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A B S T R A C T

Purpose
Distinguishing independent primary tumors from intrapulmonary metastases in non–small-cell
carcinoma remains a clinical dilemma with significant clinical implications. Using next-generation
DNA sequencing, we developed a chromosomal rearrangement–based approach to differentiate
multiple primary tumors from metastasis.

Methods
Tumor specimens from patients with known independent primary tumors and metastatic lesions
were used for lineage test development, which was then applied to multifocal tumors. Laser
capture microdissection was performed separately for each tumor. Genomic DNA was isolated
using direct in situ whole-genome amplification methodology, and next-generation sequencing
was performed using an Illumina mate-pair library protocol. Sequence reads were mapped to the
human genome, and primers spanning the fusion junctions were used for validation polymerase
chain reaction.

Results
A total of 41 tumor samples were sequenced (33 adenocarcinomas [ADs] and eight squamous cell
carcinomas [SQCCs]), with a range of three to 276 breakpoints per tumor identified. Lung tumors
predicted to be independent primary tumors based on different histologic subtype did not share
any genomic rearrangements. In patients with lung primary tumors and paired distant metastases,
shared rearrangements were identified in all tumor pairs, emphasizing the patient specificity of
identified breakpoints. Multifocal AD and SQCC samples were reviewed independently by two
pulmonary pathologists. Concordance between histology and genomic data occurred in the
majority of samples. Discrepant tumor samples were resolved by genome sequencing.

Conclusion
A diagnostic lineage test based on genomic rearrangements from mate-pair sequencing
demonstrates promise for distinguishing independent primary from metastatic disease in
lung cancer.

J Clin Oncol 32:4050-4058. © 2014 by American Society of Clinical Oncology

INTRODUCTION

Given the reduction in lung cancer mortality dem-
onstrated in the National Lung Screening Trial, a
number of organizations have endorsed chest com-
puted tomography screening for high-risk individu-
als. Compared with previous reports estimating that
0.8% to 4% of patients with lung cancer present with
or develop multiple lesions, more recent data indi-
cate that up to 20% of patients in screening popula-
tions will be diagnosed with multiple synchronous
or metachronous tumors.1-9

The question of whether multiple lesions
represent true metastases versus independent pri-
mary lesions remains a difficult clinical problem.
This distinction typically represents the difference
between aggressive local therapy for patients
deemed to have independent primary tumors ver-
sus less aggressive or even palliative systemic ther-
apy for patients thought to have metastatic
disease.10-18 Currently, the determination of inde-
pendent primary tumors versus metastasis is
largely based on provider-specific clinical and/or
pathologic assumptions. There are presently no
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ancillary tests that allow this distinction to be made with any
reasonable clinical accuracy.

Next-generation sequencing of several cancers has revealed
that solid tumors harbor tens to hundreds of somatic chromo-
somal rearrangements and thousands of single-nucleotide varia-
tions (SNVs). Both of these types of alterations have been used to
investigate lineage relationships in tumors from the same
individual.19-22 Given that the average genome contains 3 to 6 �
106 single-nucleotide polymorphisms and given the extensive
numbers of background SNVs within the local environment of a
tissue, the derivation of tumor-specific somatic SNVs remains
challenging. Although germline rearrangements exist, the num-
bers are low and easier to determine through polymerase chain
reaction (PCR) validation or bioinformatics.22 The additional
commonality of many recurrent SNV mutations, such as EGFR
and KRAS, means they are often shared even between independent
tumors.23 In contrast, the probability of detecting an identical
somatic chromosomal breakpoint in two unrelated tumors is ex-
tremely unlikely, if not zero. The common TMPRSS2-ERG fusion
is observed in approximately 50% of patients with prostate cancer.
Although the resultant fusion products are often identical at the
RNA and protein level, identical fusion junctions at the DNA
level have never been reported between tumors of different
patients.21,24-26 Similarly, for the common EML4-ALK transloca-
tion observed in approximately 5% of lung adenocarcinomas
(ADs), no duplicate breakpoints have been reported in the litera-
ture to date, despite overlap in protein products and functional
consequence.27 Furthermore, recent publications used rearrange-
ments to successfully demonstrate lineage of adjacent lepidic and
invasive components of lepidic predominant ADs22 and adjacent
Gleason patterns in prostate cancer21 using next-generation DNA
sequencing with a mate-pair (MP) library approach. Given these
observations, we used similar methodology to identify lineage-
defining genomic alterations in the setting of multiple pulmonary
lesions, hypothesizing that intrapulmonary metastases would
share such unique genomic alterations, whereas independent pri-
mary tumors would not.

