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miR-9 and miR-124 synergistically 
affect regulation of dendritic 
branching via the AKT/GSK3β 
pathway by targeting Rap2a
Qian Xue1,*, Caiyong Yu1,*, Yan Wang2,*, Ling Liu1, Kun Zhang1, Chao Fang1, Fangfang Liu1, 
Ganlan Bian1, Bing Song3, Angang Yang4, Gong Ju1 & Jian Wang1

A single microRNA (miRNA) can regulate expression of multiple proteins, and expression of an 
individual protein may be controlled by numerous miRNAs. This regulatory pattern strongly suggests 
that synergistic effects of miRNAs play critical roles in regulating biological processes. miR-9 and miR-
124, two of the most abundant miRNAs in the mammalian nervous system, have important functions in 
neuronal development. In this study, we identified the small GTP-binding protein Rap2a as a common 
target of both miR-9 and miR-124. miR-9 and miR-124 together, but neither miRNA alone, strongly 
suppressed Rap2a, thereby promoting neuronal differentiation of neural stem cells (NSCs) and dendritic 
branching of differentiated neurons. Rap2a also diminished the dendritic complexity of mature neurons 
by decreasing the levels of pAKT and pGSK3β. Our results reveal a novel pathway in which miR-9 and 
miR-124 synergistically repress expression of Rap2a to sustain homeostatic dendritic complexity during 
neuronal development and maturation.

The Ras superfamily consists of highly conserved small GTP-binding proteins that function as genetic switches to 
control cell proliferation, differentiation, adhesion, and survival. Some members of the Ras superfamily are key 
regulators of neuronal development and synaptic plasticity1–3. The Rap GTP-binding proteins, a subfamily of the 
Ras superfamily, mediate various biological functions in the hematopoietic, immune, and nervous systems4,5. The 
Rap family has five members: Rap1a, Rap1b, Rap2a, Rap2b, and Rap2c4. In the nervous system, the Rap proteins 
are involved in neuronal polarity, synaptogenesis, and synaptic plasticity. In particular, Rap1b plays important 
roles in establishment of neuronal polarity6–10, and Rap2a causes spine loss and dendritic shortening11.

As posttranscriptional regulators of gene expression expressed in all tissues, miRNAs are involved in control 
of almost all physiological and pathologic processes, including differentiation, proliferation, apoptosis, develop-
ment, inflammation, and cancer. MiRNAs also play important roles in the central nervous system, where they are 
involved in neuronal development and biological functions. MiR-134 controls spine development by targeting 
the mRNA encoding the protein kinase Limk1, thereby regulating memory and plasticity12. MiR-132 promotes 
dendritic morphogenesis in hippocampal neurons and controls the circadian clock in mice13–15. MiR-138, which 
is enriched in the brain, negatively regulates the size of dendritic spines16.

MiR-9 and miR-124, two highly conserved miRNAs that are most abundantly expressed in the mammalian 
nervous system, both play critical roles in controlling neuron fate and synaptic morphology. miR-9 negatively reg-
ulates proliferation of neural stem cells (NSCs) and promotes their neuronal differentiation17,18. MiR-9 controls 
axonal extension and branching by regulating Map1b in neurogenesis19. MiR-124 is upregulated during neuronal 
differentiation, suggesting that it plays an important role in this process. MiR-124 represses translation of a large 
number of non-neuronal transcripts, indicating that it plays a role in maintaining neuronal characteristics20. 
Knockdown of miR-124 results in a ~30% decrease in the total number of postmitotic neurons and an increase in 
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the total number of dividing cells21. Furthermore, miR-124 and miR-9 regulate neural lineage differentiation in 
embryonic stem cells in vitro22.

Synergism between miR-9/9* and miR-124 mediates the conversion of human fibroblasts to neurons, but sep-
arate expression of these miRNAs has no effect23–25. MiR-9*​ and miR-124 reduce proliferation of neural progen-
itors by repressing the Brg/Brm-associated factor BAF53a, which in turn represses its neuron-specific homolog 
BAF53b26,27, a critical factor in dendritic development. Although miR-9 and miR-124 have some distinct targets, 
their synergistic effects on neuronal development are still not clear and merit further investigation. In this study, 
we identified Rap2a as a common target gene of miR-9 and miR-124. Moreover, we found that repression of 
Rap2a by miR-9 and miR-124 affects the activation of AKT and GSK3β​, which control neuronal differentiation 
and dendritic branching. Our findings reveal a novel pathway that governs dendritic branching via the synergistic 
effects of miR-9 and miR-124.

