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Abstract

Schizophrenia is currently diagnosed by physicians through clinical assessment and their 

evaluation of patient’s self-reported experiences over the longitudinal course of the illness. There 

is great interest in identifying biologically based markers at the onset of illness, rather than relying 

on the evolution of symptoms across time. Functional network connectivity shows promise in 

providing individual subject predictive power. The majority of previous studies considered the 

analysis of functional connectivity during resting-state using only fMRI. However, exclusive 

reliance on fMRI to generate such networks, may limit inference on dysfunctional connectivity, 

which is hypothesized to underlie patient symptoms. In this work, we propose a framework for 

classification of schizophrenia patients and healthy control subjects based on using both fMRI and 

band limited envelope correlation metrics in MEG to interrogate functional network components 

in the resting state. Our results show that the combination of these two methods provide valuable 

information that captures fundamental characteristics of brain network connectivity in 

schizophrenia. Such information is useful for prediction of schizophrenia patients. Classification 

accuracy performance was improved significantly (up to ≈ 7%) relative to only the fMRI method 

and (up to ≈ 21%) relative to only the MEG method.

I. Introduction

The general approach for the diagnosis of schizophrenia is based on a patients self-reported 

experiences and observed behavior over the longitudinal course of the illness. There is great 

interest in identifying biologically based marker of illness, rather than relying on symptom 

assessment because the current approach may postpone the diagnosis of the disorder, 

whereas early diagnosis can improve treatment response and reduce associated costs [1]. But 

small numbers of training subjects and high dimensional datasets make it challenging to 
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design robust and accurate classifiers for schizophrenia. Functional connectivity shows 

promise in providing individual subject predictive power. Seed-based functional connectivity 

approaches assess the temporal correlation between a seed region and individual brain 

voxels [2], [3]. Independent component analysis (ICA) based functional network 

connectivity (FNC) is a data-driven approach that summarizes the overall connection 

between independent brain maps over time [4], [5]. Therefore, the FNC feature provides a 

picture of the connectivity pattern over time between independent components.

Most of the previous FNC studies have focused only on the performance of a resting-state 

with fMRI method. However, exclusive reliance on fMRI to generate such networks may 

limit inference on dysfunctional connectivity which is hypothesized to underlie patient 

symptoms [7]. Whilst the blood oxygenation-level dependent (BOLD) response measured 

by fMRI allows high spatial resolution maps, it is limited by being an indirect and slow 

physiological signal [9]. Neural oscillatory activity, which comprises rhythmic electrical 

activity in cell assemblies, is thought to underlie BOLD responses. This occurs in the ~1–

900Hz band; such rapid electrical signals cannot be assessed using fMRI but can be 

measured directly by techniques such as MEG [10]. Measurement of the resting state brain 

activity using both fMRI and MEG, within a common sample of subjects, combines the 

strengths of each modality by allowing comparison of hemodynamic and 

electrophysiological effects. In this way we provide significant insight into FNC, with 

special relevance for the study of schizophrenia and similar conditions.

Significant progress towards integrating MEG and fMRI has been made in the past decade. 

A recent study [11] used intrinsic connectivity networks (ICNs) in MEG in a similar way to 

that typically used in fMRI [11]. Also, our recent study [12] used a method based on group 

spatial ICA, for the first time estimating FNC networks from both MEG and fMRI. The 

purpose of the present study is to use both fMRI and band limited envelope correlation 

metrics in MEG to interrogate FNC in the resting state in a sample of healthy normal 

volunteers and schizophrenia patients to improve the classification accuracy of 

schizophrenia patients.

II. Materials and Methods

A. Participants

This study combined existing data from 91 subjects. Inclusion criteria for patient selection 

included diagnosis of schizophrenia or schizoaffective disorder between 18 to 65 years of 

age. TABLE I. provides demographic characteristics and clinical variables of the 

participants.

B. fMRI Data Acquisition and Preprocessing

fMRI data was collected on a single 3-Tesla Siemens Trio scanner with a 12-channel radio 

frequency coil with a repetition time of 2 sec. High-resolution T1-weighted structural 

images were acquired with a five-echo MPRAGE sequence. Resting-state scans consisted of 

149 volumes per run. After initial standard preprocessing [4], [13] the imaging data was 

decomposed into functionally homogeneous cortical and sub-cortical regions exhibiting 
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temporally coherent activity using a high model order (100) group-level spatial independent 

component analysis (GICA).

