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Abstract

DNA-protein crosslinks (DPCs) arise from a wide range of endogenous and exogenous chemicals, 

such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes 

as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Due 

to their bulky nature, DPCs pose severe threats to genome stability, but previous methods to 

measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and 

exogenous sources of chemical. In this study, we developed methods that provide accurate and 

distinct measurements of both exogenous and endogenous DPCs in a structurally-specific manner. 

We exposed experimental animals to stable isotope-labeled formaldehyde ([13CD2]-formaldehyde) 

by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) 

and exogenous (13CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in 

nasal respiratory tissues, but were absent in tissues distant to the site of contact. This observation 

together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues 

examined suggests that endogenous DPCs may be responsible for increased risks of bone marrow 

toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for persistence 

of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a 

new perspective for the potential health risks inflicted by endogenous formaldehyde, and may 

inform improved disease prevention and treatment strategies.
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Introduction

DNA damage is a major culprit in many diseases, including cancer and aging. Toxic 

chemicals originating from a wide range of endogenous and exogenous sources continuously 

damage DNA (1). It is well known that our DNA is not pristine and endogenous DNA 

damage occurs at a high frequency compared with exogenous damage, having more than 

40,000 lesions in every cell in our body (2). The “Endogenous Exposome” was first explored 

by our laboratory from the concept of the “Exposome” that emphasized the importance of 

understanding relationships between human disease and lifetime exposures to both 

environmental and internal chemicals (2). Recent advances have identified endogenous 

aldehydes as possible genotoxic agents that cause severe bone marrow failure (BMF) and 

leukemia in mice with mutations in both Fanconi anemia group D2 (fancd2) and aldehyde 

dehydrogenase 2 (Aldh2) (3). Notably, Aldh2 is mutated in ~1 billion people, most 

frequently observed in Southeast Asians due to inherited genetic mutations (4). Deficiency 

of Aldh2 has been demonstrated to dramatically accelerate BMF in Japanese Fanconi 

anemia patients (5). In addition, endogenous formaldehyde has been shown to have greater 

genotoxicity than acetaldehyde (6–8). These findings raise new challenges for understanding 

the cellular environments involved in disease causation. Linear extrapolation of risk down to 

zero remains a common approach used by regulators, despite the fact that such models use 

no biology and that when biology exists, linear extrapolation will over estimate risks (9). 

Thus, better understanding of endogenous and exogenous DPC data are important for 

advancing science-based risk assessments.

DNA-protein crosslinks (DPCs) strongly disrupt normal DNA-protein interactions and 

interfere with DNA replication, transcription, and repair, which ultimately threatens genomic 

integrity and cell viability (10). DPCs can originate from exposure to environmental agents 

such as ionizing radiation, UV light, formaldehyde and transition metal ions (11). 

Furthermore, anticancer drugs have been developed based on their ability to form DPCs, 

such as nitrogen mustards, platinum containing agents (i.e.: cisplatin), and 5-

aza-2’deoxycytidine. Notably, DPCs can also arise upon exposure to endogenous 

carcinogens, such as reactive aldehydes that are produced during various cellular processes 

(2,12). Due to their bulky nature, DPCs impact practically all aspects of genomic activity, 

and may therefore result in genomic instability or cell death. Thus, DPC formation and 

repair are crucial for genomic integrity in humans and consequently for understanding and 

preventing carcinogenesis (1,10,13–15). Surprisingly, however, DPC repair mechanisms 

have not been fully elucidated (15).

Until now, accurate and distinct measurements of both endogenous and exogenous DPCs 

have not been studied, which significantly limits our understanding of the biological effects 

and repair of DPCs. Accurate measurement of DPCs is complicated by two critical issues. 

First, covalent DPCs must be completely isolated from non-covalent DNA-protein 

complexes, since the latter are present in a clear excess over the former throughout the 

genome (16). Secondly, DPCs need to be measured with structural specificity, given that 

there are numerous lesions that complicate the background of DPCs resulting from both 

endogenous and exogenous electrophiles. However, such stringent measurements of DPCs 

have not been possible using previously available DPC detection techniques, such as 
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SDS/KCl precipitation, phenol-chloroform extraction, nitrocellulose filter binding, comet 

assay, alkaline elution, and CsCl density gradient centrifugation, all of which are 

nonselective (16,17). Recently, mass spectrometry-based methods have emerged as powerful 

tools for chemical analysis of digested DPCs (11). Elegant work using mass spectrometry 

has comprehensively characterized and ultra-sensitively quantified the DPCs induced by 

bifunctional electrophiles, such as nitrogen mustards (18,19), cisplatin and diepoxybutane 

(20).

Formaldehyde is classified as an animal and human carcinogen. Humans are exposed to 

formaldehyde originating from environmental sources due to its broad range of applications 

and formation from various chemical processes, as well as internal sources due to its role as 

an essential intermediate of various cellular processes (21). As a strong electrophile, 

formaldehyde is a well-known crosslinking agent that is cytotoxic, resulting in increased cell 

proliferation, mutagenesis and nasal carcinomas in rats exposed by inhalation (22). 