Results
MiR-9 and miR-124 synergistically promote dendritic branching of differentiated neurons, and 
Rap2a is predicted to be a common target of both miRNAs.  Previous studies demonstrated that 
miR-9 and miR-124 play crucial roles in determining neuron fate. In addition, both of these miRNAs start to 
be expressed at almost the same time, and their levels gradually increase over the course of neuronal develop-
ment22,28,29. These observations suggest that miR-9 and miR-124 have synergistic effects on neural development. 
Therefore, we transfected NSCs in vitro with lentiviruses that overexpress miR-9, miR-124, or both (Fig. 1A and 
Supplementary Fig. S1B). Surprisingly, MAP2-positive neurons derived from NSCs co-overexpressing of miR-9 
and miR-124 for 7 days had many more dendritic branches than those transfected with control virus or virus 
expressing miR-9 or miR-124 alone (Fig. 1A). These results suggest that miR-9 and miR-124 can synergistically 
regulate neurites morphology and promote dendritic branching.

To screen for target genes of miR-9 and miR-124, we used the online prediction tools TargetScan and 
PicTar30–32. Several Ras superfamily members were predicted to be the targets of miR-9 or miR-124 (Table 1). 
Among them, Rhog was previously verified as a target of miR-124 and shown to control axonal and dendritic 
branching33,34. This observation suggested that miR-9 and miR-124 regulate dendritic branching through the 
Ras superfamily members. Both algorithms strongly predicted that Rap2a is a common target of miR-9 and miR-
124 (Table 1). Sequence analysis revealed that the 3′​ UTR of Rap2a contains regions complementary to the seed 
regions of miR-9 and miR-124 (Fig. 1B), i.e., that the Rap2a mRNA has putative miR-9 and miR-124 binding sites 
in its 3′​ UTR (Fig. 1B).

To determine the expression patterns of miR-9, miR-124, and Rap2a, we measured the levels of miR-9 and 
miR-124 in NSCs, the undifferentiated multipotent neural progenitor cell line C17.2, and mature neurons. 
The levels of miR-9 and miR-124 were considerable higher in postmitotic neurons than in NSCs or C17.2 cells 
(Fig. 1C,D). On the contrary, the level of Rap2a was much lower in postmitotic neurons than in NSC and C17.2 
cells (Fig. 1E,F). Mature neurons contained a higher level of Tuj1 and lower level of nestin than NSC and C17.2 

Figure 1.  Experimental suggestion of Rap2a as a common target of miR9 and miR-124. (A) Dendritic 
morphology of neurons differentiated from NSCs transfected with LV-Ctrl, LV-miR-9, LV-miR-124, or LV-
miR-9-124 for 7 days. Scale bar, 100 μ​m. (B) Schematic representation of the putative base-pairing interactions 
of miR-9 and miR-124 with the 3′​ UTR of Rap2a. qPCR analysis of miR-9 (C) and miR-124 (D) expression 
in NSCs, C17.2 cells, and mature neurons. Western blot analysis (E) and quantitation by densitometry (F) for 
Rap2a, Tuj1 (J), and nestin (H) in mature neurons, NSCs, and C17.2 cells; signals were normalized to β​-actin.  
(*​*​P <​ 0.01; *​*​*​P <​ 0.001).
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cells (Fig. 1G,H). The inverted expression patterns of miR-9/-124 and Rap2a supported our hypothesis that Rap2a 
is a common target of both of these miRNAs.

Confirmation of Rap2a as a common target of miR-9 and miR-124.  To determine whether miR-9 
and miR-124 directly repress the Rap2a protein level, we constructed pCAG-miRNA expression plasmids 
(pCAG-miREPs) pCAG-miR-9, pCAG-miR-124, and pCAG-miR-9-124, in which pri-miR-9, pri-miR-124, 
or both the pri-miR-9 and pri-miR-124 sequences were placed under the control of the CAG promoter 
(Supplementary Fig. S1A). All of these plasmids efficiently expressed high levels of the corresponding miRNAs 
(data not shown).

We also constructed four reporter plasmids containing the luciferase cDNA sequence fused to the Rap2a 
3′​UTR with intact miR-9 and miR-124 binding sites (Rap2a 3′​UTR), a mutated miR-9 binding site (named as 
Δ​miR-9), a mutated miR-124 binding site (named as Δ​miR-124), or mutations in both the miR-9 and miR-
124 binding sites (Δ​miR-9-124) (Fig. 2A). After co-transfection of individual reporter plasmids containing 
the pCAG-miREPs into HEK293 cells harboring the Rap2a 3′​UTR reporter, we found that either pCAG-miR-9 
or pCAG-124 efficiently suppressed the activity of luciferase relative to pCAG-Ctrl (Fig. 2B). Moreover, 
pCAG-miR-9-124 suppressed luciferase activity to a greater extent than pCAG-miR-9 or pCAG-124 plasmid 
(Fig. 2B). However, neither pCAG-miR-9 nor pCAG-miR-124 suppressed luciferase activity in cells carrying a 
reporter in which its binding site was mutated (i.e., Δ​miR-9 and Δ​miR-124, respectively) (Fig. 2C,D), whereas 
both suppressed the reporter with the reciprocal mutation in the binding site for the other miRNA (Fig. 2C,D). 
None of the pCAG-miREPs could suppress the activity of luciferase in Δ​miR-9-124 (Fig. 2E). These results indi-
cate that mutation of the sequences complementary to miRNA seed regions in the Rap2a 3′​UTR can efficiently 
abolish the suppressive activity of miR-9 and miR-124. Moreover, miR-9 and miR-124 synergistically suppressed 
the Rap2a 3′​UTR together, both miRNAs exerted a greater than additive effect on expression.