METHODS

Sample Selection

The following three groups of samples were identified as controls:
multiple tumor samples from different tissue blocks of a solitary tumor
(n � 4), 2- synchronous primary lung cancers of different histologic
subtype (n � 3), and primary lung cancers with corresponding distant
metastasis to brain or kidney (n � 4). The study group (Table 1) comprised
11 synchronous lung cancers of similar histologic subtype. ADs and squa-
mous cell carcinomas (SQCCs) were diagnosed according to WHO classi-
fications,28 and ADs were classified according to new proposed
classifications.29 Two pulmonary pathologists performed independent re-
views, blinded to clinical and genomic data. Based on morphology, using
criteria as suggested by Girard et al,30 a sample was predicted to be an
independent primary or metastasis, or to favor one of these predictions, or
indeterminate if the pathologists did not agree. This study was approved by
the Mayo Clinic Institutional Review Board.

Laser Capture Microdissection Frozen Tissue Specimens

Hematoxylin and eosin–stained fresh-frozen sections were reviewed
for quality control. Laser capture microdissection (LCM) was performed

on 10-�m frozen sections, and pure cell populations of tumor and non-
neoplastic lung (NL) were isolated using the Arcturus PixCell II micro-
scope and CapSure Macro LCM caps (Arcturus, Carlsbad, CA; LCM 0211).
DNA was extracted directly from LCM captured cells using a previously
described single-step whole-genome amplification (WGA) procedure.20-22

Four individual 50-�L WGA reactions were pooled for each sample. DNA
was quantified by Quant-iT-PicoGreen analysis (Invitrogen, Eugene, OR;
P7581). Where available, germline blood extracted DNA was obtained
from the Mayo Lung Specimen Registry.

Next-Generation Sequencing

MP sequencing tiles the genome with larger spanning (approximately
3 kb) fragments than conventional paired-end next-generation sequencing
to increase the probability of spanning a genomic breakpoint. MP libraries
were assembled from WGA DNA, according to a previously published
protocol,20-22 using the Illumina MP kit (Illumina, San Diego, CA). Two
multiplexed libraries were loaded per lane of an Illumina flow cell and
sequenced to 101 � 2 paired-end reads on an Illumina HiSeq. Base calling
was performed using Illumina Pipeline v1.5.

Data Analysis

Bioinformatics protocols to rapidly and efficiently process next-
generation sequencing MP data using a 32-bit binary indexing of the Hg19
reference genome have been previously published from our labora-
tory.31,32 The algorithm maps both MP reads successively to the whole
genome, selecting reads less than 15 kb apart allowing up to 10 mismatches,
with the lowest cumulative mismatch count sent to the output. Discordant
MPs mapping more than 30 kb apart or in different chromosomes were
selected for further analysis. Algorithmic filters to determine lineage rela-
tionships were set to minimize the effects of both false-positive and false
negative results. Namely, the lowest limit of MP associates to call an event
was set at seven, where the false-positive rate was practically zero, and a
mask of breakpoints was used to eliminate common variants and discor-
dant MPs from experimental or algorithmic errors.20,21,31,32 The mini-
mum gap between the last read from each event to the first read of the
following event was set to 3,000, thereby eliminating closely related but not
identical breakpoints from being called as shared. Breakpoints near gaps of
reference genome sequence were also eliminated. The false-negative rate
was estimated to be less than 15%, dictated by the incompleteness of the
reference genome and by regions that are difficult to map. Using a proba-
bility statistic, we estimated that the probability of relatedness between two
samples is P � .15n, where the expected number of shared breakpoints is n
and no shared events are found. Sequencing data for each sample are listed
in Appendix Table A1 (online only).

