
ter changes, and visual and hearing impairment that could
interfere with cognitive testing.

During each visit, ImaGene participants underwent
detailed clinical and cognitive examinations, blood draw,
and magnetic resonance imaging (MRI) examination. The
neuropsychological battery and average scores by diagnostic
group are listed in Table 1. Diagnosis for each subject was
based on a consensus by all UCLAADRC neurologists, neu-
ropsychologists, and other key study personnel.

Seventy (65.4%) of the MCI participants were classified
as “amnestic” because of poor performance on memory
measures. Eighteen of these individuals had only memory
impairment. Among the 52 amnestic individuals with
impairment outside memory, 18 had impairment in only
one nonmemory domain (14 executive, one language, two
visuospatial, and one attention). The other 34 amnestic
MCI patients had impairment in more than one additional
nonmemory domain. Thirty-seven (34.6%) of the MCI par-
ticipants were classified as nonamnestic. Thirty of these in-
dividuals had impairment in only one nonmemory domain
(12 executive, six language, 11 visuospatial, one attention),
whereas the other seven had impairment in executive func-
tion plus at least one other domain. During .4 years of
follow-up, 24 of 107 individuals with MCI at baseline
were determined by the consensus panel to have converted
to dementia. Conversion was noted between 0.98 and
4.08 years after the baseline evaluation (M 5 1.83 years,
SD 5 0.84 years). Converters were predominantly amnestic
(21 of 24, or 87.5%). Twenty-two of the converters met clin-
ical criteria for AD. The other two cases were clinically
diagnosed as having dementia with Lewy bodies. One of
these patients died and at autopsy was found to have hippo-
campal sclerosis without Lewy bodies. The other DLB pa-
tient has undergone positron emission tomography with an
amyloid-detecting tracer and is amyloid positive.
2.2. Overview of machine learning approach

Fluency scores (traditional and novel) and brain imaging
measurements were computed and used to create classifiers
for discerning individuals with MCI who converted to AD
from those that did not convert. All scores were placed in
a single data matrix, and missing values for any given score
were imputed as the mean of all the nonmissing values for
that score. We performed five analyses, each using a
different subset of the available scores: raw (traditional
scores and counts of intrusions and repetitions), brain (mea-
sures derived from structural MRI), raw 1 brain (the union
of the raw set and the brain set), novel (all scores derived
from verbal fluency lists, including the raw scores), and
novel1 brain (the union of the novel and brain sets). Demo-
graphic variables of age, sex, and education were included
for all analyses.

The quality of each classifier was assessed using leave-
one-out cross-validation. This means that a separate classi-
fier was constructed with each MCI participant left out and
the classifier was then used to make a prediction about
whether the left-out participant converted to dementia. The
following three analysis steps were undertaken during each
cross-validation loop: variable selection, training of an



Table 1

Participant demographics and selected neuropsychological test scores

CN (n 5 51) MCI-non (n 5 83) MCI-con (n 5 24)

Age (y) 68.9 (7.9) 68.7 (8.6) 73.8 (7.9)***

Sex (M:F) 28:23 37:46 9:15

Education (y) 17.6 (2.2)**** 16.0 (3.0) 16.0 (2.9)

Mini-mental state examination 28.9 (1.2)**** 27.9 (1.7) 25.1 (3.1)****

Animals 22.0 (4.7)**** 18.8 (5.1) 14.5 (4.9)****

Vegetables 15.0 (4.3)*** 13.0 (4.1) 9.7 (3.7)***

F 16.8 (4.6)**** 13.4 (5.1) 11.3 (5.5)*

A 15.6 (4.6)**** 11.1 (5.1) 7.9 (4.7)***

S 16.9 (5.5)**** 13.4 (5.1) 10.7 (5.0)**

Boston naming test 58.1 (1.9)**** 52.1 (8.1) 47.4 (10.6)*

Digit span forward 10.8 (2.3) 10.2 (2.2) 9.5 (1.9)

