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Summary

In this paper we propose a Bayesian hierarchical model for the identification of differentially 

expressed genes in Daphnia Magna organisms exposed to chemical compounds, specifically 

munition pollutants in water. The model we propose constitutes one of the very first attempts at a 

rigorous modeling of the biological effects of water purification. We have data acquired from a 

purification system that comprises four consecutive purification stages, which we refer to as 

“ponds”, of progressively more contaminated water. We model the expected expression of a gene 

in a pond as the sum of the mean of the same gene in the previous pond plus a gene-pond specific 

difference. We incorporate a variable selection mechanism for the identification of the differential 

expressions, with a prior distribution on the probability of a change that accounts for the available 

information on the concentration of chemical compounds present in the water. We carry out 

posterior inference via MCMC stochastic search techniques. In the application, we reduce the 

complexity of the data by grouping genes according to their functional characteristics, based on 

the KEGG pathway database. This also increases the biological interpretability of the results. Our 

model successfully identifies a number of pathways that show differential expression between 

consecutive purification stages. We also find that changes in the transcriptional response are more 

strongly associated to the presence of certain compounds, with the remaining contributing to a 

lesser extent. We discuss the sensitivity of these results to the model parameters that measure the 

influence of the prior information on the posterior inference.
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1. Introduction

Quality of water is a very important issue for modern society. The number and diversity of 

chemicals discharged into the environment is increasing with the size of the population and 

its diversity, posing a largely unknown hazard to the ecosystem and the human health. In the 

year 2000, a Water Framework Directive of the European Parliament and Council has 

committed European countries to achieve good surface water quality by 2015. Evaluating 

the effects of waste waters on aquatic organisms has therefore become an interesting 

challenge.

In the last decade, new water purification systems have been introduced and studied. Their 

aim is to improve the biological and chemical quality of the waters discharged from waste 

water treatment plants, before they are released into the fresh water ecosystem. One example 

is the Waterharmonica Improving Purification Effectiveness (WIPE) project (Kampf and 

Claassen, 2004; Kampf et al., 2005), in the Netherlands, which consists of artificially 

constructed wetland environments. The advantage of such bioremediation systems lies in 

their low costs and in the additional ecological value. Indeed, Sebire et al. (2011) give 

evidence that purification systems greatly reduce the risk for the environment.

In the past, whole-organism responses, such as mortality and reproduction, have been used 

in order to evaluate the biological effects of industrial pollutants (De Schamphelaere et al., 

2004; Jemec et al., 2007). However, such responses are only the endpoints of variations at a 

molecular level and, as such, provide only limited information. For this reason, more recent 

studies have focused on evaluating changes in gene expression on various organisms, as 

caused by the presence of chemicals in the water. Daphnia magna, a cladoceran freshwater 

flea, has been largely used for testing toxicity of water (Soetaert et al., 2006; Jo and Jung, 

2008). This organism plays a key role in the aquatic food chain, it is highly sensitive to 

chemicals, easy to culture in laboratory and it is a widely spread species.

Daphnia magna has been intensively studied using functional genomics techniques, which 

allow measuring thousands of cellular molecular components in single experiments. Jo and 

Jung (2008) studied the effect of exposure to rubber waste water on gene expression in 

Daphnia magna, while Scanlan et al. (2013) investigated the effects of the exposure to silver 

nanowire. Also, Antczak et al. (2013) used molecular toxicity identification evaluation to 

predict chemical exposure. In this paper, we investigate the effect of chemicals, in particular 

munition pollutants, on the gene expression of Daphnia magna using the data introduced by 

Garcia-Reyero et al. (2012) and available at the NCBI GEO site (http://

www.ncbi.nlm.nih.gov/geo/) with accession number GSE13169. The bioremediation system 

we use comprises of 4 consecutive purification stages (which we refer to as “ponds”) of 

progressively more contaminated water. We look at the exposure to mixtures of six chemical 

constituents and consider an order of the ponds from the most pure water to the pond with 

the highest concentration of chemicals. Even though relatively simple, the model we present 

in this paper constitutes one of the very first attempts at a rigorous modeling of the 

biological effects of water purification.
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The major interest of a water purification experiment is in the identification of the 

differentially expressed genes in consecutive ponds. For this, we propose a hierarchical 