In addition, we also constructed LV-miREPs in lentivirus: LV-Ctrl, LV-miR-9, LV-miR-124, and LV-miR-9-124 
(Supplementary Fig. S1B). LV-miR-9-124 repressed the protein level of Rap2a in NSCs significantly more effec-
tively than either LV-miR-9 (32 ±​ 4% vs 74 ±​ 3%, P =​ 0.0046) or miR-124 (32 ±​ 4% vs 69 ±​ 2%, P =​ 0.0015) 
(Fig. 2F,G). Since the target sites of miR-9 and miR-124 in Rap2a 3′​ UTR sequence were conserved among the 
species (Supplementary Fig. S2), we transfected pCAG-miREPs into HEK293 and C17.2 cells to further confirm 
that miR-9 and miR-124 can directly repress Rap2a protein expression. Either pCAG-miR-9 or pCAG-miR-124 
repressed the expression of Rap2a in both HEK293 and C17.2 cells (Fig. 2H,I). The Rap2a protein level was more 
reduced by pCAG-miR-9-124 than by either pCAG-miR-9 or pCAG-miR-124 alone (Fig. 2H,I). The synergis-
tic suppressive effect of miR-9 and miR-124 on Rap2a was abolished by miR-9 and miR-124 sponges (miRNA 
sponges), which contain eight tandem binding sites for either miR-9 or miR-124, respectively (Fig. 2J,K and 
Supplementary Fig. S3A–C). Together, we demonstrated that Rap2a is a common target of miR-9 and miR-124, 
and that miR-9 and miR-124 exert a synergistic effect on the suppression of Rap2a in cells.

MiR-9 and miR-124 synergistically promote neuronal differentiation and dendritic complexity 
of NSCs by directly repressing Rap2a.  To examine the synergistic effects of neuronal differentiation 
and the dendritic complexity of differentiated neurons, we transfected LV-miR-9-124 into NSCs. In this exper-
iment, low and high titers of lentivirus of LV-miR-9-124 were used to infect NSCs (Fig. 3A). After 7 days of 
culture, LV-miR-9-124 promoted more differentiation of NSCs into MAP2-positive neurons than the control 
virus (Fig. 3B). More cells were MAP2-positive when a higher viral titer was used (33% ±​ 3.2% vs 21% ±​ 2.7%, 
P =​ 0.0078) (Fig. 3B). After treatment with LV-Rap2V12 (Supplementary Fig. S1C), a constitutively active form 
of Rap2a, in combination with LV-miR-9-124, the number of MAP2-positive cells significantly decreased rel-
ative to that in cells treated with LV-miR-9-124 alone (33% ±​ 3.2% vs 20% ±​ 3%, P =​ 0.006) (Fig. 3B). We also 
detected another postmitotic neuron marker NeuN in differentiated neurons after LV-miR-9-12 transfected into 
NSCs. The numbers of NeuN-positive cells was consistent with MAP2-positive cells in neuronal differentiation 
(Supplementary Fig. S4).

We also analyzed the dendritic complexity of differentiated neurons following transfection with LV-miR-EPs. 
The complexity of dendritic branching was analyzed in terms of in morphology, number of dendritic inter-
sections (NDIs), and the total number of dendritic end tips (TNDEPs) (Fig. 3C–E). MAP2-positive neurons 
derived from NSCs had more dendritic branches, NDIs, and TNDEPs in the LV-miR-9-miR-124 (hi) group 
than in the LV-Ctrl and LV-miR-9-124 (lo) group (Fig. 3C–E). Rap2V12 decreased the dendritic complexity of 

miR-124 miR-9

Rap2a Rap2a

Rab34, Rab38 Rab43

Rhog Rhoq

Raph1

RAS p21 protein 
activator 2

Rreb1

Ras repressor protein 1

Ras-GTPase-activating protein SH3-
domain binding protein 1

Table 1.   Members of the Ras superfamily were predicted as conserved targets of miR-9 and miR-124 by the 
online prediction tools TargetScan and PicTar.
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neurons transfected with LV-miR-9-124 (hi) (Fig. 3C–E). These findings suggest that miR-9 and miR-124, in a 
concentration-dependent manner, synergistically regulate the neuronal differentiation of NSCs and dendritic 
complexity of differentiated neurons. Furthermore, increasing the activity of Rap2a can diminish the synergistic 
effects of miR-9 and miR-124 on neuronal differentiation and dendritic branching.