Digit span backward 8.2 (2.2)**** 6.6 (2.4) 5.6 (1.6)**

Trails A 24.9 (8.9)**** 33.8 (14.6) 44.5 (18.1)**

Trails B 70.0 (37.2)**** 103.6 (55.5) 161.8 (87.5)***

Stroop A 62.7 (12.2)** 69.0 (20.4) 87.7 (18.7)****

Stroop B 47.5 (8.4)** 51.3 (12.6) 56.5 (10.1)**

Stroop C 114.9 (28.3)**** 137.5 (44.0) 181.2 (66.6)***

Wisconsin card sort (categories) 4.3 (0.9)**** 3.4 (1.9) 2.4 (1.7)**

Wisconsin card sort (errors) 11.7 (8.9)**** 22.7 (13.7) 35.8 (19.0)***

Logical memory I 42.9 (9.6)**** 32.9 (11.1) 15.9 (8.1)****

Logical memory II 28.3 (7.1)**** 18.5 (9.5) 4.6 (4.7)****

Visual recall I 82.9 (13.5)**** 80.0 (16.6) 52.6 (17.4)****

Visual recall II 62.8 (25.2)**** 38.1 (23.8) 15.2 (21.8)****

Rey-Osterrieth figure copy 33.4 (2.4)**** 30.0 (4.7) 29.7 (4.7)

Rey-Osterrieth delayed recall 20.2 (6.7)**** 12.7 (7.2) 7.4 (6.6)***

Abbreviations: CN, cognitively normal group; MCI-non, mild cognitive impairment nonconverter; MCI-con, mild cognitive impairment converter to AD.

Numbers in parentheses are standard deviations. All statistical comparisons are made to the MCI-non group.

NOTE. *P , .1, **P , .05, ***P , .01, ****P , .001.
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ensemble of individual classifiers, and combination of the
ensemble predictions through sparse logistic regression.

Variable selection was performed by running the random
forests algorithm [26] on the training data set one time with
400 trees and calculating importance for each variable.
Importance values were converted to z scores, and separate
thresholds were selected for each analysis with iterative
search over thresholds between 0 and 2.0.

Each ensemble consisted of classifiers with four different
architectures: random forests of conditional trees, support
vector machines [27], na€ıve Bayes [28], and multilayer per-
ceptrons [28]. All analyses were performed in R with the
following additional libraries: party, e1071, and RSNNS.
One classifier of each architecture was trained using the
left-in data, and ten additional classifiers of each architecture
were trained using bootstrap samples of the left-in data for a
total of 44 classifiers. Predictions from each classifier in the
ensemble were obtained on the training data itself and for the
left-out data point.

Predictions of the ensemble were combined linearly
with sparse logistic regression to yield the final prediction
for the left-out data point. The sparse logistic regression
model was trained using conversion as the outcome vari-
able and the ensemble predictions on the training data as
the predictor variables. Sparse or “LASSO” (least absolute
shrinkage and selection operator) regression produces a
lower variance model than traditional regression while
automatically performing variable selection. Because the
ensemble had also generated predictions on the left-out
data point, it was then possible to enter these predictions
into the sparse logistic regression model to obtain the final
prediction.
2.3. Verbal fluency tasks and scoring

Research participants underwent five fluency tasks. Dur-
ing these tasks, they were given 1 minute to generate as
many words as possible within certain constraints. For two
of the tasks, the constraint was semantic (animals and vege-
tables), and for three of the tasks, the constraint was ortho-
graphic (words had to start with the letters F, A, or S). A
psychometrist or neuropsychologist recorded the words
generated and the lists were subsequently transcribed into
electronic text files by two of the authors (D.G.C. and
R.M.D.). Raw and novel scores on verbal fluency word lists
were calculated using custom Python software and the
NetworkX Python library [29], as described in Table 2. Sim-
ilarity measurements between words followed methods pre-
viously described for analyzing verbal fluency [30].