Validation of Genomic Rearrangements

Primers spanning the detected fusion junctions were used in PCR
validations (25-�L reaction volumes, 50-ng template, 35 cycles) using the
EasyA high-fidelity polymerase (Stratagene, La Jolla, CA; No. 600404).
PCR validations were performed on tumor DNA, NL, and a human
genomic DNA control (Promega, Madison, WI; G304A), as well as germ-
line blood DNA where available. Glyceraldehyde 3-phosphate dehydroge-
nase control PCRs were performed using standard primers.

RESULTS

MP sequencing on the 41 tumors (33 ADs and eight SQs) discov-
ered 2,201 unique rearrangements that passed lineage filters, rang-
ing from three (LU31A) to 276 (LU45A) breakpoints per tumor.
The average number of breakpoints was 54, with eight tumor
samples presenting with less than 10 breakpoints and eight tu-
mors with more than 100.

The control group of lung ADs, LU23, LU33, LU45, and LU47,
with two different frozen tumor blocks sequenced from the same
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tumor (Fig 1A), had a range of four to 276 genomic breakpoints
detected. The number of shared events between the different regions
of the tumor ranged from 50% to 100% (Fig 1B). Rearrangements
unique to different tumor regions were also identified. From the 529
total breakpoints detected in these four samples, 45% were shared
with adjacent sampling of the same tumor. Significantly, no common
breakpoints were identified as shared between different individual
tumors. A selection of PCR validations yielded identical breakpoints
in related tumors but not in NL tissue collected from the same patient
(Fig 1C).

The paired lung synchronous primary tumors of different
histologic subtype (LU29, LU31, and LU46) had 162, 39, and 82

total breakpoints, respectively (Figs 2A to 2C). One shared large
genomic rearrangement was observed between tumors in LU31.
This was subsequently demonstrated to be a germline variation,
validating evenly in the NL and blood DNA of that patient (Fig
2D). This event was also present in the multiple human genome
control sample. In summary, no shared somatic genomic rear-
rangements were identified among samples with definitive histo-
pathologic evidence of identity as independent primary tumors.

In contrast, shared rearrangements were identified within
individual primary tumor/metastasis pairs in all tumor pairs
(LU33, LU34, LU38, and LU39), with the frequency of shared
breakpoints detected varying from 8% to 75%. The number of

Table 1. Correlation Between Histologic Prediction and Genomic Data in Multiple Lung Carcinomas of Similar Histologic Subtype

Sample No.

Tumor 1 Tumor 2

Histologic Prediction
Genomic
PredictionType Location Type Location

LU26 RLL LUL Unrelated
R1 AD pred cribriform (C, 80%; A, 10%;

S, 10%)
AD pred acinar (A, 50%; L, 40%; P,

10%)
Independent primary

tumors
R2 AD pred solid (S, 50%; C, 50%) AD pred papillary (P, 40%; A, 30%; L,

10%; C, 10%; S, 10%)
Independent primary

tumors
LU28 RML LUL Unrelated

R1 AD pred solid (S, 90%; A, 10%) AD pred solid (S, 90%; A, 10% �
giant cells)

Independent primary
tumors

R2 AD pred solid (S, 80%; A, 10%; MP,
10%)

AD pred solid (S, 100% with signet
ring or large-cell features)

Favor independent primary
tumors

LU32 RLL LUL Unrelated
R1 AD pred acinar (A, 70%; L, 30%) MIA Independent primary

tumors
R2 AD pred acinar (A, 50%; P, 50%) AD pred lepidic (L, 70%; A, 30%) Independent primary

tumors
LU43 RLL RLL Unrelated

R1 AD mucinous AD pred acinar (A, 70%; C, 20%; P,
10%)