We used a relatively high model order ICA (number of components, IC = 75), since such 

models yield refined components that correspond to known anatomical and functional 

segmentation. Of the 75 components returned by the GICA, 39 were identified as non-

artifactual independent components (IC) using a combination of two methods [14] for fMRI 

method. In the first method we examined the power spectra with two criteria in mind: 

dynamic range and low frequency/high frequency ratio. Dynamic range refers to the 

difference between the peak power and minimum power at frequencies to the right of the 

peak in the power spectra. Low frequency to high frequency power ratio is the ratio of the 

integral of spectral power below 0.10 Hz to the integral of power between 0.15 and 0.25 Hz. 

To verify the results, three expert reviewers evaluated the components for functional 

relevance. In this evaluation, if a component exhibited 1) peak activation in gray matter, 2) 

low spatial overlap with known vascular, ventricular, motion, and susceptibility artifacts, and 

3) Time Courses (TCs) dominated by low frequency fluctuations, it was classified as a non-

artifactual component.

Subject specific time courses (TCs) and spatial maps (SMs) were obtained using back 

reconstruction [15]. The FNC for each subject was estimated from the TC matrix as a C×C 

sample covariance matrix by using a cosine similarity measure. For tasks in the analysis, we 

isolated activations related to particular tasks within an fMRI scanning session. Task-related 

component time courses for separate components within a task were then correlated with 

one another exclusively over non-zero areas of the hemodynamic predictor function using a 

cosine similarity measure to yield task-related FNC scores for pairs of components.

C. MEG Data Acquisition and Preprocessing

MEG data were collected in a magnetically and electrically shielded room using a whole-

cortex 306-channel MEG array. MEG data were sampled at a rate of 1000 Hz, with a 

bandpass filter of 0.10 to 330 Hz. Head position was monitored continuously throughout the 

MEG session. Raw data were collected and stored. Participants were instructed to keep their 

eyes open and maintain fixation during the 6-minute scan to minimize occipital alpha 

rhythm [10]. Artifact removal, correction for head movement, and down sampling to 250 Hz 

were conducted offline using Elekta Maxfilter software, with 123 basis vectors, a 

spatiotemporal buffer of 10 s, and a correlation limit of 0.95.

Covariance matrices were generated independently for each subject and frequency band, 

using all recorded data. Covariance matrices were regularized using a value of 4 times the 

minimum singular value of the unregularized matrix. Source orientation at each voxel was 

based on a nonlinear search for maximum projected signal-to-noise ratio. The forward 

solution was based on a dipole model [16] and a single-shell boundary element model [17]. 

Beamformer projection was performed separately for each subject and frequency range. 

Then source-space signals were normalized by an estimate of projected noise [18] and 

transformed to standard (MNI) space using FLIRT in FSL. A Hilbert transform was applied 

to the time course at each voxel time to derive the analytic signal. The Hilbert envelope at 

each voxel was down sampled to an effective sampling rate of 1 Hz [11]. Source space 
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envelope data were smoothed spatially (6 mm at full-width half-maximum), and the voxel 

size was resampled to 3×3×3 mm to facilitate comparison with the fMRI data.

Group spatial ICA was applied to the individual subject data using the GIFT toolbox (http://

mialab.mrn.org/software/gift). Each frequency range was treated as a session in GIFT to 

permit analysis of each band, as well as the mean across bands. For MEG ICA processing 

and non-artifactual components selection, we follow the procedures that are applied to the 

fMRI as mentioned in previous section. Of the 75 components requested from the group 

ICA, 29 were retained as non-artifactual components for MEG method.

III. Classification

Determining a reliable biological feature for a mental disorder is an important step for 

developing a more accurate and reliable framework for diagnosis, and ultimately treatment 

[19]. Resting-state fMRI connectivity has been used in determining the differences based on 

biological features of mental disorders including schizophrenia. [20]–[23]. Using methods 

based on group spatial ICA, we estimate networks from both MEG and fMRI and findings 

from these two neuroimaging modalities, with the hypotheses that using both MEG and 

fMRI measures of among-network connectivity would show improvement to classification 

of schizophrenia patients. In this chapter, we used dynamic FNC to determine reliable 

differences based on dynamic FNC differences of schizophrenia.

A. Dynamic Functional Network Connectivity and Clustering

Recent studies [13], [21]–[24] show that connectivity dynamics can capture repetitive 

patterns of interactions among intrinsic networks during a rest or task related experiments 

that cannot be detected with FNC (static functional connectivity analyses). These repetitive 

patterns of interactions contain valuable information for individual prediction of 

schizophrenia patients. Such information is useful for training and replicates in testing.