2.3.1. Brain measures
Two types of structural brain measures were incorporated

into the predictive models: cortical thickness measurements
and volumetric measures of several regions of interest



Table 2

Traditional and novel fluency scores

Score Description

Traditional

Raw Count of unique valid items

Intrusions Count of nonvalid items

Repetitions Count of repeated items

Classic and miscellaneous lexical

Clustering Automatically calculated as described in Troyer, et al. (1998a) [15] and Clark, et al. (2014) [19]

Switching Automatically calculated as with clustering

Mean frequency Lexical frequencies for all words generated were calculated from the Google n-grams corpus and averaged

Mean number of syllables Syllables for each word generated were quantified as the number of vowel symbols in the pronunciation listed in the

Carnegie Mellon University Pronunciation Dictionary

Metric range of frequency Calculated as the maximum frequency of words within a list minus the minimum frequency of words in the list

Sum of frequencies Lexical frequencies were added together

Sum of reciprocal of frequencies The reciprocal of all the lexical frequencies were added together

Independent components analysis (ICA)

20 scores ICAwas performed on proximity matrices as described in Clark et al. (2014a). Each individual received 20 scores

computed as the dot product of the individual’s proximity matrix and 20 extracted components

Similarity metric based

Algebraic connectivity Second smallest eigen value of the Laplacian of the weighted graph

Average clustering coefficient Given a vertex in a graph, the clustering coefficient for the vertex is the proportion of edges present among the

immediate neighbors of the vertex. This value was calculated for all vertices in the thresholded graph and averaged.

Average degree Average weight of all edges connected to each vertex in the graph

Diameter Length of the longest geodesic in the weighted graph

Maximum betweenness centrality For every pair of distinct vertices in the thresholded graph, the shortest path between the pair was identified. The

betweenness centrality for each vertex was calculated as the number of shortest paths passing through that vertex.

The score was the maximum of these values.

Radius Length of the shortest geodesic in the weighted graph

Transitivity 3 times the proportion of triangles in a thresholded graph divided by the number of triads (two edges with a common

vertex) in the graph

Coherence A greedy algorithmwas used to discover a short Hamiltonian path through the vertices of theweighted graph. The sum

of the similarity weights on the actual path taken by the participant was divided by the sum of the similarities on the

optimal path.

P&H clustering Defined as for traditional clustering, but linkages between words were based on the edges in the thresholded graph, as

described by Pakhomov & Hemmy (2014) [17]

P&H switching Analogous to Pakhomov clustering

NOTE. Similarity metrics included orthographic, phonologic, and semantic similarity measures like those described in Clark et al. (2014b). Thus, there were

three versions of each of the similarity-metric based scores.
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(ROIs). MRI scans of sufficient quality were available for all
but one participant from the MCI-non group (N 5 157).

2.3.1.1. Cortical mapping
The cortical mapping measurements were obtained by

first preprocessing high-resolution structural T1 brain im-
ages using previously described methods [31–33]. For
each brain image, these methods yielded a set of 65,280
three-dimensional spatial coordinates and a GM thickness
measurement at each point.

Independent components analysis (ICA) was used to
reduce the dimensionality of the cortical surface data.
To do so, a simple interpolation method was used to
map the thickness measurements from each individual
into a standard set of coordinates. For each three-
dimensional point in the standard coordinates, the three
nearest neighbors in the individual cortical surface data
file were identified using a Euclidean distance measure.
The cortical thickness at the standard point was set to
an average of the thickness measurements at these three
neighboring points, weighted by each point’s proximity
to the standard point. The interpolated cortical thickness
measurements from the right and left hemispheres were
concatenated for each research participant, and ICA was
undertaken using the fastICA library for R. Thus, each
component represented the entire bihemispheric cortical
surface. Thirty components were extracted and reformat-
ted for direct visual inspection. Component scores for in-
dividual research participants were computed as the dot
product of the actual cortical thickness measures with
each component.

2.3.1.2. Region of interest measures
Additional gross measures of the cerebrum included (for

each hemisphere) hippocampal volumes, average cortical
thickness, and volumes of the superior, inferior, and occipi-
tal portions of the lateral ventricles. Hippocampal volumes
were derived from manual tracing of the hippocampus
proper, dentate gyrus, and subiculum according to a well-
established protocol [34,35]. Ventricular volumes were
extracted after a semiautomated ventricular segmentation
approach, in which lateral ventricles of four MRI scans
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were initially manually traced and segmented into three
partitions per hemisphere (superior horn, temporal horn,
and ventricular body/occipital horn) [36,37]. These traces
were then converted into three-dimensional parametric ven-
tricular mesh models (termed “atlases”) and were used to
fluidly register each unsegmented study image, yielding
one segmentation per atlas. The four ventricular segmenta-
tions thus derived for each participant were averaged to
minimize automated labeling errors. Volumetric measure-
ments were made on the averaged ventricular segmentation.
2.4. Assessment of classifier performance