Bayesian model of the expected change in expression. The model further incorporates a 

variable selection prior that accounts for the available information on the concentration of 

chemical compounds present in the water. This allows us to estimate the relative influence of 

single chemicals on the probability of a change in expression. In order to simplify the 

complexity of the gene expression profiling data, we group genes by their functional 

characteristics (defined by the biological pathway database KEGG) and then express the 

transcriptional activity of each pathway by means of its principal components. Our model 

successfully identifies a number of pathways that show differential expression between 

consecutive ponds. These mainly represent membrane, signaling, and translational and 

transcription pathways. We also find that changes in the transcriptional response are more 

strongly associated to the presence of TNT and 2,4-DNT, with the remaining compounds 

contributing to a lesser extent. We discuss the sensitivity of these results to the model 

parameters that measure the influence of the prior information on the posterior inference. We 

also compare the performances of our method with those obtained using the significance 

analysis of microarrays (SAM) method. Our model succeeds in identifying additional 

important pathways not identified by SAM, in addition to providing estimates of the effects 

of specific chemicals on the observed transcriptional response.

The model we propose in this paper constitutes one of the very first attempts at a rigorous 

modeling of the biological effects of water purification. The approach we take is general and 

can be applied in a variety of experimental settings. Unlike most of the common approaches, 

that look at the effect of single compounds (Falciani et al., 2008; Garcia-Reyero et al., 2012; 

Gust et al., 2013), our method considers mixtures of multiple compounds and helps 

identifying not only the associated molecular responses but also which compound is 

dominant in the mixture. This approach can be used not only to understand how water 

purification systems work, but also how dissipation of chemicals into the environment are 

affecting different areas of the ecosystem, possibly even biodiversity.

The rest of the paper is organized as follows: In Section 2 we introduce the hierarchical 

model of the expected change in expression between consecutive ponds. We also describe 

the variable selection prior and the MCMC algorithm for posterior inference. Section 3 gives 

details on the Daphnia magna experimental study and the results from the data analysis. 

Section 4 contains some final remarks.

2. Methods

In this paper, we propose a Bayesian hierarchical model to investigate the effect of chemical 

compounds, in particular munition pollutants, on the gene expression of Daphnia magna. 

The bioremediation system we use comprises of 4 consecutive purification stages (which we 

refer to as “ponds”) of progressively more contaminated water. We model the expected 

change in the expression of a gene between subsequent ponds. We further incorporate a 

variable selection mechanism for the identification of the differential expressions, with a 

prior distribution on the probability of a change that accounts for the available information 

on the concentration of chemical compounds present in the water.
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2.1 Hierarchical Model

Let Yigt denote the expression measurement for gene g (g = 1, …, G) in pond t (t = 0, …, 

T ), from sample i (i = 1, …, Nt). Note that we allow each pond to have a different sample 

size. Let t = 0 indicate the blank pond, i.e., the purest one, and let us assume that the ponds 

are ordered from the cleanest water to the most dirty. We assume that the gene expression 

measurements Yigt are normally distributed,

(1)

with μgt a gene-pond specific mean and  a gene specific variance. The gene-pond specific 

mean μgt is then modeled as a function of the mean of the same gene in the previous pond 

plus a gene-pond specific difference in mean expression, αgt, as

(2)

for t = 1, …, 4. Without loss of generality, we assume the mean of the blank pond μg0 to be 

zero and, for each gene in each pond, we center the expression data with respect to the mean 

of the same gene in the blank pond, i.e. Yigt − Ȳg0 for g = 1, …, G and t = 0, …, T.

2.2 Variable Selection Prior

We incorporate in the model a variable selection prior that accounts for the available 

information on the concentration of chemical compounds present in the water.

Let A the (G × T) matrix with elements αgt. For each gene we wish to find whether its mean 

expression in a specific pond changes with respect to the previous one. This is equivalent to 

inferring which αgt in model (2) are non-zero with high confidence. To address this goal, we 

introduce a (G × T) matrix Ω of binary indicators, that is, ωgt = 1 indicates that the 

corresponding αgt is different from zero. Otherwise, ωgt = 0 indicates that gene g in pond t 
has not changed its mean expression with respect to the previous pond, i.e., αgt = 0. 