Independent primary
tumors

R2 AD mucinous AD pred acinar (A, 70%; P, 30%) Favor independent primary
tumors

LU45 LUL RUL Unrelated
R1 AD pred solid (S, 45% A 35% L

20%)
AD pred acinar (A, 70%; L, 20%; S,

10%)
Indeterminate: independent

primary tumors
R2 AD pred acinar (A, 50%; S, 20%; L,

20%; C, 10%)
AD pred acinar (A, 40%; L, 30%; S,

20%; P, 10%)
Favor metastasis

LU27 RLL RML Related
R1 AD mucinous AD mucinous Metastasis
R2 AD mucinous AD mucinous Metastasis

LU29 RUL Lingula Related
R1 SQCC G3 SQCC G3 Metastasis
R2 SQCC G3 SQCC G3 Favor metastasis

LU30 RML LLL Related
R1 AD mucinous AD mucinous Metastasis
R2 AD mucinous AD mucinous Favor metastasis

LU40 RML/RLL LLL Related
R1 SQCC G3 SQCC G3 Favor metastasis
R2 SQCC G2-3 SQCC G2-3 Metastasis

LU41 LUL RUL Unrelated
R1 SQCC G2 SQCC G2 with CIS Favor metastasis
R2 SQCC G2 SQCC G1-2 with CIS Metastasis

LU44 RLL LUL Unrelated
R1 AD pred solid (S, 75%; C, 20%; A,

5%)
AD pred solid (S, 50%; C, 25%; A,

25%)
Indeterminate metastasis

R2 AD pred solid (S, 90%; A, 10%) AD pred solid (S, 80%; A, 20%) Independent primary
tumors

Abbreviations: A, acinar; AD, adenocarcinoma; C, cribriform; G, grade; L, lepidic; LLL, left lower lung; LUL, left upper lung; MIA, minimally invasive adenocarcinoma;
P, papillary; pred, predominant; RLL, right lower lung; RML, right middle lung; RUL, right upper lung; S, solid; SQCC, squamous cell carcinoma.
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breakpoints ranged between four and 62 breakpoints per tumor
(Figs 3A to 3C). PCR successfully validated selected breakpoints in
all four tumor pairs (Fig 3D). Two selected events also validated in
surrounding NL at similar or reduced densities.

In conclusion, samples clearly classified as either independent
primary tumors or metastases, based on clinical and histologic
parameters, can be accurately separated into independent primary
tumors and metastases based on genomic data. Most significantly,
none of the detected breakpoints were shared between tumors
from different patients, emphasizing the patient and tumor speci-
ficity of identified breakpoints.

For the study group (Table 1), pathologists agreed on the
histologic subtype in all tumors, and for AD, they agreed on the
predominant pattern in 12 (75%) of 16 ADs. Figures 4A to 4C
presents hematoxylin and eosin images for six of the 11 tumor pairs
selected, with two each predicted as independent primary tumors
and metastases and the remaining two predicted as indeterminate.
The total number of breakpoints detected for each tumor sample is
presented in Figure 5A.

For the four cases predicted as independent primary tumors
(LU26, LU28, LU32, and LU43), the number of detected genomic
rearrangements ranged from eight to 69, with no shared somatic
rearrangements identified (Fig 5A). Single shared germline events
were observed in tumor samples LU26 and LU32, which validated
evenly in the associated NL and germline DNA from each patient
(Fig 5B). Four of five tumor pairs predicted to be metastases
(LU27, LU29, LU30, and LU40) shared between four and 85
genomic breakpoints (46% to 89%). PCR validation confirmed a

shared somatic mutation, absent from NL, in each sample (Fig 5B).
Conversely, the fifth tumor pair, predicted to be a metastasis
(LU41; Fig 4D), had only a single shared germline rearrangement
between the two tumors and, therefore, was predicted independent
by the genomic data (Fig 5B). Concordance between the agreed
histologic prediction of both pathologists and the genomic data
occurred in eight of nine tumor pairs. Two tumor pairs were
indeterminate (LU44 and LU45) and contained 217 and 287 total
breakpoints, respectively, with no shared somatic DNA rearrange-
ments, predicting for independent primaries (Fig 5A).

There was disagreement between the clinical assessment and
histologic prediction in three tumor pairs (LU27, LU29, and LU41),
with the genomic data supporting the histologic prediction in two of
these tumor pairs (Appendix Table A2, online only). In one tumor
pair (LU45), there was no definitive clinical assessment and a disagree-
ment between pathologists, with genomic data suggesting indepen-
dent primary tumors.