Next, we investigated the influence of culture time on the synergistic effects of miR-9 and miR-124 in NSCs. 
Both 3 and 7 days after transfection with LV-miR-9-124 [miR-9-124 (3d) and miR-9-124 (7d), respectively], 
NSC cultures contained more MAP2-positive cells than controls (Fig. 3F,G). In addition, dendritic complexity of 
MAP2-positive cells increased over time following miR-9-124 transfection (Fig. 3H–J). However, LV-Rap2V12 
also significantly decreased (P =​ 0.008) the number of MAP2-positive cells three days after LV-miR-9-124 trans-
fection (Fig. 3F,G). These results suggest that miR-9 and miR-124 synergistically regulate the neuronal differenti-
ation of NSCs and dendritic complexity of differentiated neurons in a time-dependent manner. However, elevated 
Rap2a activity could also diminish the synergistic effects of miR-9 and miR-124 on the dendritic complexity of 
MAP2-positive differentiated neurons. Thus, our results demonstrate that miR-9 and miR-124 promote neuronal 
differentiation of NSCs and increase dendritic branching by inhibiting Rap2a protein.

Figure 2.  Confirmation of Rap2a as the common target of miR-9 and miR-124. (A) Schematic 
representation of the four reporter plasmids. pGL3-Rap2a 3′​UTR (Rap2a 3′​UTR): Rap2a 3′​ UTR (2310-3059 
bp) containing miR-9 and miR-124 binding sites was cloned downstream of luciferase. Underlined bases are 
sequences complementary to the seed regions of miR-9 and miR-124. pGL3-Rap2a 3′​UTR/miR-9 (Δ​miR-9): 
pGL-Rap2a 3′​UTR with a mutation in the miR-9 binding site. pGL3-Rap2a 3′​UTR/miR-124 (Δ​miR-124): 
pGL-Rap2a 3′​UTR with a mutation in the miR-124 binding site. pGL3-Rap2a 3′​UTR/miR-9-124 (Δ​miR-
9-124): pGL-Rap2a 3′​UTR with mutations in both the miR-9 and miR-124 binding sites. The boxed bases 
indicate mutations in sequences complementary to the seed regions of miR-9 and miR-124. (B–E) Luciferase 
activity in HEK293 cells co-transfected with Rap2a 3′​ UTR (B), Δ​miR-9 (C), Δ​miR-124 (D), or Δ​miR-9-
124 (E) reporter plasmid with four miR-EPs. Firefly luciferase data were normalized to renilla luciferase data. 
(F,G) Western blot analysis (F) and quantitation by densitometry (G) for Rap2a in NSCs transfected with four 
miR-EPs. (H,I) Western blot analysis (H) and quantitation by densitometry (I) for Rap2a in HEK293 and 
C17.2 cells transfected with four miR-EPs. (J,K) Western blot analysis (J) and quantitation by densitometry 
(K) for Rap2a in HEK293 and C17.2 cells transfected with miR-9-124 and miRNA sponge. Signals were 
normalized to β​-actin. (*​P <​ 0.05; *​*​P <​ 0.01; *​*​*​P <​ 0.001).
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Rap2a Reduce dendritic complexity of mature neurons.  To further examine the importance of 
Rap2a inhibited by miR-9 and miR-124 in mature neurons, we transfected postmitotic neurons isolated from 
cortex with lentivirus expressing LV-Ctrl, LV-Rap2N17 (a dominant-negative mutant of Rap2a protein) or 
LV-Rap2V12 (Supplementary Fig. S1C), respectively. Seven days after transfected, the postmitotic neurons trans-
fected with LV-Rap2N17 maintained dendritic branch morphology similar to that of LV-Ctrl-transfected neu-
rons (Fig. 4A, left panel and middle panel). Dendritic analysis revealed that neither NDIs nor TNDEPs differed 
between LC-Ctrl- and LV-Rap2N17-transfected neurons (Fig. 4B,C). In LV-Rap2V12-transfected cells (Fig. 4A, 

Figure 3.  miR-9 and miR-124 synergistically regulate neuronal differentiation and dendritic branching 
of NSCs by repressing Rap2a. (A,B) Representative profiles (A) and the percentage (B) of MAP2-positive 
differentiated neurons after transfection of NSCs with miR-9-124 at different viral titers and rescue by  
Rap2V12. Scale bar, 200 μ​m. (C) Typical dendritic morphology of differentiated neurons after transfection of 
NSCs with miR-9-124 at different viral titers and rescue by Rap2V12. Scale bar, 100 μ​m. (D,E) Sholl analysis  
of NDIs (D) and TNDETs (E) of dendritic complexity in differentiated neurons in (C) (n =​ 30 neurons).  
(F,G) Representative profiles (F) and percentage (G) of MAP2-positive differentiated neurons after transfection 
of NSCs with miR-9-124 for different culture times and rescue by Rap2V12. Scale bar, 200 μ​m. (H) Typical 
dendritic morphology of differentiated neurons after transfection of NSCs with miR-9-124 for different culture 
times and rescue by Rap2V12. Scale bar, 100 μ​m. (I,J) Sholl analysis of NDIs (I) and TNDETs (J) of dendritic 
complexity of differentiated neurons in (H) (n =​ 30 neurons). (*​P <​ 0.05; *​*​P <​ 0.01; *​*​*​P <​ 0.001).
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right panel), the number of neuronal dendritic branches was strikingly reduced relative to those in LV-Ctrl- and 
LV-Rap2N17-transfected cells (Fig. 4A–C). These results suggested that inhibition of Rap2a is indispensable for 
dendritic branching and complexity of mature neurons.