Formaldehyde has been widely used to elucidate the cellular pathways of DPC repair 

(8,10,23,24). Furthermore, endogenous formaldehyde is an important source of DNA 

damage (6,8). It thus poses unique challenges for understanding the risks associated with 

exposure. One major question that must be addressed is whether inhaled formaldehyde can 

increase the risk for leukemia. A critical dilemma has been to determine whether exogenous 

formaldehyde reaches bone marrow. To this end, we focused on the tissue distribution of 

endogenous and exogenous formaldehyde-induced DPC formation in rats and nonhuman 

primates (NHP) at exposure concentrations that had been studied in earlier DPC 

experiments, as well as in carcinogenicity studies in rats (25–27). For the first time, the 

incorporation of stable isotope labeled formaldehyde ([13CD2]-formaldehyde) in animal 

exposures permitted readily distinguishable measurements of endogenous and exogenous 

DPCs, based on their mass differences through the use of ultrasensitive and selective liquid 

chromatography-mass spectrometry. These measurements of endogenous and exogenous 

DPCs provide critical new data that advances science-based risk assessment, as well as 

providing improved methods for understanding pathways for DPC repair, such as the 

Fanconi anemia pathways that may lead to better disease treatment.

Materials and Methods

Chemicals and materials

2’-deoxyguanosine, reduced L-glutathione (GSH), sodium phosphate monobasic (BioXtra), 

sodium phosphate dibasic (BioXtra), magnesium chloride solution (1 M), calcium chloride 

solution (1 M), sucrose, ammonium acetate, acetic acid, formic acid, formaldehyde-DNPH 

standards, sodium cyanoborohydride (NaCNBH3), pronase, leucine aminopeptidase M, 

carboxypeptidase Y, prolidase, alkaline phosphatase, and phosphodiesterase were all 

purchased from Sigma (St Louis, MO). DNAzol and Turbo DNase were obtained from Life 

Technologies (Grand Island, NY). Methanol, acetonitrile, high-performance liquid 

chromatography (HPLC) grade water, and formaldehyde solution (37%, w/w) were all 

purchased from Thermo Fisher Scientific (Pittsburgh, PA). Formaldehyde solution was used 

to synthesize the dG-Me-Cys standard. [15N5, 13C10]-deoxyguanosine, [15N5]-

deoxyguanosine, [13CD2]-paraformaldehyde (≥98% purity), and [13CD2]-formaldehyde 
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solution (20% w/w in D2O) were ordered from Cambridge Isotope Laboratories, Inc. 

(Cambridge, MA). [15N5]-deoxyguanosine and [13CD2]-formaldehyde solution were used to 

synthesize the [15N5]-dG-[13CD2]-Me-Cys (Internal Standard). 2,4-Dinitrophenylhydrazine 

(DNPH) cartridges were ordered from Waters (Milford, Mass). Proteinase K (20 mg/ml) was 

obtained from 5 PRIME, Inc. (Gaithersburg, MD). Amicon Ultra Centrifugal Filters (0.5 ml, 

3K) were purchased from EMD Millipore (Darmstadt, Germany). Nanosep Centrifugal 

Devices (MWCO 3K) were purchased from Pall Life Sciences (Ann Arbor, MI).

Synthesis of dG-Me-Cys standard and internal standard

A synthesized standard, dG-Me-Cys, was prepared by digestion of dG-Me-Glutathione 

according to our previous study (28), using the experimental details described in the 

Supplementary Information. As demonstrated in a previous study, dG-Me-Cys showed a 

very close UV absorbance spectrum to that of dG (28). Thus, quantification of dG-Me-Cys 

was based on a dG standard calibration curve created using a HPLC-UV method with a 

detection wavelength at 254 nm. For the preparation of internal standard, [15N5]-

deoxyguanosine and [13CD2]-formaldehyde were used to synthesize [15N5]-dG-[13CD2]-

Me-Glutathione. Specifically, glutathione (100 mM) was incubated with [13CD2]-

formaldehyde (60 mM) in 1.0 ml sodium phosphate buffer (100 mM, pH 7.2) at 37 °C for 3 

h. [15N5]-dG was then added at a final concentration of 5 mM, and the crosslinking reaction 

was performed at 37 °C for 14 h. The same methods described in our previous study were 

applied for the purification and digestion of [15N5]-dG-[13CD2]-Me-Glutathione (28). The 

isolated [15N5]-dG-[13CD2]-Me-GSH was digested in 0.4 ml sodium phosphate buffer (40 

mM, pH 6.0) by carboxypeptidase Y (50 µg/ml), and leucine aminopeptidase M (250 µg/ml) 

in the presence of MgCl2 (10 mM) and CaCl2 (10 mM) at room temperature for 15 h. The 

internal standard, [15N5]-dG-[13CD2]-Me-Cys, was purified and quantified by the same 

method as described in Supplementary Information.