DISCUSSION

Next-generation sequencing using an MP protocol is a robust,
efficient, and cost-effective method to identify genomic rearrange-
ments. Our results from the current and prior studies20-22,31-33

suggest that chromosomal breakpoints are unique enough for in-
dividual patients and tumors to be able to determine tumor lin-
eage. Significantly, of the 2,201 breakpoints identified in our
current 41-tumor study, all somatic mutations were unique to an
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Fig 1. Control group 1: multiple tumor
samples from different tissue blocks of a
solitary tumor. (A) Schematic illustrating a
single primary tumor (AD1) from which
the two tumor regions (A/B) were col-
lected. (B) Numbers of genomic break-
points detected in each tumor pair (both
y-axes). Total numbers of breakpoint events
are listed as unique to tumor AD1A (gold) or
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mors (blue). (C) Polymerase chain reaction
validation bands of selected breakpoints from
the tumor pairs (AD1A and AD1B), non-
neoplastic lung tissue from the same patient
(NL), and a mixed-population independent
genomic DNA control (C) run on agarose gels
(1%). The two genomic loci and the im-
pacted genes at the breakpoint are in
addition listed at the left and right of each
gel panel, respectively. AD, adenocarci-
noma; ng, no gene involved.
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individual patient, with the only shared rearrangements observed
in the setting of metastatic disease. This observation is further
supported in other publications from our group20-22,31-33 and the
more than 500 tumors we have MP sequenced, where an exact
breakpoint has never been observed between samples from two
different patients (unpublished data). In addition, to our knowl-
edge, identical fusions across tumors, even in the highly recurring
lung cancer EML4-ALK or prostate TMPRSS2-EFG fusions, have
not been reported.24-27

The presence of large numbers of shared breakpoints in multiple
tumor blocks within single lung cancers further confirms that MP
sequencing can detect lineage associations despite tumor heterogene-
ity. This is an important feature of an approach based on sequencing
genomic rearrangements that would not be feasible using the targeted
mutation panels that are emerging as an important diagnostic test for
lung cancer care.34 Using rearrangements as identifiers of lineage,
unlike single-nucleotide mutations, also benefits from the fact that
rearrangements are much less frequently found in the germline. In our

study, few samples predicted to be independent primary tumors dem-
onstrated shared events, which we subsequently demonstrated as
germline through PCR validation in non-neoplastic lung and blood
DNA. Large genomic rearrangements are known to exist in the germ-
line of the human population, which differ from the reference genome
applied to bioinformatically detect rearrangements. In contrast to
single-nucleotide polymorphisms, germline rearrangements have not
been well defined in the reference genome. The extent of genomic
variation from large genomic rearrangements has been more exten-
sively mapped through copy number variation (CNV) studies. A
study on the genomes of 385 healthy African American and 435
healthy white patients predicted averages of 3.5 and 4.8 CNV per
genome, respectively.35 In these and other germline CNV studies,36-37

the majority of events arise from smaller intrachromosomal events
spanning less than 30 kb. Through our extensive MP sequencing data
of more than 500 tumors, we have been able to assemble a robust
database of common germline variations to efficiently filter out the
majority of polymorphic germline events. By applying filters masking