Conditional on this latent matrix Ω, we assume that the elements of the matrix A are 

stochastically independent and have the following mixture prior distribution,

(3)

with δ0 a Dirac spike and cα > 0 a hyperparameter to be set. We complete the prior model by 

assuming . In the variable selection literature the conjugate choice is often 

made for computational convenience, as it allows to marginalize some of the model 

parameters. Mixture priors of type (3) are known as spike and slab in the Bayesian variable 

selection literature, and have been used extensively in univariate and multivariate linear 

regression settings (George and McCulloch, 1997; Brown et al., 1998; Sha et al., 2004).

Model (3) requires a prior on ωgt. A simple choice in variable selection is to assume 

independent Bernoulli priors, i.e. ωgt ~ Bern(p), where p can be either a fixed 
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hyperparameter or a random variable itself. Recently, some authors have suggested prior 

models that incorporate external information about the predictors, for example via Markov 

random field or logistic priors that capture correlation among the variables (Li and Zhang, 

2010; Stingo et al., 2010). Here we use a probit-like prior that allows us to incorporate the 

information we have available on the concentrations of the chemical compounds present in 

the water. Probit-like priors have been recently proposed in the literature on Bayesian 

variable selection as a convenient way to incorporate external information to guide the 

selection of the predictors (Quintana and Conti, 2013; Cassese et al., 2014).

Let D be the (Q × T) matrix whose elements are the normalized absolute values of the 

difference in concentration of the individual chemical compounds with respect to the 

previous pond, that is,

(4)

where cqt is the concentration of chemical q in pond t, and where cq0 = 0, for every 

chemical. Given the matrix D, we model the prior probability of a change in the mean 

expression of a gene as a function of D,

(5)

with Φ the c.d.f. of a standard Normal distribution and η a hyperparameter to be chosen, and 

where we allow for different prior probabilities for each pond. The parameter θq in (5) 

captures the effect of a change in the concentration of the q-th chemical. Since we expect a 

change in concentration to result in a change in the expression of some genes, and thus, we 

expect π(ωgt = 1|θ) only to increase, we constrain θq > 0 by assuming θq ~ Ga(aq, bq). The 

choice of normalized absolute difference in (4) allows us to more reliably estimate θ even in 

situations where one chemical may dominate the others. Furthermore, it is worth noting that, 

in estimating θ, the number of ponds T plays the role of the sample size. The hyperparameter 

η in (5) regulates the prior probability of a change in gene expression when ignoring (or in 

the absence of) any information on the concentrations of the chemical compounds. More 

specifically, if θ = 0, or if all the chemicals do not change their concentration (i.e. Dqt = 0 for 

every q = 1, …, Q), equation (5) reduces to Φ(η).

2.3 Posterior inference

Our full joint model can be summarized as

(6)

Our primary interest lies in the estimation of the presence/absence of a change in the mean 

expression of a gene between two adjacent ponds, i.e. the estimation of the matrix Ω. Since 

the posterior distribution is not available in closed form, we design a Markov Chain Monte 
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Carlo algorithm based on stochastic search variable selection (SSVS) procedures (Savitsky 

et al., 2011). To simplify the sampling algorithm we integrate  out and work with the 

marginalised likelihood,

(7)

where

Note that f(Ygt|A, Ω) is the p.d.f. of a non standard non central t-distribution and that (Nt + 

ωgtcα) reduces to Nt when ωgt = 0.

A generic iteration of the MCMC algorithm consists of the following updates:

• Update (A, Ω): We perform a between-model step by updating these two 

parameters jointly. First, a new value of Ω is proposed by either an add/delete 

(A/D), with probability ρ, or swap (S), with probability (1 − ρ), step. If an A/D step 

is chosen we simply select at random one element and change its value. If an S step 

is chosen we select independently at random a 1 and a 0 element and swap their 

values. When , we set the corresponding , otherwise if  we 

propose a new value of αgt by sampling it from a Normal distribution. The mean of 

the proposal distribution is calculated with a random walk procedure, as the mean 

of the B previous iterations during the burn-in phase, and it is fixed to the last 

computed value afterwards, while the variance is fixed throughout the MCMC 

(Roberts and Rosenthal, 2009). The proposed values  and  are then 

accepted with probability

Note that the proposal distribution of ωgt drops out from the previous ratio since all 

moves are symmetric.