AKT-GSK3β signal pathway is involved in the regulation of dendritic complexity of mature neu-
rons by Rap2a.  To identify the signaling pathway(s) involved in the regulation of dendritic complexity by 
Rap2a, we overexpressed miR-9-124, Rap2N17, and Rap2V12 in neurons. LV-Rap2V12 transfection considerable 
decreased the level of pAKT in mature neurons relative to LV-Ctrl, LV-miR-9-124, and LV-Rap2N17 transfection 
(Fig. 5A,B). Thus, Rap2a, but not miR-9 or miR-124, can change the level of pAKT, as mature neurons maintained 
high levels of miR-9 and miR-124 and a low level of Rap2a (Fig. 1C–F). This result also suggests that the AKT 
signaling pathway is involved in the regulation of dendritic complexity of mature neurons by Rap2a.

Glycogen synthase kinase 3 beta (GSK3β​) acts downstream of Akt, and its activity is inhibited via phospho-
rylation of its serine 9 residue (Ser9) by pAKT, leading to control of neurogenesis, neuronal polarization, and 
axonal outgrowth35. To further detect the influence of Rap2a on the activity of AKT and GSK3β​, we forced mature 
neurons to overexpress Rap2a. Compared to the LV-Rap2N17 control, overexpression of Rap2V12 resulted in 
greater reductions in the levels of pAKT and pGSK-3β​ (Fig. 5C,D). This inhibition pattern was also apparent in 
LV-Rap2V12-transfected neurons cultivated for longer periods (Fig. 5E,F). Because miR-9 and miR-124 syner-
gistically inhibited Rap2a translation, and NSCs contained low levels of miR-9 and miR-124 and high level of 
Rap2a (Fig. 1E,F), we wondered whether miR-9 and miR-124 could synergistically alter the levels of pAKT and 
pGSK-3β​ in NSCs. Neither miR-9 nor miR-124 could change the levels of pAKT or pGSK-3β​ in NSCs following 
transfection with LV-miR-EPs (Fig. 5G,H); only LV-miR-9-124 transfection could significantly increase the levels 
of pAKT (P =​ 0.0009) and pGSK-3β​ (P =​ 0.0008) in NSCs (Fig. 5G,H). These results further demonstrate that 
Rap2a, the common target of miR-9 and miR-124, exerts its physical roles in NSCs and neurons by regulating the 
activity of AKT and GSK3β​.

Discussion
Relationships between miRNAs and targets can be both one-to-many and many-to-one, i.e., one miRNA can repress 
many proteins, and one protein can be regulated by many miRNAs. For example, miR-155 can target the bone 
morphogenetic protein (BMP)-responsive transcriptional factors SMAD2 and SMAD5, nuclear factor κ​B (NF-κ​B) 
inhibitor κ​B-Ras1, and MyD88 to modulate macrophage responses, lymphomagenesis, hematopoiesis, and inflam-
mation36–39. On the other hand, miR-15 and miR-16 control apoptosis by targeting BCL-2 mRNA40. MiR-224 and 
miR-203 downregulate NPAS4 (Neuronal Per-ARNT-SIM homology domain 4) expression through its 3′​UTR41. 
This characteristic of miRNAs and their targets has drawn increasing attention to the synergistic effects of miRNAs. 
For instance, miR-499 and miR-133 synergistically promote cardiac differentiation42. Likewise, the combined action 
of miR-106b, miR-93, and miR-25 effectively repress expression of PTEN transcripts in prostate cancer43.

Figure 4.  Rap2a repressed dendritic branching in mature neurons. (A) Typical dendritic morphology of 
mature neurons after transfection with LV-Ctrl, Rap2N17 or Rap2V12 for seven days. Scale bar, 100 μ​m;  
(B,C) Sholl analysis in NDIs (B) and TNDETs (C) of dendritic complexity in mature neurons in (A). (n =​ 30 
neurons, *​*​*​P <​ 0.001).
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In this study, we observed that co-overexpression of miR-9 and miR-124 in NSCs promoted neuronal differ-
entiation and dendritic branching, whereas neither miRNA had an effect, strongly suggesting that miR-9 and 
miR-124 exert synergistic effects on neuronal differentiation and dendritic tree complexity. Recent studies report 
that genetic switches responsible for control of neuronal gene expression are targets of both miR-9 and miR-124. 
MiR-9 targets repressor-element-1-silencing transcription factor (REST), and miR-9*​ targets CoREST44. MiR-124 
also targets CoREST to regulate intrinsic temporal changes in RGC growth cone sensitivity and radial migration 
of projection neurons45,46. Although these studies proposed that miR-9 and miR-124 play crucial roles in neuron 
fate, they did not clearly elucidate the synergistic effects. Here, we showed that miR-9 and miR-124 play synergis-
tic roles in neuron fate, and that Rap2a is their common target.