DNA-Protein Crosslink isolation and digestion

Animal exposure was described in the Supplementary Information. DPCs were isolated from 

animal tissue samples using DNAzol from Life Technologies (Carlsbad, CA) following the 

manufacturer’s instructions with some modifications. First, animal tissues (30–50 mg) were 

homogenized in 1 ml of sucrose buffer (20 mM sodium phosphate, 250 mM sucrose, pH 

7.2). The nuclei were isolated from homogenate solution by centrifugation at 1,500 × g and 

4 °C for 10 min. The nuclear pellets were washed with 1 ml of 20 mM sodium phosphate 

buffer (pH 7.2). The washed nuclear pellets were dissolved in 50 µl of water, followed by the 

addition of 800 µl of DNAzol and 20 µl of proteinase K (20 mg/ml). After protein digestion 

at room temperature for 15 hours, DPCs were precipitated by adding 600 µl of 100% 

ethanol. The precipitated DPCs were washed with 800 µl of 75% ethanol 4 times. The 

isolated DPCs were dissolved in 450 µl digestion buffer (20 mM ammonium acetate, pH 6.0) 

containing MgCl2 (5 mM), CaCl2 (5 mM), DNase I (40 U/ml), alkaline phosphatase (4 U/

ml), phosphodiesterase I (0.001 U/ml), and pronase (0.5 mg/ml). DNA digestion was 

performed at room temperature for 20 hours, resulting in the formation of nucleoside-

peptide crosslinks. The enzymes and undigested DNA were removed using a Nanosep 

Centrifugal Device (MWCO, 3K) at 10,000 × g and 4 °C for 40 min. The resultant filtrate 

was combined with 30 µl of an enzyme mixture containing carboxypeptidase Y (0.3 mg/ml), 
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aminopeptidase M (0.6 mg/ml), and prolidase (0.3 mg/ml) to further digest peptides to 

amino acids. Following a 20 hour incubation at room temperature, the reaction was 

terminated with the addition of 4 µl of 30% acetic acid. After adding 8 fmol of internal 

standard (4 µl, 2 nM), the final reaction mixtures were subjected to centrifugation at 10,000 

× g and 4 °C for 40 min in a Nanosep Centrifugal Device to remove enzymes prior to HPLC 

purification. In order to eliminate matrix interferences, digestion enzymes were washed 

before use as described in the Supplementary Information.

HPLC purification and fractionation

The target analyte, dG-Me-Cys, was purified from the reaction mixture on an Agilent 1200 

series UV HPLC system by using two C18 reverse phase columns connected in series 

(Waters Atlantis T3, 3 µm, 150 mm × 4.6 mm, Milford, MA). Following digestion, there 

were two products detected by HPLC-UV, both of which had similar retention times to that 

of DPCs. The use of two HPLC columns connected in series was found to greatly increase 

the resolution of HPLC separation between the dG-Me-Cys and the other digestion products. 

This increased the detection sensitivity of the DPC using nano-LC-ESI-MS/MS. The 

detection wavelength and column temperature were set at 254 nm and 15 °C, respectively. 

The mobile phases consisted of 0.05% acetic acid in water (A) and pure acetonitrile (B). The 

flow rate was 0.45 ml/min and elution gradient conditions were set as follows: 0 min, 1% B; 

3 min, 1% B; 42 min, 3% B; 86 min, 3.5% B; 86.5 min, 80% B; 95 min, 80% B; 95.5 min, 

1% B; 110 min, 1% B. dG-Me-Cys was eluted at a retention time of 81.5 min. The fractions 

containing target compounds were combined and concentrated to approximately 10–20 µl 

using a vacuum concentrator. The amount of digested dG in each sample was quantitated by 

the UV peak area (λ = 254 nm) at the corresponding retention time using a calibration curve 

ranging from 4 to 80 nmole dG on column.

Nano-LC-ESI-MS/MS analysis

Nano-LC-ESI-MS/MS analysis of dG-Me-Cys was performed on a TSQ Quantum Ultra 

triple-stage quadrupole mass spectrometer (Thermo Scientific, San Jose, CA) in positive-

mode electrospray ionization. Selected reaction monitoring (SRM) mode was used to detect 

and quantify dG-Me-Cys. Sample introduction and separation was accomplished on a nano-

Acquity Ultra Performance Liquid Chromatography system from Waters Corporation 

(Milford, MA). Following injection, the compounds were retained on two Symmetry C18 

trap columns (5 µm, 20 × 0.18 mm) connected in series, followed by sample separation on a 

HSS T3 analytical column (1.8 µm, 100 × 0.1 mm) from Waters Corporation (Milford, MA) 

at room temperature. Mobile phases consisted of water with 0.05% acetic acid (A) and 

acetonitrile (B). Analytes were first retained on two trap columns with a flow rate of 1.8 