• Update A: This within-model step is performed via a Gibbs sampler with the 

purpose of improving mixing. It consists of updating each αgt corresponding to ωgt 

= 1 by sampling from , with t() a non standard not central t-distribution, 

and where the degrees of freedom ν, the location parameter μt and the dispersion 

parameter  are set to δ,  and , respectively.
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• Update θ: We propose a new value for each θq by sampling from a Gamma 

distribution. As for step 1, the parameters of the Gamma proposal are chosen 

following a random walk procedure, during the burn-in, and are fixed to the last 

computed value afterwards. In particular, the mean of the Gamma distribution is set 

to the mean of θq in the previous B iterations, while the variance is fixed to .1. The 

proposed values are then accepted with probability

Given the MCMC output, we perform posterior inference on Ω by calculating the 

marginal posterior probability of inclusion (PPI) for each element, which we 

estimate as the number of iterations where that element was set to 1, after burn-in. 

Point estimates of each θq are computed as the mean of the sampled values, after 

burn-in.

3. Case Study

We are interested in investigating the effects of munition pollutants on the gene expression 

of Daphnia magna. We consider a purification system with four stages of contaminated 

water. Exposures are to four chemical mixtures considered by Garcia-Reyero et al. (2012). 

Below we describe the experiment in some details and then present the results from our 

analysis.

3.1 The Daphnia magna experiment

Daphnia magna, a cladoceran freshwater flea, has been largely used for testing toxicity of 

water (Soetaert et al., 2006; Jo and Jung, 2008). This organism plays a key role in the 

aquatic food chain, it is highly sensitive to chemicals, easy to culture in laboratory and it is a 

widely spread species. We have data available from an experiment that looks at the exposure 

to four mixtures, each characterising the chemical concentrations of a pond, of six munitions 

constituents. The six contaminants under study are 1,3,5-trinitroperhydro-1,3,5-tiazine 

(RDX), 2,4,6-trinitrotoulene (TNT), 2,4 and 2,6-dinitrotoulene (2,4-DNT and 2,6-DNT), 

1,3,5-trinitrobenzene (TNB) and 1,3-dinitrobenzene (DNB). Table 1 reports their 

concentrations. We consider an order of the four ponds from the most pure water to the pond 

with the highest concentration of chemicals.

Daphnia magna exposures were conducted on 6–8 old daphnids in 1L glass beakers with a 

750ml exposure volume. After 24h of exposure RNA was isolated using RNeasy kits 

(Qiagen, Valencia, CA, USA). Quality was assessed with an Agilent 2100 Bioanalyzer 

(Agilent, Palo Alto, CA, USA) and quantified using a Nanodrop ND-1000 

spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA). Microarray data were 

normalized using the normalize.quantile function of the preprocessCore package of the R 

programming language. More details can be found in the supplementary material of Garcia-

Reyero et al. (2012).
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In order to simplify the complexity of the gene expression profiling data, we grouped genes 

by their functional characteristics, as defined by the biological pathway database KEGG 

(Kanehisa and Goto, 2000), and then expressed the transcriptional activity of each pathway 

by means of its principal components. Methods that employ pathway-based scores of gene 

expression data have become quite popular in genomics as an effective way to reduce the 

dimensionality of the data, see for example Su et al. (2009); Drier et al. (2013). Here we 

used the same annotation and data reduction as published in Antczak et al. (2013). 

Specifically, 92 KEGG pathways were identified and associated to the microarray chip 

design. Then, for each pathway, we applied principal component analysis (PCA) to the gene 

expression data in each pond, using the prcomp function available in R, and selected the 

components that explained at least 75% of the observed variance. This choice accomplishes 

a good reduction of the complexity of the gene expression profiling data (from 1379 genes to 

630 pathway components) while still retaining a large percentage of the observed variance.