In order to obtain connectivity dynamics we follow the steps of a previous study [24]. First, 

we computed correlations between non-artifactual components’ time courses using a sliding 

window approach with a rectangular window of 25 TR (in steps of 1TR) convolved with 

Gaussian of sigma 3 TRs to obtain tapering along the edges. To characterize the full 

covariance matrix, we estimated covariance from regularized inverse covariance matrix 

(ICOV) [25] by using the graphical LASSO framework [26]. Then we placed a penalty on 

the L1 norm of the precision matrix to enforce sparsity. The regularization parameter was 

optimized for each subject separately by evaluating the log-likelihood of unseen data of the 

subject in a cross-validation framework. Second, we selected group centrotypes by using k-

means clustering algorithm from all of the dynamic windowed FNC matrices for each group. 

Then for each FNC time point, we regressed out the dynamic FNC matrix against these 2×k 

states and obtained the corresponding beta coefficients. We used the mean of these beta 

coefficients and finalized 2×k features for each subject for classification. See Figure 1. for 

schematic description of dynamic FNC, clustering and regression of dynamic FNC matrices
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In order to compute the optimal accuracy score, we define most efficient cluster number by 

using elbow criterion of the cluster validity index, which is computed as the ratio between 

within-cluster distances to between-cluster distance.

IV. Results

We evaluated the performance improvement of classification based on dynamic FNC and 

combination estimated networks from both MEG and fMRI methods. Our main focus was to 

extract reliable features from the dynamic FNC matrices and combine these features to 

perform the best classification results.

First, we used fMRI dynamic FNC matrixes and MEG dynamic FNC matrixes separately 

(for each frequency) for classification (See TABLE II. ) then we combined fMRI 

(subject×time×FNC=91×119×703) and MEG (frequency× 

subject×time×FNC=5×91×270×496) dynamic FNC matrixes as a data set for classification 

(See TABLE III. ). And we compared results to show the improvement of combining fMRI 

and MEG methods for classification.

We used leave-one-out cross validation method. One subject for testing and the rest of the 

data (90 subjects) were used as a training data set. And this process is repeated for each 

subject. In each cross-validation run, we obtained 5 cluster centroids for each group and 

regressed out the dynamic FNC matrix against these 10 centroids (5 centroids for each 

group) and computed the corresponding beta coefficients for all dynamic FNC for each 

subject. Then, we used the mean of these beta coefficients across the subjects and finalized 

10 features for each subject for classification.

We performed the leave one out method with three well known classification algorithms; 

linear discriminant classifier (LDC), Naïve Bayes classifier (NBC) and non-linear SVM 

(nSVM) with Gaussian radial bases function kernel to test the hypothesis.

TABLE II. reports the classification results that were obtained from fMRI data, MEG data 

for each frequency and combination of all MEG data frequencies by using majority voting 

method. Results show that the classification accuracy obtained from fMRI data 

(nSVM-83.52%) provides better classification performance than MEG data for all 

frequencies and combination of all MEG data frequencies by using majority voting method. 

Comparison of internal MEG frequencies shows that beta (nSVM-72.53%) frequency has 

better performance than other frequencies and combination of all MEG data frequencies. 

Similarly, FDR-corrected group differences of MEG-beta and MEG-delta frequencies show 

more significant differences than other frequencies.

TABLE III. summarizes the classification accuracy obtained from the combination of fMRI 

data and MEG data for each frequency and the combination of all by using majority voting 

method. Combination of features obtained from dynamic FNC of fMRI and MEG-Beta 

frequency provided better results (NBC-87.91%) than other frequencies. The best 

performance is provided by the combination of all by using majority voting method 

(NBC-90.11%).
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We repeated the clustering method by using different distance functions such as Euclidian, 

correlation, cosine similarities. We did not find any performance differences.

V. Conclusion

Our results provided evidence that the combination of fMRI and MEG modalities captures 

important information for classification that is missed by using only one modality. This 

suggests that the combination of these two methods provides valuable information that 

captures fundamental characteristics of brain network connectivity in schizophrenia. These 

results may help to design an objective biological marker-based diagnostic test for 

schizophrenia for early diagnosis.
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Figure 1. 
Schematic description of dynamic FNC, clustering and regression of dynamic FNC matrices
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TABLE I

Demographic Clinical Variables for SPs and HCs.

Demographics
Mean (SD) t or x2

Patients (n=44) Controls (n=47) (p-value)

Age 37. 3 (13.9) 35.2(11.8) 0.78 (0.44)

Gender (M/F) 37/7 34/13 0.27 (0.78)

Ethnicity (H/NH) 23/21 26/21

Abbreviations: M=Male, F=Female, H=Hispanic, NH= Non-Hispanic
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