Previous work shows that Rap2a controls dendritic spine morphology and synaptic plasticity47–49, and our 
results were consistent with those observations. We confirmed that Rap2a represses dendritic branching and 
neuronal differentiation, and found that miR-9 and miR-124 promote neuronal differentiation and dendritic 
tree complexity by inhibiting Rap2a. In fact, some Ras superfamily members interact with miR-9 and miR-
124. For example, miR-9 is suppressed by the Ras/PI3K/AKT axis, resulting in glioblastoma tumorigenicity50. 
Overexpression of miR-124 in differentiating mouse P19 cells promotes neurite outgrowth by regulating the 
members of Rho GTPase51. MiR-124 controls axonal and dendritic development by targeting the small GTPase 
RhoG. Our results showed that another member of the Ras superfamily is regulated by miR-9 and miR-124. In 

Figure 5.  Loss of Rap2a leads to enhanced AKT-GSK3β signaling pathway. (A,B) Western blot analysis  
(A) and quantitation by densitometry (B) for pAKT (Ser473) and total AKT of mature neurons after 
transfection with LV-Ctrl, Rap2N17, Rap2V12, or miR-9-124. (C,D) Western blot analysis (C) and quantitation 
by densitometry (D) for Rap2a, pAKT (Ser473), total AKT, pGSK3β​ (Ser9) and total GSK3β​ in mature neurons 
transfected with Rap2V12 at different viral titers. (E and F) Western blot analysis (E) and quantitation by 
densitometry (F) for Rap2a, pAKT (Ser473), total AKT, pGSK3β​ (Ser9) and total GSK3β​ in mature neurons 
after Rap2V12 transfection for different culture times. (G,H) Western blot analysis (G) and quantitation by 
densitometry (H) for pAKT (Ser473) total AKT, pGSK3β​ (Ser9) and total GSK3β​ in NSCs after transfection 
with LV-Ctrl, miR-9, miR-124, and miR-9-124 transfection. All signals were normalized to β​-actin. (*​P <​ 0.05;  
*​*​P <​ 0.01; *​*​*​P <​ 0.001).
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addition, overexpression of Rap2V12 could not completely offset the synergistic effects of miR-9 and miR-124, 
leading us to speculate that miR-9 and miR-124 may regulate neuron fate via another mechanism.

The multifunctional serine/threonine kinase GSK3β​ plays a variety of roles in activity-dependent regulation of 
dendritic development and maintenance52,53. Phosphorylation of GSK3β​ on Tyr216 leads to activation, whereas 
phosphorylation of Ser9 by AKT results in inactivation35,54. We found that levels of pAKT (phosphorylation of 
Ser473) and pGSK3β​ (phosphorylation of Ser9) were dramatically downregulated by overexpression of Rap2a in 
mature neurons (Fig. 5A,B). Thus, the AKT/GSK3β​ signaling pathway is regulated by Rap2a, and miR-9 and miR-
124 can control AKT/GSK3β​ signaling pathway by targeting Rap2a. It is reported that in B cells Rap2V12 reduces 
Akt activity via PI3K inhibition55. Our results proved that Rap2V12 can also repress Akt activity to inhibit neu-
ronal differentiation and dendritic branching in nervous system. Although Rap2a is involved in the JNK and ERK 
signaling pathways56,57, we did not detect obvious changes in the levels of pERK or pJNK upon overexpression of 
miR-9 and miR-124 in NSCs (data not shown). As homologous proteins of Rap2a, Rap2b was reported to closely 
correlate with cancer58. The biological function of Rap2c was still unclear. The roles of both Rap2b and Rap2c have 
not yet been reported in nervous system. Considering the vital function of Ras superfamily in nervous system, 
Rap2b and Rap2c may have some novel roles in differentiation of NSCs, which still need to investigate further.

Our results reveal the mechanism by which miR-9 and miR-124 synergistically promote neuronal differenti-
ation and dendritic branching (Fig. 6). Rap2a decreases phosphorylation levels of AKT, thereby inactivating it. 
MiR-9 and miR-124 repress Rap2a by binding to specific sites in the Rap2a 3′​ UTR, thereby releasing the inhi-
bition of AKT, ultimately resulting in inactivation of GSK3β​ by phosphorylation on Ser9. Inactivation of GSK3β​ 
boosts neuronal differentiation and dendritic branching. In short, the results suggest that the synergistic effects of 
miR-9 and miR-124 control AKT/GSK3β​ signaling to regulate neuronal differentiation and dendritic complexity 
by inhibiting Rap2a.