3.2 Parameter settings

In our model formulation, the expression data are captured via the matrix Y in (1), with G = 

92 × 2, T = 4 and Nt = (5, 3, 4, 3, 3). In each pond, we centered the data with respect to the 

purest one, i.e., the blank pond, as described in Section 2.1. In addition, given the 

concentrations in Table 1, we computed each element of the matrix D as in (4).

Results we report below were obtained by starting the MCMC chain from a matrix Ω with 

all its elements set to zero and by sampling the initial values for the parameters θq from their 

prior distributions. As for hyperparameter settings, we specified the shrinkage parameter cα 

of prior (3) in the range of variability of the data, so as to control the ratio of prior to 

posterior precision (Sha et al., 2004). Specifically, we set cα = .1. Furthermore, we specified 

a vague prior on  by setting δ = 3, and choosing d such that the expected value of the 

variance parameter  represents a fraction of the observed variance (5% for the results in 

this paper). In our model, the parameter η in (5) reflects the prior belief of a change in mean 

expression, in the absence of any information on the concentration of the chemical 

compounds, i.e. θ = 0. We performed sensitivity analysis to different settings of η. More 

specifically, we investigated η =−3.72, −3.09 and −2.32, which correspond to a 0.01%, 0.1% 

and 1% prior probability. Finally, we specified vague priors on θq by setting aq = bq = 1.

We ran the MCMC chains for 2, 000, 000 iterations, with a burn-in of 1, 000, 000 and 

random walk proposals centered on values calculated over the previous B = 50 iterations. 

Our C++ code performed 1,000 MCMC iterations in about 6 seconds on a double core 

Intel®Xeon®processor with 16GB of memory, 2.2GHz. We assessed convergence by 

visually inspecting the MCMC sample traces. Additionally, we tested convergence by 

applying the diagnostic test of Geweke (1992) for the equality of the means, based on the 

first 10% and the last 50% of the chain. We also used the Heidelberger and Welch (1981) 

test on the stationarity of the distribution to determine a suitable burn-in.

3.3 Results

We report results obtained with η = −3.09, i.e. a prior probability of 0.1%, and later 

comment on the sensitivity to this choice. Figure 1 shows plots of the PPIs of the elements 
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ωgt of Ω. Each sub figure refers to the comparison of a given pond (t = 1, …, 4) with the 

previous one, with the x-axis showing the set of pathway components. Changes in 

expression across consecutive ponds can by detected by looking at the components with 

large PPI values. We notice that, as exposure to any given chemical compound can have a 

variety of effects on the molecular state of an organism, it is generally expected that a large 

number of pathway components will be significantly perturbed, as our results show 

(Williams et al., 2009; Hernndez et al., 2013; Antczak et al., 2013). Many more significant 

changes are observed in the third and fourth sub figures, as indicated by the large PPIs 

values, since there is more variation in the chemical compounds in the last two ponds (see 

the concentrations reported in Table 1).

A threshold of .99 on the PPIs identified 92, 156, 152 and 142 pathway components in the 

four consecutive ponds transitions, moving from the least to the most polluted. We analyzed 

the selected pathways by grouping them according to the top two levels of the KEGG 

pathway hierarchy (general terms and potential additional terms). The detailed breakdown is 

shown in the Supplementary Material. This analysis revealed that the transcriptional 

response linked to the transition between the blank and the first pond contains a large 

number of genetic information processing pathways, specifically in protein folding, sorting 

and degradation (18.1%), followed by translation (9%) and transcription (4.5%). In addition, 

a number of metabolic (22%), transport (20%) and signal transduction pathways (11.7%) 

were identified. The transition between ponds 1 and 2 follows a similar trend but with a 

greater focus on signal transduction (20%) and transcription pathways (9%). In the transition 

between ponds 2 and 3 we found an increased prevalence of metabolism pathways (31%), 

which mainly include carbohydrate metabolism (7.5%) and lipid (5%) and amino acid 

metabolism (7%). In addition, the number of signaling molecule pathways increased (5.8%) 

while transport and catabolism and nucleotide metabolism pathways were constant 

compared to the previous transition (20% and 1% respectively). Lastly, the transition 

between ponds 3 and 4 showed a decreased prevalence of genetic processing pathways 

(18%), and a similar profile for the others, with a high amount of metabolic pathways (30%), 

signal transduction (17%) and transport pathways (20%).