Receiver operating characteristic (ROC) curves were
plotted for each of the five ensemble classifiers. The AUC
was reported for each classifier. In addition, for each ROC
curve, the optimal cut point was defined as the threshold
that maximized the F-measure (the harmonic mean of sensi-
tivity and positive predictive value). Accuracy, sensitivity,
specificity, negative predictive value, and positive predictive
value were measured at this cut point.
3. Results

3.1. Similarity metrics

For examples of words within each fluency task that were
judged to have high orthographic, phonological, or semantic
similarity, see Supplementary Table 1. Percentages of edges
meeting the similarity threshold of 1.0 standard deviations
(for each fluency task and similarity measure) are shown
in Supplementary Table 2.
Table 3

Cumulative importance values of variables selected from novel scores

Coherence semantic (A) 1589.10 ICA10 (S)

Coherence–ortho (veg) 1066.63 ICA17 (F)

Frequency–metric range (F) 939.63 Frequency–metric range

Coherence–ortho (animal) 878.30 Algebraic connectivity–

(animal)

Algebraic connectivity–ortho (animal) 777.68 Frequency–sum (animal

Radius–ortho (A) 772.28 Coherence–semantic (ve

Frequency–mean (animal) 766.87 Switching–phono (veg)

Frequency–sum reciprocal (animal) 745.18 Maximum betweenness–

(animal)

Transitivity–phono (veg) 690.30 Transitivity–semantic (a

Coherence–ortho (A) 684.37 Algebraic connectivity–

Coherence–phono (A) 681.66 Average clustering coef

(animal)

Maximum betweenness–phono (veg) 676.82 Maximum betweenness–

(animal)

Transitivity–semantic (S) 673.94 Switching–phono (anim

Average clustering coefficient–semantic (S) 663.10 Frequency–sum (veg)

Frequency–sum reciprocal (veg) 656.95 ICA4 (animal)

Abbreviations: veg, Vegetable; ICA, independent components analysis.

NOTE. Each score (apart from age) originated from one of the five fluency task

similarity, the type of similarity measure is included (orthographic, phonological

importance measurements across all cross-validation loops.
3.2. Selected variables

Variables selected from the novel fluency score subset are
listed in Table 3, along with the sum of the importance values
assigned to each variable from all cross-validation iterations.
Fig. 1 shows the gray matter independent component with
highest estimated importance, which loads most heavily on
points in the superior parietal lobe. Supplementary Fig. 1
shows the independent component with second highest
importance. This component loads most heavily on points
in the anterior mesial temporal lobe, an area likely to include
the entorhinal and perirhinal cortices.

For the novel score analysis, scores from all five fluency
tasks achieved sufficient importance to be selected, although
S words figured less prominently. Focusing on the top 10
scores, measures of coherence occupied four of the slots
(including the top 2), measures of lexical frequency occupied
three slots, and the remaining three slots were occupied by
the graph theoretical measures algebraic connectivity, radius,
and transitivity. Scores based on ICA, clustering, and switch-
ing appeared in the list but with lower importance scores.
Among raw scores, only animals achieved sufficient impor-
tance to be included. Age was the only demographic variable
selected and was selected in only two cross-validation loops.

For variables selected during the other four analyses, see
Supplementary Tables 3 and 4. Boxplots of 10 scores are
shown in Fig. 2.

3.3. Prediction accuracy

ROC curves for the five classifiers are shown in Fig. 3.
As shown in Table 4, the ensemble classifier trained only
598.70 Raw (animal) 281.51

590.24 ICA2 (veg) 191.70

(animal) 585.68 Coherence–phono (S) 156.36

phono 585.45 Average degree–semantic (veg) 154.91

) 564.00 Average clustering coefficient–phono

(veg)