µl/min of 1% mobile phase B for 3 min, followed by transfer to the analytical column. The 

flow rate was 0.4 µl/min and elution gradient conditions were set as follows: 0 min, 1% B; 3 

min, 1% B; 16 min, 50% B; 20 min, 1% B; 35 min, 1% B. Mass spectrometer conditions 

were set as the following: source voltage, 2200 V; temperature of ion transfer tube, 280 °C; 

skimmer offset, 0; scan speed, 75 ms; scan width, 0.7 m/z; Q1 and Q3 peak width, 0.7 m/z; 

collision energy, 31 eV; collision gas (argon), 1.5 arbitrary units. A sample volume of 5 µl 

was injected for analysis. Endogenous DPC (dG-Me-Cys) and exogenous DPC (dG-

[13CD2]-Me-Cys) were quantified by using the transition of m/z 401.1 to m/z 164.1, and m/z 
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404.1 to m/z 167.1, respectively. The transition of m/z 409.1 to m/z 172.1 was monitored for 

the internal standard ([15N5]-dG-[13CD2]-Me-Cys). Linear calibration curves were obtained 

using the ratio of integrated peak area of the analytical standard over that of the internal 

standard.

Method Validation for LC-ESI-MS/MS analysis

Standard curves were established by plotting the peak area ratios of solutions containing a 

fixed amount of internal standard ([15N5]-dG-[13CD2]-Me-Cys, 8.0 fmol) and increasing 

amounts of dG-Me-Cys from 0.15 to 6 fmol. The limit of quantification (LOQ) was 

determined as the amount of standard that produced a signal-to-noise ratio >10. To evaluate 

method accuracy and precision, analytical standard was spiked into the digested mixture of 

rat liver samples at three different levels (0.8, 2.0, and 5.0 fmol) followed by HPLC 

purification and concentration using a vacuum concentrator.

Artifact determination

The digestion process of DPCs isolated from animal tissues has the potential to generate 

some chemically reactive species, including nucleotides containing a hydroxymethyl group, 

hydroxymethyl-dG, dG, and peptides containing cysteine. These products could potentially 

crosslink to form artifactual dG-Me-Cys during sample preparation. Control studies were 

performed to determine the potential for artifactual formation of dG-Me-Cys. The extent of 

possible artifacts was evaluated in two ways. The first technique involved spiking isotope-

labeled [13C10, 15N5]-dG into the DPC solution to determine the potential for extrinsic 

formation of [13C10, 15N5]-dG-Me-Cys. Specifically, [13C10, 15N5]-deoxyguanosine (4 mM) 

was treated with 600 µl of 0.5 M NaCNBH3 for 48 hours at 37 oC. The treated 

[13C10, 15N5]-dG was spiked into an equal amount of dG produced from DNA digestion. 

This spiked sample was subjected to DNA and protein digestion, followed by HPLC 

purification and LC-ESI-MS/MS analysis as described above. The potential artifact, 

[13C10, 15N5]-dG-Me-Cys, was monitored using the corresponding transition of m/z 416.1 to 

m/z 174.1. The second technique to determine artifact formation employed NaCNBH3 to 

reduce active hydroxymethyl groups in DNA and protein during the isolation of DPCs. 

Specifically, all solutions used in the isolation of DPCs, including homogenate buffer, wash 

solution and DNazol, contained 20 mM NaCNBH3. For control samples, NaCNBH3 was 

excluded in all solutions used for DPC isolation.

Results

Isolation and detection of formaldehyde specific DPCs

To study the chemical identity of formaldehyde induced-DPCs, we investigated the in vitro 
crosslinking reaction between nucleosides and amino acids in the presence of formaldehyde 

(29). Our results demonstrated that dG and cysteine cross-linked in the presence of 

formaldehyde to form dG-Me-Cys. We hypothesized that this crosslink would serve as a 

specific DPC biomarker of formaldehyde exposure based on its relatively high stability and 

abundance. To test this hypothesis, we examined formaldehyde-induced DPCs, specifically 

dG-Me-Cys, in both rats and NHPs that were exposed to [13CD2]-formaldehyde using nose-

only and whole body inhalation chambers, respectively (Fig. 1a). The use of [13CD2]-
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formaldehyde permitted the differential measurement of endogenous and exogenous dG-Me-

Cys based on their mass difference (+3 m/z) by mass spectrometry. A challenging step in 

structurally specific analysis of DPCs is the digestion or hydrolysis of bulky DPCs into 

small molecules suitable for MS/MS analysis. Many DPCs are unstable and chemical 

hydrolysis is generally too harsh to preserve the DPC linkages for their chemical identities. 

To this end, we optimized a mixture of enzymes to digest large DPCs into small nucleoside-

amino acid crosslinks (dG-Me-Cys) under mild conditions (pH 6.0 and room temperature), 

thereby enabling preservation of the DPC chemical identity before MS analysis (Fig.1b and 

1c). After complete digestion, formaldehyde induced-DPCs were isolated by offline HPLC 

fraction collection along with the quantification of digested dG using UV absorbance at 256 

nm. Using authentic standards, the isolated endogenous and exogenous dG-Me-Cys were 

differentially quantified by mass spectrometry (Fig. 1d).