Our results contain a number of interesting findings. First, all 4 pond transitions showed 

same level of endocrine system related pathways (1.5%), including the first transition, where 

only TNT is present. This suggests an effect of TNT on the endocrine system. Similar links 

have already been observed in other species (Haerry et al., 1997; Kraut, 2011; Torre et al., 

2008) but not yet in Daphnia magna. Another interesting result is that the number of 

identified membrane related pathways increases with the number of compounds within a 

pond, suggesting that mixtures of compounds have an increased effect on membrane 

components, and particularly on signal transduction pathways.

As a point of comparison with other methods, we looked at the results obtained using the 

significance analysis of microarrays (SAM) d-statistic of Tusher et al. (2001). This is a 

distribution free permutation based technique that measures the strength of the relationship 

between gene expression and a response variable. Figure 2 summarises the results, with each 

sub-plot showing a scatter-plot of the PPIs obtained with our method (x-axis) against the d-

statistics obtained with SAM (y-axis), for the first pathway components only. Horizontal 
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solid and dashed lines correspond to 1% and 5% FDR thresholds on the d-statistic, 

respectively. The figure shows that the performance of the two methods is broadly similar, as 

there is a large concordance in the selection. For example, looking at the modal model 

selected by our method, that is the set of pathway components that have PPIs greater than .5 

(Barbieri and Berger, 2004), we find an overlap with those selected by SAM of 93.75% and 

95.29%, using the FDR thresholds of 1% and 5%, respectively. However, there are also 

important differences in the selection done by the two methods. For example, 

Glycosphingolipid biosyntheses were among the pathways identified by our method but not 

by SAM. Genes involved in the Glycosphingolipid are important membrane building blocks 

and may play an important role in the composition of the membrane. As we have shown 

above, a number of membrane pathways are highly affected by exposure to the compounds 

we considered, and this effect could be facilitated through additional perturbation of the 

Glycosphingolipid biosynthesis pathway.

In addition to the inference on Ω, which allows to detect differential expressions, our model 

also returns the posterior distribution of the θq elements. These parameters measure the 

relative influence of the individual chemical compounds on the posterior inference. Figure 3 

shows the kernel density estimates of all six parameters. Results clearly suggest that 

chemical TNT has the strongest influence, followed by 2,4-DNT and RDX. TNB, 2,6-DNT 

and DNB all have very little to negligible influence.

As for the results on the selected pathway expressions, our results are in line with what is 

known about the individual chemical compounds. Indeed, several studies have shown that 

TNT can cause oxidative stress (Cenas et al., 2001; Nemeikaite-Ceniene et al., 2004). Also, 

RDX is related with the nervous system and can cause seizures in vertebrates and 

invertebrates (Gust et al., 2009; Garcia-Reyero et al., 2011), while 2,4-DNT affects lipid 

metabolism in liver and oxygen transport (Wintz et al., 2006). Additional validation came 

from a one-class SAM analysis, with an FDR threshold at 20%, that we performed on gene 

expression data on exposures to single compounds, which we also have available from 

Garcia-Reyero et al. (2012). This analysis showed that TNT had the highest normalised 

count, followed by 2,4-DNT (result not shown).

Let us now comment on the sensitivity of the results to the choice of the parameter η in (5). 

This parameter represents the weight assigned to the data, as our prior belief of a change in 

expression in the absence of any information on the concentration of the chemical 

compounds. Some sensitivity to this parameter is therefore to be expected. In particular, 

since the parameters θ1, …, θ6 are the weights of the prior information derived from changes 

in the chemical concentrations, we expect that higher values of η will result in values of the 

θq parameters that are concentrated around smaller values. Indeed, as an example, Figure 4 

shows the effect of different choices of η on the density kernel estimate of θ1 (the parameter 

associated to TNT). Notice how the posterior distribution tends to concentrate on lower 

values when η increases. We observed the same behavior for the other θq parameters (result 

not shown).