136.50

g) 534.27 Clustering–classic (animal) 122.58

529.87 Diameter–ortho (A) 36.03

phono 521.75 Algebraic connectivity–ortho (A) 31.80

nimal) 495.77 ICA13 (A) 31.22

semantic (A) 475.37 Metric range of similarity–semantic (A) 18.30

ficient–ortho 439.13 Frequency–mean (veg) 17.83

semantic 420.87 Switching–semantic (animal) 9.14

al) 407.99 Metric range of similarity–ortho (A) 9.09

400.33 Age 8.86

305.44 Diameter–semantic (animal) 4.57

s (A, animal, F, S, or veg). For scores dependent on measurements of lexical

, or semantic). Each importance value listed here represents the sum of the



Fig. 1. Component 15 derived from independent components analysis of

cortical thickness measures. The values of the component have been

normalized to the interval [0,1]. Individuals with a higher gray matter thick-

ness in the parietal lobes and lower gray matter thickness in the right mesial

occipital region would achieve the highest scores for this component.
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Fig. 2. Boxplots of 10 selected variables. The top row includes the five top-ranke

includes the three raw scores selected for the “raw” analysis and the two imaging

(N) and MCI-con (C) groups are apparent for all variables shown. Factors that m

among several variables and nonlinear relationships between an individual variable

ence vegetables; (C) metric range of frequency letter F; (D) orthographic coherence

animals; (G) raw score for vegetables; (H) raw score for letter A; (I) volume of righ
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with novel scores performed the best on all measures
apart from specificity, with AUC 0.872, and was signifi-
cantly better than the classifier trained only with raw
scores (AUC 0.719, P , .05 by DeLong test). The
raw 1 brain ensemble showed the highest specificity
(0.916). If our goal, however, is to develop an inexpensive
screening test then we may place greater emphasis on
sensitivity. The novel ensemble shows a clear advantage
here, providing 100% sensitivity with 67.5% specificity
(Fig. 3).
4. Discussion

The ability to rapidly, noninvasively, and inexpensively
identify individuals at high risk for AD is crucial for the
application of effective disease-modifying therapies for
the general population [7]. Language is an abundant and
readily collectible product of human cognition that is asso-
ciated with neurological function and may be assessed at
D E

I J

d variables from the analysis including only novel scores. The bottom row

scores selected for the “brain” analysis. Differences between the MCI-non

ay be relevant but cannot be readily depicted include potential interactions

and conversion risk. (A) semantic coherence letter A; (B) orthographic coher-

animals; (E) orthographic algebraic connectivity animals; (F) raw score for

t hippocampus; (J) gray matter volume score for independent component 15.
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Fig. 3. ROC curves for the five ensemble classifiers. Novel verbal fluency

scores yield the best AUC (0.872). This classifier may be thresholded to

have sensitivity 1.00 with a specificity of 0.675. Abbreviations: ROC,

receiver operating characteristic curve; AUC, area under the receiver oper-

ating characteristic curve.

Table 4

Quality of predictions made by the five ensemble classifiers

AUC F Sensitivity Specificity NPV PPV Accuracy

Raw 0.719 0.583 0.583 0.880 0.880 0.583 0.813

Brain 0.760 0.536 0.682 0.756 0.894 0.441 0.740

Raw 1
Brain

0.735 0.524 0.458 0.916 0.854 0.611 0.813

Novel 0.872* 0.667 0.708 0.880 0.913 0.630 0.841

Novel 1
Brain

0.814 0.625 0.625 0.892 0.892 0.625 0.832

Abbreviations: AUC, area under the receiver operating characteristic

curve; F, F-measure (harmonic mean of sensitivity and positive predictive

value); NPV, negative predictive value; PPV, positive predictive value.

NOTE. *P, .05 compared to AUC for Raw classifier using DeLong test.
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multiple levels of representation. Language is often noted
to be disrupted early during the course of AD [38–40],
suggesting that measurements of language may play an
important role in predictive models of AD. Verbal fluency
tasks are a simple method for quickly obtaining a
constrained linguistic sample and have proven value for
differentiating causes of dementia [12–14]. In this study,
we examined the value of an assortment of novel verbal
fluency scoring methods for predicting subsequent
cognitive and functional decline in MCI patients and
evaluated the potential contribution of measures from
structural brain imaging for the predictive models. We
achieved good prediction results using cross-validated en-
sembles combined linearly with LASSO logistic regression
models. These findings contribute to the literature on ma-
chine learning for predicting outcomes in MCI because
they highlight the value of brief, information-dense cogni-
tive tests from which many potential predictor variables
may be extracted.
4.1. Predictor variables