Nano UPLC-MS/MS method development for DPC analysis

Given the inherent advantage of improved sensitivity, we adopted a nanospray UPLC-ESI-

MS/MS methodology to measure dG-Me-Cys. The validated method exhibits ultra-

sensitivity, as well as excellent accuracy and precision. Both the standard (dG-Me-Cys) and 

the internal standard (IS) were detected at the same retention time (Fig. 2). The limit of 

quantification was 37.5 amol on the column (S/N = 10). Good linearity was observed in the 

concentration range from 0.15 to 6.0 fmol with an R2 value of 0.9993 (Supplementary Fig. 

S1). The accuracy of this method was greater than 93.4%, with precision being less than 

11.2% RSD using three spiking concentrations: 0.8, 2.0 and 5 fmol (Supplementary Table 

S1).

The validated method was then utilized to identify endogenous and exogenous 

formaldehyde-specific DPCs in rat nasal tissue (respiratory epithelium) as shown in Fig. 3. 

Only the endogenous peak (dG-Me-Cys) corresponding to the specific transition of m/z 
401.1 to m/z 164.1 was detected in control rat nasal tissue at the same retention time as the 

internal standard at 14.20 min (Fig. 3a). Both endogenous and exogenous crosslinks were 

detected in [13CD2]-formaldehyde exposed rat nasal tissue at the same chromatographic 

retention time (Fig. 3b). The exogenous DPC fragment ions retained the stable isotope label, 

demonstrating the predicted isotope mass shift (+3 m/z) and were clearly distinguished from 

fragment ions of endogenous origin.

Artifact determination for the validated method

The potential for artifactual dG-Me-Cys formation during sample processing was 

investigated in two ways. First, stable isotope-labeled [13C10, 15N5]-dG was spiked into the 

reaction mixture to investigate whether free dG from the DNA digestion could form the 

crosslink. The potential formation of artifact, [13C10, 15N5]-dG-Me-Cys, was monitored 

using the corresponding transition of m/z 416.1 to m/z 174.1. The results showed that 

endogenous dG-Me-Cys and internal standard were observed as shown in the top and middle 

panels of Fig. 4a, respectively. On the contrary, no peak corresponding to the artifactual 

formation of [13C10, 15N5]-dG-Me-Cys was found in the same sample (Fig. 4a, bottom 

panel). This evidence demonstrated that the digestion of dG does not lead to artifactual 

formation of dG-Me-Cys during sample preparation. The second technique employed 

Lai et al. Page 7

Cancer Res. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sodium cyanoborohydride (NaCNBH3) to reduce active hydroxymethyl groups that could 

possibly form artifactual dG-Me-Cys (Fig. 4b). The results demonstrated that the reduction 

of hydroxymethyl groups did not change the amount of dG-Me-Cys in rat liver samples. 

These data imply that the digested dG and other products do not generate artifacts that 

interfere with the detection of DPCs.

Distribution of formaldehyde-induced DPCs in rats and monkeys

Using this sensitive method, endogenous and exogenous formaldehyde-induced DPCs were 

distinctly quantified in selected tissues (nasal epithelium, peripheral blood mononuclear 

cells (PBMC), bone marrow, and liver) of animals exposed to either filtered air only or 

[13CD2]-formaldehyde. Consistent results from rat and NHP studies clearly demonstrate that 

exogenous DPCs were only found in the nasal epithelium of animals exposed to varying 

amounts of [13CD2]-formaldehyde. Specifically, exogenous DPCs were detected at 1.36 

± 0.20 crosslinks/108 dG in NHP nasal tissues exposed to [13CD2]-formaldehyde with a 

targeted aerosol concentration of 6.0 ppm for 2 consecutive days (6h per day) (Table 1). A 

much higher number of exogenous DPCs were measured at 18.18 ± 7.23 crosslinks/108 dG 

in the rat nasal tissues from animals exposed to [13CD2]-formaldehyde at a targeted 

concentration of 15 ppm for 4 consecutive days (6h per day) (Table 2). In contrast to the 

exogenous DPCs, endogenous DPCs were present in all examined tissues in both air control 

and exposed animals. Surprisingly, endogenous DPCs were present at higher amounts, 

compared to exogenous DPCs in exposed NHP nasal tissue (Table 1). More strikingly, the 

number of endogenous DPCs (15.46 ± 1.98 crosslinks/108 dG) in air control NHP livers, 

was close to the highest amounts of exogenous DPCs (18.18 ± 7.23 crosslinks/108 dG) 

observed in the rat nasal tissues exposed to 15 ppm [13CD2]-formaldehyde for 4 consecutive 

days, a highly carcinogenic exposure concentration in the rat cancer bioassays (30–32).