In spite of the evident sensitivity of the individual θq estimates to the choice of the η 

parameters, we found that the overall effect of the estimates on the posterior inference did 
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not depend on the chosen η value. For example, in the second pond (the one where we 

observed the largest increases in posterior probability) we observed a 67.29% increase on 

the prior probability of p(ωgt = 1) for η = −3.72, of 66.56% for η = −3.09 and of 64.70% for 

η = −2.32. Of course, these probability values should be interpreted with caution, as 

inference on the θq parameters also depends on the sample size and the number of 

parameters to estimates, as well as the concordance between the data and the prior 

information.

4. Discussion

In this paper we have presented a simple approach to a rigorous modeling of the biological 

effects of water purification. For this, we have proposed a hierarchical Bayesian model of 

the expected change in gene expression between consecutive purification stages. We have 

also incorporated a variable selection prior that accounts for available information on the 

concentration of chemical compounds present in the water. Our modeling approach is 

general and can be applied to a variety of settings used in experimental studies to estimate 

the biological effects of water purification. Here we have presented an application to the 

identification of differentially expressed genes in Daphnia Magna organisms exposed to 

munition pollutants in water.

In order to simplify the complexity of the gene expression profiling data, we have grouped 

genes by KEGG pathways and then expressed the transcriptional activity of each pathway by 

means of its principal components. When applied to gene expression data from Daphnia 
Magna organisms exposed to munition pollutants, our model has successfully identified a 

number of pathways that show differential expression between consecutive purification 

stages. These mainly represent membrane, signaling, and translational and transcription 

pathways. In addition, our model allows for the estimation of the relative influence of single 

chemicals on the probability of a change in expression. We have found, in particular, that 

changes in the transcriptional response are more strongly associated to the presence of TNT 

and 2,4-DNT, with the remaining compounds contributing to a lesser extent. We have 

discussed the sensitivity of these results to the model parameters that measure the influence 

of the prior information on the posterior inference.

In the application, we have also looked into results of the SAM method, although it should 

be pointed out that this comparison only addressed one feature of the method we have 

developed, which is the ability to identify genes differentially expressed across a series of 

samples. Our method, in addition, allows to estimate the effect of individual chemicals on 

the observed transcriptional response. This feature of our model could be particularly 

important in the growing application of adverse outcome pathways (AOPs). At the moment, 

these AOPs are derived on a single exposure level - where one looks at the single effect that 

a compound with a set of characteristics may have on the organism. Our approach would 

allow to estimate the effects of multiple compounds and to prioritize pathways as a result of 

their interactions with the compounds. Our approach can be used not only to understand how 

water purification systems work, but also how dissipation of chemicals into the environment 

are affecting different areas of the ecosystem, possibly even biodiversity.
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The modeling approach we have considered in this paper is general and can be applied to 

data collected, for example, from artificially constructed wetland environments, such as the 

WIPE project (Kampf and Claassen, 2004; Kampf et al., 2005). Such datasets typically 

involve a large number of chemical compounds. Also, it could be interesting to include 

interactions between compounds, as well as chemical features that can be calculated to 

provide a more informed assessment of how strong the chemical is affecting the pathways. 

With a large number of possible covariates, an interesting methodological extension of the 

methods would then be to also employ selection priors at the second stage of the model, for 

the identification of those chemicals inducing changes in the transcriptional response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Case study: PPIs of the elements of Ω. Each sub figure refers to the comparison of a given 

pond (t = 1, …, 4) with the previous one, with the x-axes showing the set of pathway 

components.
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Figure 2. 
Case study: Comparison of our method with SAM, on the first pathway components. For 

each pond, PPIs are plotted against the SAM d-statistics. Horizontal solid and dashed lines 

are located at a 1% and 5% FDR threshold on the d-statistic, respectively.
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Figure 3. 
Case study: Kernel density estimate of the posterior distribution of θ.
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Figure 4. 
Case study: Kernel density estimate of the posterior distribution of θ1, for different settings 

of η.
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