The results of this study reveal a previously unknown interaction between miR-9, miR-124 and Rap2a, and 
emphasize the synergistic effects of miR-9 and miR-124 on neuronal differentiation and dendritic complexity.

Materials and Methods
DNA Constructs and lentivirus preparation.  Expression vectors for miR-9 and miR-124 were con-
structed as described previously59. Briefly, the two primary miRNA transcripts (pri-miR-9 and pri-miR-124; 
specifically, ~500 base pairs around mmu-miR-9-3 and mmu-miR-124-1) were amplified, and either or both 
of them were cloned downstream of the CAG promoter of pCAG to yield pCAG-miR-9, pCAG-miR-124, and 
pCAG-miR-9-124 (Supplementary Fig. 1A), or downstream of the EF1 promoter of pCDH-EF1-MCS (System 
Biosciences, San Diego, CA USA) to yield LV-miR-9, LV-miR-124, and LV-miR-9-124 (Supplementary Fig. 1B).

Vectors for luciferase reporter experiments were established as reported60. Bases 2310-3059 of the Rap2a 3′​ 
UTR were amplified by RT-PCR from mouse brain mRNA and inserted downstream of the stop codon of lucif-
erase in vector pGL3 (Promega, Madison, WI, USA). The binding sites in the Rap2a 3′​ UTR for miR-9, miR-
124, or both (i.e., sequences complementary to bases 2–6 in the miRNA seed regions) were mutated, and the 
resultant mutant UTRs were inserted downstream of the stop codon of luciferase in pGL3 to yield pGL3-Rap2a, 
pGL3-Rap2aΔ​miR-9, pGL3-Rap2aΔ​miR-124, and pGL3-Rap2aΔ​miR-9-124 (Fig. 2A).

Figure 6.  Schematic of miR-9/-124–mediated regulation of neuronal differentiation and dendritic 
branching by inhibition of Rap2a. 
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The Rap2a cDNA was amplified from mouse brain using the primer pair 5′​-ATGCGCGAGTACAAAGTGG-3′​ 
and 5′​-CTATTGTATGTTACAGGCAGAA-3′​. To generate dominant-negative Rap2a (Rap2N17) or constitutively 
active Rap2 (Rap2V12)57, a mutant containing a Ser-to-Asn substitution at position 17 (Rap2N17) or Gly-to-Val 
substitution at position 12 (Rap2V12) was cloned downstream of the EF1 promoter in vector pCDH-EF1-MCS 
to yield LV-Rap2N17 and LV-Rap2V12 (Supplementary Fig. 1C).

For the miRNA sponge expression vector, eight tandem miR-124 binding sites (Sangon Biotech, Shanghai, 
China) were ligated into pGL3 (Promega). Likewise, eight tandem mouse miR-9 binding sites were amplified 
from pBabe-puro-miR-9 sponge (Addgene) and ligated into pGL3 (Supplementary Fig. 2A).

Cell culture.  Human embryonic kidney HEK293 cells were grown in Dulbecco’s Modified Eagle Medium 
(DMEM) (Gibco, Karlsruhe, Germany) supplemented with 10% fetal bovine serum (Gibco) and 10 mM 
L-glutamine (Gibco). The multipotent neural progenitor cell line C17.2 was maintained in DMEM supplemented 
with 10% fetal bovine serum, 5% horse serum (Gibco), and 10 mM L-glutamine. NSCs and neurons were sepa-
rately established from cortex of embryonic day (E) 14-E16 C57BL/6 mice. Briefly, cortex was microdissected and 
stripped of meninges, and then tissues were mechanically dissociated into single-cell suspensions. For NSCs, cells 
were grown in DMEM/F-12 (Gibco) supplemented with 1  mM L-glutamine, 1% N2 supplement (Gibco), 20 μ​L/mL  
B-27 supplement minus vitamin A (Gibco), 100 μ​g/mL penicillin/streptomycin (Gibco), 20 ng/mL epidermal 
growth factor (EGF), and 20 ng/mL fibroblast growth factor bFGF (PeproTech, London, UK). For neurons, cells 
were seed in poly-L-lysine-coated plates and grown in serum-free Neurobasal medium (Gibco) supplemented 
with 10 mM L-glutamine, 100 μ​g/mL penicillin/streptomycin, and 20 μ​L/mL B-27 supplement. Cells were main-
tained in a humidified incubator with 5% CO2 at 37 °C.

