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Abstract

KIBRA is a regulator of the Hippo-YAP (yes-associated protein) pathway, which plays a critical 

role in tumorigenesis. In the current study, we show that KIBRA is a positive regulator in prostate 

cancer cell proliferation and motility. We found that KIBRA is transcriptionally upregulated in 

androgen-insensitive LNCaPC4-2 and LNCaP-C81 cells when compared to the parental androgen-

sensitive LNCaP cells. Ectopic expression of KIBRA enhances cell proliferation, migration and 

invasion in both immortalized and cancerous prostate epithelial cells. Accordingly, knockdown of 

KIBRA reduces migration, invasion, and anchorage-independent growth in LNCaP-C4-2/C81 

cells. Moreover, KIBRA expression is induced by androgen signaling and KIBRA is partially 

required for androgen receptor (AR) signaling activation in prostate cancer cells. In line with these 

findings, we further show that KIBRA is overexpressed in human prostate tumors. Our studies 

uncover unexpected results and identify KIBRA as a tumor promoter in prostate cancer.

Keywords

AR signaling; KIBRA; prostate cancer; proliferation; motility

Introduction

KIBRA (expressed in kidney and brain, also called WWC1) is one of the members of the 

WWC (WW and C2 domain containing, WWC1, 2, 3) family of proteins [1,2]. KIBRA is a 

memory performance and cognition-associated protein [3–9], and the KIBRA locus has been 

linked to brain-related disorders such as Alzheimer’s disease [10–12]. KIBRA functions as 

an adaptor protein to transduce its biological functions in various physiological processes via 

interactions with many other proteins [13]. In addition to its functions in neurons, KIBRA 

also has multiple roles in non-neuronal cells involving cell polarity, trafficking, mitosis, cell 

proliferation, and cell migration [13]. For example, KIBRA positively regulates cell 

migration in podocytes [14], NRK cells [15], and breast cancer cells [16], while it does the 

opposite in immortalized breast epithelial cells [17]. KIBRA functions as a growth 
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suppressive regulator through the Hippo pathway in Drosophila [18–20]. KIBRA is 

phosphorylated by mitotic kinases cyclin-dependent kinase 1 (CDK1) and Aurora A during 

mitosis and is required for chromosome alignment [21–23].

KIBRA has been linked with human cancers in several reports. Weakened expression of 

KIBRA in Claudin-low subtypes of breast cancer specimens correlates with poor prognosis 

[17]. Moreover, downregulation of KIBRA was shown to be a contributing factor to the 

malignancy of acute lymphocytic B-cell leukemia [24,25]. This alteration in expression in 

leukemia is due to epigenetic changes in the well-defined CpG island within the promoter of 

the KIBRA locus [24,25]. Strikingly, in common epithelial cancers such as colorectal, 

kidney, lung, breast and prostate there is virtually no methylation detected [24]. Instead of a 

tumor suppressive function of KIBRA, as suggested by the above studies, many previous 

reports have validated KIBRA’s role in positively regulating proliferation and motility [14–

16,26–29] and KIBRA expression has positive clinical correlation with gastric cancer 

progression [30]. This duality of KIBRA’s suppression or promotion of proliferation and 

migration may be tissue- and context-dependent, requiring further investigation before 

KIBRA’s role can be fully deciphered. Furthermore, a role for KIBRA in prostate cancer has 

not been previously defined.

Prostate cancer is the most prevalent form of cancer in men in the United States and second 

only to lung cancer as the leading cause of cancer deaths in men [31]. Prostatectomy, usually 

the initial treatment, tends to be very effective for localized prostate cancer [32]. Tumor 

progression is initially androgen-dependent and androgen ablation therapy is at first very 

successful at reducing the tumor burden. Despite this early response, genetic alterations lead 

to the development of androgen-independent or castration-resistant prostate cancer (CRPC), 

which is almost always fatal [33]. This transition from androgen-dependent to androgen-

independent growth is not well understood, and further insight into the mechanisms driving 

this process will help with developing target-driven therapeutics for the effective treatment 

of CRPC in the future.