Despite the well-known utility of traditional raw scores
for diagnosis of cognitive disorders, these scores did not
make large contributions to the best classifier. Other easily
quantified measures, such as counts of intrusions and
repetitions, demonstrated little capacity to predict MCI
conversion.
Several of the novel scores based on lexical similarity
metrics made significant contributions to the final classi-
fiers. Among the various tasks and types of lexical similar-
ity, scores derived through the measurement of coherence
appeared to have good utility. We note that three of the
top five predictors in Table 3 were coherence measures in
which the similarity metric did not coincide with the task
demands (e.g., semantic similarity in the letter A task). In
each case (as shown in Fig. 2), MCI converters had higher
average scores than nonconverters on these measures. This
finding suggests that the converters may have been more
likely to be distracted by forms of word similarity that
were not relevant to the current task. Despite the strong
theoretical neuropsychological basis for clustering and
switching scores, they were not found to be prominent
among the other novel scores introduced here. However,
previous work in which switching or clustering was found
to have prognostic value was conducted on data from lon-
gitudinal studies with larger sample sizes and was not
focused on individuals with MCI [19,20]. Thus, future
work should continue to consider the potential value of
clustering and switching scores, whether calculated by
the classic method or with methods based on similarity
scores.

4.2. Imaging

Novel verbal fluency scores outperformed structural MRI
measures for predicting MCI conversion. The brain-only
classifier achieved an AUC 0.760 (Table 4). This score is
on par with AUC measures reported by other investigators
using structural MRI and other biological measures, which
have ranged from 0.734 (MRI 1 CSF in [41]) up to 0.843
(MRI only in [42]).

The inconsistent improvements we observed could not
justify the expense of undertaking an MRI scan only for
use in these types of classifiers. However, other MRI-
based measurements, such as resting state functional MRI,
diffusion kurtosis imaging, magnetic resonance spectros-
copy, or arterial spin labeling, may provide better predictive
features.
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4.3. Limitations

A few limitations of this work should be noted, as they
point the way for future research along these lines. First,
owing to the small sample size, it was not possible to test
the final classifiers on a held-out test set. This short-
coming was mitigated by using a rigorous cross-
validation method. Second, the techniques for extracting
predictor variables from MRI scans, although state-of-
the-art for brain-mapping purposes, are extremely labor
intensive. If MRI measures are to be used to achieve
our clinical goals, it will be necessary to use an auto-
matic imaging analysis pipeline. Third, the calculation
of the predictor variables for this work rests on the avail-
ability of accurate electronic transcriptions of fluency
word lists. Information about the latencies of the words
generated could enhance the quality of the ICA scores
and thereby the predictions from them. Moreover, the
need for the transcriptions adds to the cost of the tech-
nique. Automatic transcription with speech recognition
technology may make future work faster, cheaper, and
more accurate.
4.4. Conclusions

Using cross-validated ensembles of classifiers trained
with a variety of novel verbal fluency scores, we show
generally good quality predictions of MCI conversion
over approximately 5 years of follow-up, with most conver-
sions fitting the AD phenotype. Many novel scores
contribute to the quality of the final classifiers. However,
lexical frequency measures and certain graph theoretical
scores, especially those based on coherence, stand out as
having the strongest relationships with conversion risk.
Verbal fluency word lists contain a great deal of informa-
tion, and detailed analysis of their contents may lead to
the development of a rapid, inexpensive, and noninvasive
method for detecting the earliest pathophysiological
changes of AD.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional sources, such journal articles,
meeting abstracts, and presentations. Recent obser-
vations regarding the natural history of Alzheimer’s
disease (AD) suggest that some treatments (e.g.,
those targeting amyloid) may be most effective if
administered early. There is a need for inexpensive
and noninvasivemethods for detecting patients likely
to benefit from new treatments.

2. Interpretation: Our findings point to the potential
value of applying machine learning methods to natu-
ral language samples to realize the goal of early AD
detection.

3. Future directions: Further research along these lines
will seek (1) to validate these findings in larger sam-
ples of patients, (2) to integrate the method with other
rapid, inexpensive tests, and (3) to apply speech
recognition technology for rapid transcription and
scoring of natural language samples.
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