Formation and elimination of formaldehyde-induced DPCs in rat nasal tissues

To monitor the induction and elimination of DPCs, we applied our method to investigate the 

accumulation and persistence of formaldehyde induced-DPCs in rat nasal tissues. As shown 

in Tables 2 and 3, both high and low exposure concentrations of inhaled formaldehyde gave 

rise to accumulation of exogenous DPCs in rat nasal tissues. At a high exposure 

concentration of 15 ppm [13CD2]-formaldehyde, similar amounts of exogenous DPCs were 

detected in 1-day and 2-day exposed rat nasal tissues (5.52 ± 0.80 and 4.69 ± 1.76 

crosslinks/108 dG), while 4-day exposed rat nasal tissues showed a dramatic increase in the 

formation of exogenous DPCs (18.18 ± 7.23 crosslinks/108 dG) (Table 2). In contrast to the 

large changes in exogenous DPC formation, less difference in the amounts of endogenous 

DPCs were present in the same samples, suggesting that the endogenous DPCs were at 

steady-state concentrations. Most importantly, exogenous DPCs showed little change in the 

animals exposed for 28 days with either a 24 or 168 hour (7 day) post exposure recovery 

period (Table 3), indicating high stability and long-term persistence of DPCs with the dG-

Me-Cys linkage. The discovery of accumulation and persistence of formaldehyde-DPCs 

highlights the need for a better understanding of DPC stability and repair.
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Discussion

Formaldehyde was first shown to be an animal carcinogen in 1980, causing squamous cell 

carcinomas in the nasal passages of exposed rats at concentrations at or above 6 ppm 

(30,31). Recent epidemiological studies have suggested that exposure to formaldehyde 

vapors may lead to the development of hematopoietic cancers such as leukemia, however 

these findings remain under debate (28,33–37). While leukemia has been a major finding in 

epidemiology studies of inhaled formaldehyde, no mechanism for leukemia has been 

established. The International Agency for Research on Cancer (IARC) working group also 

was not in full agreement on the evaluation of formaldehyde causing leukemia in humans 

(22,38). A recent paper by Coggon et al., did not find any leukemias in one of the largest 

cohorts of formaldehyde workers, even though some of those workers were exposed to 

inhaled formaldehyde at concentrations much higher than 2 ppm (37). In addition, the 

induction of leukemia by inhaled formaldehyde exposures has not been supported in rat 

carcinogenicity studies (39). Previous studies in rats and NHP also have not found any 

evidence that inhaled [13CD2]-formaldehyde reached the bone marrow as exogenous DNA 

adducts (28,34).

Endogenous formaldehyde is produced as an essential metabolic intermediate by enzymatic 

and nonenzymatic pathways, and as a detoxification product of xenobiotics during cellular 

metabolism (40). It is well understood that endogenous formaldehyde originates from 

numerous sources including one-carbon pool metabolism, amino acid metabolism, methanol 

metabolism, lipid peroxidation, cytochrome P450–catalyzed demethylation, and histone 

demethylation reactions (34,41,42). Endogenous formaldehyde has been assumed to be 

present in all aqueous body fluids because of its water solubility. Its half-life in humans is 

estimated to be 1–1.5 min (43). In particular, the concentration of endogenous formaldehyde 

was detected at ~0.1 mM in the blood of rats, monkeys, and humans (22,44–46). In addition, 

endogenous formaldehyde was found to be 2–4 times higher in the liver and nasal mucosa 

than in the blood of a rat (47). Endogenous formaldehyde is also formed in cellular nuclei, 

secondary to demethylation of histone III (42). These formaldehyde molecules are released 

in close proximity to DNA, providing an important source for bone marrow DPC and 

formaldehyde monoadducts (42). Thus, with endogenous formaldehyde-induced DNA 

adducts and DPC present in all tissues examined, but a complete lack of exogenous DNA 

adducts and DPC in tissues distant to the portal of entry (6,28), the key issue that must be 

addressed by risk assessors and epidemiologists is whether or how exogenous formaldehyde 

exposure could increase cancer risks at distal sites.

Due to their significant biological consequences, formaldehyde-induced DPCs have long 

been recognized as a highly mutagenic form of formaldehyde DNA damage. The amounts of 

formaldehyde-induced DPCs are considered to represent a good molecular biomarker of 

formaldehyde exposure (6,48). However, the lack of robust DPC measurements have limited 

our understanding of the genotoxic activity of formaldehyde. Previous studies using 

chloroform/iso-amyl alcohol/phenol extraction based DPC isolation following inhaled 

formaldehyde exposures in rats and NHPs found increased amounts of DPC formation in the 

nasal tissue but not in tissues distant from the portal of entry (25,27). In contrast, increased 

numbers of DPCs were detected in circulating lymphocytes of workers occupationally 
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exposed to formaldehyde, and in remote tissues, such as bone marrow, liver, kidney, and 

testes of mice exposed to inhaled formaldehyde using SDS/KCl precipitation based DPC 

isolation (49,50). This scientific dispute may be due to the major disadvantage of previous 

DPC assays that were unable to provide chemical identity for specific and accurate 

measurements of DPCs. Furthermore, it is has been impossible to distinguish endogenous 

from exogenous formaldehyde-induced DPCs prior to the use of stable isotopes.