We recently reported that YAP, the Hippo pathway effector, is upregulated in androgen-

insensitive prostate cancer cells (LNCaP-C4-2 and C81) and confers castration-resistant 

growth in vivo [34]. During that study, we noticed that in addition to YAP, the protein levels 

of KIBRA were also significantly increased in LNCaP-C4-2 and LNCaP-C81 cells. Here we 

characterize the biological significance of KIBRA upregulation in androgen-insensitive 

prostate cancer cells. We show that KIBRA is a positive regulator in prostate cancer cell 

proliferation and motility. Moreover, increased expression of KIBRA was also observed in 

clinical prostate tumor samples. Thus, the current study reveals an unexpected role for 

KIBRA in regulating cell migration and proliferation in prostate cancer cells.

Results and Discussion

KIBRA is upregulated in androgen-insensitive prostate cancer cells

LNCaP and LNCaP-C33 cells rely on androgen to grow, while the LNCaP-C4-2 and 

LNCaP-C81 sublines are androgen-insensitive and can grow under androgen deprivation 

conditions [35,36]. We recently showed that YAP is upregulated during progression from an 
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androgen-sensitive to an androgen-insensitive state [34]. During that work, we indeed found 

that KIBRA/WWC1 protein levels were also significantly increased in LNCaP-C4-2 and 

LNCaP-C81 cells when compared to the parental cells (Figure 1A, B). WWC2, which is in 

the same protein family as KIBRA, was increased in cancer cells when compared to 

RWPE-1 (immortalized prostate epithelial) cells; however, no significant change was 

observed between LNCaP and LNCaP-C4-2 cells (Figure 1A). Quantitative reverse 

transcription-PCR (RT-PCR) showed that the levels of KIBRA mRNA were significantly 

elevated in LNCaP-C4-2 and LNCaP-C81 cells (Figure 1C). Surprisingly, WWC2 and 

WWC3 mRNA levels were reduced in LNCaP-C4-2 and LNCaP-C81 cells when compared 

to LNCaP cells (Figure 1C). KIBRA protein stability/half-life is similar in both LNCaP and 

LNCaP-C4-2 cells (Figure 1D). Since KIBRA is induced by YAP [37] and YAP is elevated 

in androgen-insensitive prostate cancer cells [34], we tested whether KIBRA expression is 

YAP-dependent in LNCaP-C4-2 cells. Figure 1E showed that KIBRA expression was 

partially reduced in LNCaP-C4-2 cells with YAP knockdown (Figure 1E). Together, these 

observations indicate that KIBRA expression is transcriptionally increased in androgen-

insensitive prostate cancer cells compared with androgen-sensitive cells and that its 

expression in these cells is partially regulated by YAP.

KIBRA promotes proliferation, migration and invasion in RWPE-1 cells

To determine the role of KIBRA in prostate cancer, we first established stable cell lines 

expressing KIBRA in RWPE-1 cells (Figure 2A). Overexpression of KIBRA did not alter 

the WWC2 protein and WWC3 mRNA levels (Figure 2A). Ectopic expression of KIBRA 

stimulated cell proliferation (Figure 2B). Overexpression of KIBRA also induced cell 

migration (Figure 2C, D) and invasion (Figure 2E, F). KIBRA expression was not sufficient 

to cause anchorage-independent growth (neoplastic transformation) of RWPE-1 cells (Figure 

2G). KIBRA regulates an epithelial-mesenchymal transition (EMT) in breast epithelial cells 

[17]. However, KIBRA overexpression did not alter the expression of E-cadherin (an 

epithelial marker) and vimentin (a mesenchymal marker) (Figure 2H), suggesting that 

KIBRA regulates EMT in a cell type specific manner.

KIBRA promotes proliferation, migration and invasion in LNCaP cells

Next we investigated whether KIBRA plays a similar role in prostate cancer cells. LNCaP 

cells with stable expression of KIBRA was established (Figure 3A). No changes of WWC2 

and WWC3 expression were detected in KIBRA-overexpressing cells (Figure 3A). LNCaP-

KIBRA-expressing cells proliferated significantly faster than LNCaP-vector cells (Figure 

3B). Similarly, KIBRA overexpression also enhanced cell migration and invasiveness in 

LNCaP cells (Figure 3C–F). However, ectopic expression of KIBRA did not alter the 

LNCaP cells’ anchorage-independent growth (Figure 3G, H).