SQ 

AD 

A

B

C

D
N

o.
 o

f B
re

ak
po

in
ts

180

160

140

120

100

80

60

40

20

0

Unique SQ
Unique AD
Shared

2p23.2a-
7q11.23d

2p24.1d-
7q32.2a

LAPTM4A-
ZC3HC1 

ALK-
HIP1 

2p23.2b-
2p23.2a

RBKS-
SPDYA 

20p13-
20p13

PRNP-
SLC23A2 

8p23.1f-
8p23.1b

MCPH1-
TDH 

C        AD NL      SQ 

ng - ng 1p13.1−
14q11.2 

NL       SQ       AD 
LU46 

LU29

C       AD       NL      SQ  

LU31 

5p14.3b−
13q21.2b

CDH12 
−ng

5-13 

GAPDH 

C      B     AD 

LU29 AD 

LU29 SQ 

LU29 LU046 LU31 

Fig 2. Control group 2: synchronous
primary lung cancers of different histo-
logic subtype. (A) Schematic of tumor
pairs of different histologic subtype. (B)
Hematoxylin and eosin images of adeno-
carcinoma (AD; upper panel) and squa-
mous cell carcinoma (SQ; lower panel)
from LU29. (C) Numbers of genomic
breakpoints detected in each tumor pair
(y-axis). Total numbers of breakpoint
events are listed as unique to tumor AD
(gold) or SQ (gray) or shared between both
tumors (blue). (D) Polymerase chain reac-
tion (PCR) validation bands of selected
breakpoints from the tumor pairs (AD and
SQ), non-neoplastic lung tissue from the
same patient (NL), and a mixed-population
independent genomic DNA control (C) run
on agarose gels (1%). The two genomic
loci and the impacted genes at the break-
point are listed at the left and right of each gel
panel, respectively. For the LU31 event, an
additional germline blood (B) PCR validation
is presented for the chromosome 5 to 13
translocation and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) control. ng, no
gene involved.

Murphy et al

4054 © 2014 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY



discordant mapping events spanning less than 30 kb, we are also able
to mask the majority of additional unique germline events. Although
unique germline events passing our current masking filters will be
expected to continually arise, the data from this study show that the
frequency of such events remains low and easily evaluated by PCR. In
addition, as more genomes are sequenced and our database of germ-
line events increases, filtering will become increasingly efficient at
masking out false-positive germline events. Thus, through the cumu-
lative positive properties, including uniqueness of fusion junctions,
low levels of germline events, and the enhanced ability to filter out
many false-positive results (including germline events), we believe
breakpoints present a valuable mechanism to determine tumor lin-
eage.

The group of patients with independent primary tumors had
no shared identical breakpoints between tumors within the same
patient. Consistent with our hypothesis, we believe the identifica-
tion of shared large chromosomal rearrangements between two
tumors supports the concept of tumor lineage or relatedness. In
our study, when many events were shared between two tumors,
PCR validation was performed systematically on events until a
shared event, absent from the non-neoplastic lung, was observed.
Thus, the identification of metastasis worked on the preface that
just a single somatic shared event was diagnostic of lineage. The

number of observed events present within each tumor would the-
oretically strengthen such inference. However, to further define
thresholds for clinical applications of an MP lineage test will re-
quire analysis of a larger sample set.

For the purpose of determining tumor lineage, the function of a
mutationis less importantthanthefactthatthemutationoccursearlyand
is retained in the multiple tumor tissues. In this study, all genes had an
equal role in the calling of tumor lineage. Although a number of genes
were hit by rearrangements in multiple samples in this study, including
the well-known lung tumor gene ALK, the sample size of this study was
too small to predict driver versus passenger gene functions.

It is important to clarify that sensitivity of lineage detection is some-
what different from the sensitivity of complete breakpoint detection, al-
though it is influenced by it. Sensitivity of lineage detection between two
samples is dominated by recurrent high-coverage breakpoints, whereas
the sensitivity of complete breakpoint detection is influenced by tumor
heterogeneity, sequencing coverage for the region, and contamination by
normal cells. In tumors where foci are determined to be in-lineage via the
presence of many shared breakpoints validated by Sanger sequencing, the
false-negative result will not influence the determination. Therefore,
the positive predictive value of lineage detection for 12 tumor pairs (Figs
1D, 3D, and 5B) is essentially 100%. However, in the 10 paired tumors
where the two tumors were rendered independent because no shared
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breakpoints were found (Figs 2D and 5B), the potential false-negative
rate is an issue and dependent on algorithmic filters. To achieve a
balanced compromise between false-negative and false-positive rates,
we set the lower limit of breakpoint-supporting MPs to seven. Con-
cordant mapping MP sequence coverage for all samples was more
than 25 reads in regions where breakpoints were detected. With the
conservative estimate of a 15% false-negative rate (dictated by the
incompleteness of the reference genome and by regions that are
difficult to map), we estimated that the probability of relatedness
between any two samples is P � .15n, where n is the lowest number

of total breakpoints between the two samples and no commonality
is found. For the proposed test to be translated into a clinical
setting, a precise criterion for calling lineage will be required.
Although just a single shared somatic breakpoint could be consid-
ered strong evidence for lineage, this parameter still needs to be ad-
dressed with a larger sample study. In addition, the lower limit of
total breakpoints present within a tumor, which can still allow an
accurate lineage call, will also need to be addressed. Adaptation of
testing to small biopsies or cytology specimens will also improve
clinical translation.
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Discrepant