In particular, the National Research Council (NCR) committee considered our earlier work 

using sensitive and distinct measurements between exogenous and endogenous 

formaldehyde-induced DNA adducts as being highly informative and should be incorporated 

in the EPA’s draft Integrated Risk Information System (IRIS) assessment (34,48). Moreover, 

the NRC committee suggested that DPCs play a more important role in formaldehyde 

genotoxicity and carcinogenicity compared to DNA adducts (48). This study provides 

accurate measurements that discriminate between endogenous and exogenous DPCs through 

the use of stable isotope formaldehyde exposures and ultrasensitive mass spectrometry. Our 

data demonstrate that exogenous DPCs were only found in nasal samples of exposed 

animals, but not in sites remote to the portal of entry. Consistently, our previous studies 

reported that inhaled formaldehyde-induced DNA adducts and protein adducts were only 

detected in rat and NHP nasal tissues, but not in other tissues such as lung, liver, bone 

marrow and PBMC (28,34,51). These findings suggest that there is no additional dose to the 

bone marrow beyond that from endogenous formaldehyde. The lack of exogenous DPCs in 

remote tissues does not support a plausible relationship between inhaled formaldehyde and 

increased risks of leukemia. On the other hand, with high amounts of endogenous 

formaldehyde always present in all cells, one would expect the induction of disease states by 

this highly reactive aldehyde. Our previous work identified specific DNA adducts (N2-Me-

dG) and DNA-DNA crosslinks (dG-Me-dG) induced by endogenous formaldehyde (34). 

This study provides the first evidence to the existence of endogenous formaldehyde-induced 

DPCs in all examined tissues. Furthermore, the recent paper by our lab and KJ Patel’s group 

clearly demonstrated that endogenous formaldehyde is a hematopoietic genotoxin and a 

metabolic carcinogen (6). Additionally, as recently reported, as many as 1/3 of the acute 

myeloid leukemia patients have deficiencies in aldehyde dehydrogenases that play important 

roles in preventing DNA damage by detoxifying endogenous aldehydes (52). Thus, recent 

medical research has provided strong data that better explain the formaldehyde 

epidemiology findings.

Formaldehyde-induced DPCs had been considered to be unstable in cell and animal studies. 

A rapid decline of the formaldehyde-induced DPCs was reported in cell culture, and there 

was no accumulation of DPCs observed in rat nasal tissues after repeated exposure 

(16,53,54). However, the present study demonstrated that exogenous DPCs accumulated 

with exposure time and showed little change after one week post exposure. Previous 

inconsistent results may be due to the use of non-structurally specific measurements which 

are highly susceptible to the interference of non-covalent DNA protein complexes. Although 

DPC repair mechanisms have not been well understood, proteolysis of the protein 

components of the DPC to small peptides has been reported as a protease-based DNA repair 

pathway specific for DPCs (10,11,15,55). The present study measures single amino acid-

nucleoside crosslinks, specifically dG-Me-Cys. The small change in the amount of dG-Me-
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Cys measured one week post exposure does not rule out the possibility that the protein 

components of DPCs as a whole, do not undergo proteolytic degradation to small peptides. 

In a recent study, synthesized DPCs, including dG-Me-Cysteine, dG-Me-Glutathione, and 

dG-Me-Peptide crosslinks, were found to undergo rapid hydrolysis in vitro (28). The long 

term persistence of DPCs observed in vivo is likely due to the steric hindrance and localized 

hydrophobic conditions of DNA and the associated protein that greatly increase DPC 

stability.

The success of distinctly measuring endogenous and exogenous formaldehyde-DPCs has 

demonstrated the importance of structurally specific DPC data. The lack of exogenous DPCs 

in remote tissues away from the portal of entry suggest that the effects of inhaled 

formaldehyde may have been overemphasized, while endogenous formaldehyde has been 

underappreciated as a source of exposure leading to the induction of leukemia. The finding 

of exogenous DPC accumulation during inhalation exposure and its minimal repair 

following one week post exposure, provides the first evidence of long-term persistence of 

DPCs. The discovery of endogenous DPCs in all tissues examined raises an important 

perspective on the potential health risks posed by endogenous formaldehyde. Considering 

the high background of endogenous DPCs, it would be impossible to measure the induction, 

distribution, and elimination of exogenous DPCs without exogenous DPC measurements, 

particularly at low levels of exposure.

Future applications of this method include, but are not limited to 1) investigation of DPC 

repair mechanism(s) in vivo using formaldehyde-induced DPCs; 2) understanding whether 

and how the Fanconi anemia genes are involved in aldehyde induced-DPC repair; 3) 

application of such data for science-based risk assessment of aldehydes in a manner that 

contributes to the EPA’s IRIS program assessment of formaldehyde and aldehydes in 

general; 4) utilizing structurally specific methodologies to determine the makeup of DPCs 

induced by various endogenous and exogenous agents such as malondialdehyde, 4-

hydroxynonenal, acrolein and aldehydic lesions present on abasic sites. Likewise, DPCs 

associated with exogenous anticancer drugs can be better understood, contributing to further 

advancements of chemotherapy. In summary, this study provides a new approach to 

accurately determine the roles of endogenous and environmental DPCs to form mutagenic 