RNA extraction and quantitative real-time PCR.  For quantitative real-time PCR of miRNA, RNA 
was extracted with TRIzol (Invitrogen, Carlsbad, CA, USA) and reverse-transcribed with miRNA-specific prim-
ers using the miScript Reverse Transcription Kit (Qiagen, Hilden, Germany). Quantitative RT-PCR of mature 
miRNA was performed using a miRNA-specific primer on a CFX96 Real-Time PCR Detection System (Bio-Rad 
Laboratories, Hercules, CA, USA). U6 was amplified as a normalization control. Quantitative RT-PCR of miR-
NAs was performed using the following primers: miR-9, 5′​-GGTCTTTGGTTATCTAGCTGTATGA-3′​; miR-124,  
5′​-TTTCCTATGCATATACTTCTTT-3′​.

Luciferase assay.  HEK293 cells were seeded in 24-well plates and transfected the next day with 0.4 μ​g of 
miRNA expression vector, 0.4 μ​g of firefly luciferase reporter vector, and 0.08 μ​g of the control vector pRL-TK 
(Promega, Madison, USA), which contains Renilla luciferase. Transfections were performed using Lipofectamine 
2000 (Invitrogen). Each treatment was performed in triplicate in three independent experiments, and the activi-
ties of firefly and Renilla luciferase were measured consecutively using dual-luciferase assays (Promega) 24 h after 
transfection.

Cell transfection and transduction.  HEK293 cells and C17.2 cells were seeded in 24-well plates and 
transfected the next day with miRNA expression vectors with or without miRNA sponges, Transfections were 
performed using Lipofectamine 2000. The cells were then incubated for 48 h.

For virus transduction, NSCs were digested into single-cell suspensions, and then seeded in 
poly-L-lysine-coated 24-well plates at 1 ×​ 105cells/cm2. The next day, low (5 μ​L, titer: 1 ×​ 108 TU/mL) or high 
amounts (10 μ​L, titer: 1 ×​ 108 TU/mL) of viral supernatants were added to the cells. The medium containing virus 
was removed and discarded 24 h after transduction and replaced with fresh growth medium of NSCs. Neurons 
derived from cortex of E14-E16 C57BL/6 mice were plates at 1 ×​ 105cells/cm2 and cultured for 3 days. On the 
fourth day, low (5 μ​L, titer: 1 ×​ 108 TU/mL) or high amounts (10 μ​L, titer: 1 ×​ 108 TU/mL) of viral supernatant 
were added to the cells. The medium containing virus was removed and discarded 24 h after transduction and 
replaced with fresh growth medium of neurons. The cells were incubated for 3 or 7 days, and then harvested or 
immunostained.

Immunocytochemistry.  Cells were fixed in 4% paraformaldehyde for 30 min, and then blocked for 1 h with 
1% bovine serum albumin containing 0.3% Triton X-100. Blocked cells were incubated overnight at 4 °C with 
Rabbit polyclonal antibody to MAP2 (Millipore) and Rabbit polyclonal antibody to NeuN antibody (Millipore), 
and then for 2 h at room temperature with the relative secondary antibodies (DyLight 488-conjugated AffiniPure 
Donkey anti-rabbit IgG, Jackson ImmunoResearch Laboratories, West Rove, PA, USA). Images were acquired 
using an IX71 inverted microscope (Olympus, Japan).

Western blotting.  Cells were lysed in lysis buffer (pH 8.0; 50 mM Tris-HCl containing 150 mM NaCl, 5 mM 
ethylenediaminetetraacetic acid, 1 mM dithiothreitol, 0.5% deoxysodium cholate, 0.1% SDS, 20 μ​g/mL protease 
inhibitors aprotinin, 1 mM sodium orthovanadate, 1 mM mercaptoethanol, and 5 mM sodium fluoride), incu-
bated on ice for 30 min, and centrifuged. Protein concentrations in supernatants were determined by Bradford 
analysis.

Proteins were separated on 10% or 15% (for Rap2a) SDS-PAGE gels at a constant 100 mV voltage and trans-
ferred to Polyvinylidene Difluoride (PVDF) membranes at 300 mV for 1 h. PVDF membranes were blocked in 
5% nonfat milk for 1 h; incubated overnight at 4 °C with primary antibodies against Rap2a (Proteintech, Wuhan, 
China), nestin (Sigma-Aldrich, St. Louis, MO, USA), Tuj1 (Sigma-Aldrich), p-AKT (Ser473) (Cell Signaling 
Technology, Boston, MA), p-GSK3β​ (Ser9) (Cell Signaling Technology), or β​-actin (Sigma-Aldrich); and then 
incubated for 2 h at room temperature with the relative secondary antibodies conjugated with horseradish perox-
idase (Abcam). Immunoreactive bands were visualized using an enhanced chemiluminescence kit on a Bio-Rad 
Image Lab system.
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Statistical analysis.  All statistical analyses of experimental data were performed using GraphPad Prism 
5.0 (GraphPad) and are presented as group mean ±​ SEM. All experiments were repeated at least three times. 
Comparison of the two groups was performed using independent two-tailed Student’s t tests, and P values <​ 0.05 
were considered significant.
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