Fig 4. Hematoxylin and eosin (H&E) im-
ages of tumor pairs from the study group.
(A) H&E images of two tumor pairs of
predicted metastases: LU30 (upper pan-
els) and LU29 (lower panels). (B) H&E
images of two tumor pairs of predicted
independent primary tumors: LU26 (upper
panels) and LU28 (lower panels). (C) H&E
images of two tumor pairs of indetermi-
nate lineage: LU45 (left panels) and LU44
(right panels). (D) H&E images of tumor
pairs of LU41 with discrepancy between
histologic and genomic prediction. AD, adeno-
carcinoma; SQ, squamous cell carcinoma.
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An important consideration for a diagnostic test of lineage deter-
mination in cancer is whether it would be limited to lung cancer alone.
Many vexing clinical dilemmas, including synchronous/metachro-
nous SQCC of the head and neck and lung or multiple synchronous
tumors of the female genital tract, would all be scenarios where a
lineage test based on the detection of unique genomic rearrangements
may add value for patient care. Our data suggest this may be an
alternative and potentially more accurate and specific route to lineage
determination than through the analysis of driver mutations alone.
Although more work is required, the data also suggest the potential to
improve on clinical and pathologic analysis alone.
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Fig 5. Breakpoint numbers and polymer-
ase chain reaction (PCR) validations of tumor
pairs from the study group. (A) Numbers of
genomic breakpoints detected in each tumor
pair (y-axis). Total numbers of breakpoint
events are listed as unique to either tumor 1
(AD1 or SQ1; gold) or tumor 2 (AD2 or SQ2;
gray) of the tumor pairs or shared between
both tumors (blue). (B) PCR validation bands
of selected breakpoint events on samples
predicted as related (left panels) or indepen-
dent (central panels). PCR on non-neoplastic
lung tissue from the same patient (NL) and a
mixed-population independent genomic DNA
control (C) were also run on the same agarose
gels (1%). Germline validations on patient-
derived blood DNA (B) are presented in the
right panel, together with glyceraldehyde
3-phosphate dehydrogenase (GAPDH) con-
trols. AD, adenocarcinoma; ng, no gene
involved; SQ, squamous cell carcinoma. (*)
Indicates the discrepant case, LU41,
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tions are discordant.
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Appendix

Table A1. Sequencing Data

Sample Machine
Total No. of
Fragments

Fragments Not
Mapped (%)

Replication
(%)

Bridged
Coverage (�)

Base
Coverage (�)

Average Mate-Pair
Fragment (bp)