DNA damage as factors that contribute to disease and provide more accurate data that can 

improve cancer risk assessments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Experimental workflow for distinct measurement of endogenous and exogenous DPCs. (a) 

Animals were exposed to [13CD2]-formaldehyde by inhalation. The use of [13CD2]-

formaldehyde allowed the differentiation of endogenous and exogenous dG-Me-Cys 

crosslinks having the same chemical identity, but different masses. (b) DPCs were isolated 

from animal tissues using a DNAzol method. (c) DPCs were digested to nucleoside-amino 

acid crosslinks by DNA and protein enzymes, followed by offline HPLC purification of 

formaldehyde-DPCs, along with quantification of digested dG; (d) Endogenous and 

exogenous formaldehyde-DPCs were differentially quantified as the corresponding dG-Me-

Cys using Nano LC-MS/MS. The normalization of DPC concentration was achieved by 

calculating the ratio of the amount of dG-Me-Cys to digested dG.
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Figure 2. 
Typical Nano-LC-ESI-MS/MS-SRM chromatogram and calibration curve of dG-Me-Cys. 

Nano-LC-ESI-MS/MS-SRM chromatograms of dG-Me-Cys (0.0375 fmol) and Internal 

Standard [15N5]-dG-[13CD2]-Me-Cys (0.5 fmol). NL = normalized spectrum to largest peak 

in particular chromatogram.
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Figure 3. 
Distinct detection of endogenous and exogenous dG-Me-Cys in control and exposed rat 

noses by Nano LC-MS/MS. NL, normalized spectrum to largest peak in this particular 

chromatogram.
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Figure 4. 
Evaluation of artifactual formation of dG-Me-Cys. (a) Artifact determination in a rat liver 

sample spiked with isotope labeled [13C10, 15N5]-dG. (b) Relative amount of endogenous 

dG-Me-Cys in rat liver samples treated without (Control Sample) and with NaCNBH3 

(Reduced Sample). Error bars represent the standard deviation of three individual 

experiments.
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Table 1

Formaldehyde-induced dG-Me-Cys in nose, peripheral blood mononuclear cells (PBMC), bone marrow, and 

liver of primates exposed to air control vs. 6 ppm of [13CD2]-formaldehyde (6 h per day).

Tissue
Targeted [13CD2]-

Formaldehyde
Concentration (ppm)

Exposure
period
(days)

dG-Me-Cys (crosslink/108 dG)

Endogenous Exogenous

Nose
Air Control 2 3.59 ± 1.01 (n=5) ND*

6 ppm 2 3.76 ± 1.50 (n=5) 1.36 ± 0.20

PBMC
Air Control 2 1.34 ± 0.25 (n=5) ND

6 ppm 2 1.57 ± 0.58 (n=4) ND

Bone
Marrow

Air Control 2 2.30 ± 0.30 (n=4) ND

6 ppm 2 1.40 ± 0.46 (n=5) ND

Liver
Air Control 2 15.46 ± 1.98 (n=6) ND

6 ppm 2 11.80 ± 2.21 (n=6) ND

*
ND, Not Detected.
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Table 2

Formaldehyde-induced dG-Me-Cys in nasal tissue, peripheral blood mononuclear cells (PBMC), and bone 

marrow of rats exposed to Air Control verses 15 ppm of [13CD2]-formaldehyde (6 h per day).

Tissue
Targeted [13CD2]-

Formaldehyde
Concentration (ppm)

Exposure
period
(days)

dG-Me-Cys (crosslink/108 dG)

Endogenous Exogenous

Nasal

0 - Air Control 4 6.50 ± 0.30 (n=5) ND

15.0 1 4.42 ± 1.10 (n=6) 5.52 ± 0.80

15.0 2 4.28 ± 2.34 (n=6) 4.69 ± 1.76

15.0 4 3.67 ± 0.80 (n=6) 18.18 ± 7.23

PBMC

0 - Air Control 4 4.98 ± 0.61 (n=5) ND

15.0 1 3.26 ± 0.73 (n=4) ND

15.0 2 3.00 ± 0.98 (n=5) ND

15.0 4 7.19 ± 1.73 (n=5) ND

Bone
Marrow

0 - Air Control 4 1.64 ± 0.49 (n=4) ND

15.0 1 1.80 ± 0.47 (n=4) ND

15.0 2 1.84 ± 0.61 (n=4) ND

15.0 4 1.58 ± 0.38 (n=4) ND

ND, Not Detected.
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Table 3

Formaldehyde-induced dG-Me-Cys in nose of rats exposed to 2 ppm of [13CD2]-formaldehyde (6 h per day) 

for up to 28 days..

Exposure period (day)
dG-Me-Cys (crosslink/108 dG)

Endogenous Exogenous

7 days 4.78 ± 0.64 (n=4) 0.96 ± 0.17

28 days 4.51 ± 1.48 (n=3) 2.46 ± 0.44

28 days + 24h post
exposure

3.78 ± 0.69 (n=4) 2.12 ± 1.00

28 days + 168h post
exposure

3.51 ± 0.16 (n=3) 2.14 ± 1.02
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