LU23_AD1a HiSeq 78,261,948 12.9 19.7 25.5 3.6 2,048
LU23_AD1b HiSeq 69,571,432 27.8 26.9 18.4 2.4 2,185
LU26_AD1 HiSeq 117,629,621 6.3 20.5 35.6 5.6 1,982
LU26_AD2 HiSeq 106,004,409 14.4 20.8 40.7 4.7 2,642
LU27_AD1 HiSeq 102,885,161 26.2 11.3 32.0 4.4 2,105
LU27_AD2 HiSeq 74,356,244 15.3 9.9 30.4 3.7 2,246
LU28_AD1 HiSeq 151,862,895 19.3 16.8 54.6 6.7 2,332
LU28_AD2 HiSeq 159,939,374 17.3 35.9 36.2 5.1 2,136
LU29_AD HiSeq 107,234,794 15.6 17.9 29.1 4.9 1,810
LU29_SQ1 HiSeq 124,425,025 13.5 12.0 48.9 6.2 2,374
LU29_SQ2 HiSeq 122,561,843 15.2 12.3 38.3 6.0 1,873
LU30_AD1 HiSeq 135,020,898 10.3 12.9 51.0 6.8 2,223
LU30_AD2 HiSeq 124,259,334 14.6 17.1 37.3 5.7 1,859
LU31_AD HiSeq 103,281,231 16.3 8.7 34.8 5.2 1,927
LU31b_ADb HiSeq 107,285,631 25.1 16.7 34.9 4.5 2,261
LU32_AD1 HiSeq 123,168,647 22.5 11.4 46.1 5.5 2,408
LU32_AD2 HiSeq 170,782,535 13.5 17.9 50.9 7.9 1,861
LU33_AD1a HiSeq2000 78,482,640 3.5 17.7 25.5 4.1 1,695
LU33_AD1b HiSeq2000 90,518,578 3.4 31.1 27.4 4.0 1,968
LU33_BrM HiSeq2000 87,887,485 3.6 36.4 10.5 2.3 1,355
LU34_AD HiSeq2000 78,018,388 3.2 20.8 25.8 3.9 1,798
LU34_BrM HiSeq2000 90,569,506 3.6 8.4 26.6 5.1 1,502
LU38_AD HiSeq2500 87,588,479 2.4 4.2 66.4 5.0 3,680
LU38_BrM HiSeq2000 81,965,528 4.0 22.8 25.7 3.9 1,838
LU39_AD HiSeq2000 120,412,216 2.2 15.7 81.0 6.0 3,765
LU39_BrM HiSeq2000 149,153,283 2.2 17.6 94.3 7.5 3,487
LU40_SQ1 HiSeq2000 139,718,870 2.5 9.4 97.6 7.9 3,402
LU40_SQ2 HiSeq2000 170,908,065 2.9 12.3 108.2 9.2 3,324
LU41_SQ1 HiSeq2000 140,145,548 2.5 9.4 104.5 7.8 3,679
LU41_SQ2 HiSeq2000 140,555,903 5.6 13.6 92.1 7.3 3,472
LU43_AD1 HiSeq2000 114,529,674 2.6 33.2 64.4 4.7 3,813
LU43_AD2 HiSeq2000 143,789,100 2.8 14.4 97.0 7.8 3,501
LU44_AD1 HiSeq2000 146,515,354 2.5 13.8 94.3 7.9 3,273
LU44_AD2 HiSeq2000 151,949,088 2.5 14.1 96.8 8.0 3,283
LU45_AD1a HiSeq2000 131,646,178 2.5 13.5 88.9 6.8 3,660
LU45_AD1b HiSeq2000 122,183,666 2.7 12.2 84.1 6.4 3,587
LU45_AD2 HiSeq2000 154,298,674 2.9 14.0 94.6 7.9 3,264
LU46_AD HiSeq2500 55,384,261 2.3 3.1 44.9 3.3 3,657
LU46_SQ HiSeq2500 80,884,315 2.3 3.7 62.9 4.7 3,624
LU47_AD1a HiSeq2500 65,046,795 2.3 3.7 47.4 3.6 3,621
LU47_AD1b HiSeq2500 103,749,753 2.4 4.0 71.8 5.6 3,552
Average 116,482,463 7 14 61 6 2,800
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Table A2. Correlation Between Histologic Prediction, Genomic Prediction, and Clinical Assessment

Sample No. Clinical Assessment Histologic Prediction Genomic Prediction

LU26 Independent primary tumors Independent primary tumors Unrelated
LU27 Independent primary tumors Metastasis Related
LU28 Independent primary tumors Independent primary tumors Unrelated
LU29 Independent primary tumors Metastasis Related
LU30 Metastasis Metastasis Related
LU32 Independent primary tumors Independent primary tumors Unrelated
LU40 Metastasis Metastasis Related
LU41 Independent primary tumors Metastasis Unrelated
LU43 Independent primary tumors Independent primary tumors Unrelated
LU44 Independent primary tumors Indeterminate Unrelated
LU45 Indeterminate Indeterminate Unrelated
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