We recently showed that YAP overexpression converted LNCaP cells from androgen-

sensitive to androgen-insensitive growth [34], we also tested whether KIBRA plays a role in 

androgen sensitivity. Under androgen-deprivation conditions, both LNCaP-vector and 

LNCaP-KIBRA cells failed to divide, suggesting that enhanced expression of KIBRA was 

not sufficient to promote androgen-insensitive growth in LNCaP cells (Figure 3I).
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KIBRA knockdown impairs migration, invasion and anchorage-independent growth in 
prostate cancer cells

To explore the significance of KIBRA upregulation in androgen-insensitive prostate cancer 

cells, we reduced KIBRA expression using a validated shRNA against KIBRA [21] in 

LNCaP-C4-2 and LNCaP-C81 cells (Figure 4A). In contrast to the gain of function 

phenotypes in LNCaP and RWPE-1 cells, knockdown of KIBRA did not alter the 

proliferation rates in LNCaP-C4-2 and LNCaP-C81 cells (Figure 4B). Interestingly, 

knockdown of KIBRA greatly reduced migration and invasion (Figure 4C–E) and 

anchorage-independent growth (Figure 4F) in these cells. Together, these data revealed that 

KIBRA is a positive regulator in prostate cancer cell proliferation and motility.

KIBRA is induced by AR signaling

Consistent with the results from RWPE-1 cells, KIBRA overexpression or knockdown did 

not alter the expression of E-cadherin, an epithelial marker (Figure 5A). N-cadherin and 

vimentin (both are mesenchymal markers) were not detectable in LNCaP or LNCaP-C4-2 

cells. AR protein levels were not affected by KIBRA expression either (Figure 5A). AR 

signaling activity is higher in LNCaP C4-2 and LNCaP-C81 cells than in LNCaP cells 

[34,38]. To analyze whether KIBRA expression is regulated by AR signaling, we treated the 

LNCaP cells with R1881, an analog of androgen ligand, to activate the AR signaling. 

Interestingly, KIBRA protein levels were dramatically increased upon R1881 treatment 

(Figure 5B). Similar findings were also observed in androgen-insensitive cells (LNCaP-C4-2 

and LNCaP-C81) (Figure 5C). However, the levels of mRNA of KIBRA were not altered in 

the presence of R1881 (Figure 5D, E). The expression of prostate-specific antigen (PSA), a 

known target of AR, was induced (Figure 5D, E). KIBRA protein stability was not 

significantly affected in the presence of R1881 (Figure 5F). In future studies, we will 

explore the underlying mechanisms through which AR signaling activation by R1881 

induces KIBRA expression.

Interestingly, mRNA levels of PSA were significantly reduced in KIBRA knockdown 

LNCaP-C4-2 cells, suggesting that KIBRA is required for full activation of AR signaling 

(Figure 5G). However, it is not known how KIBRA regulates AR activity and the 

downstream signaling. Previous reports showed that both Lats2 [39] and YAP [39] associate 

with AR, and that KIBRA interacts with Lats2 [37]. Therefore, KIBRA may form a complex 

with AR through other binding partners to regulate AR activity though KIBRA expression 

did not affect the Lats1 kinase activity and YAP phosphorylation in prostate cancer cells 

(Figure 5H).

KIBRA is upregulated in prostate tumors

Having established the role of KIBRA in prostate cancer with cell culture systems, we 

wanted to determine the clinical relevance of KIBRA in prostate cancer. Publically available 

data demonstrated that mRNA levels of KIBRA were significantly higher in prostate tumors 

than normal prostate tissue (Figure 6A–D). Moreover, KIBRA protein levels were also 

greatly increased in prostate tumors than normal prostate tissue in another set of samples 

(Figure 6E).
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In conclusion, the results show that ectopic expression of KIBRA promotes prostate cancer 

cell proliferation and motility. KIBRA knockdown impairs migration and invasion in 

androgen-insensitive prostate cancer cells. KIBRA expression is induced by AR signaling 

and is increased in prostate tumors. Our findings reveal a pro-tumor function for KIBRA in 

prostate cancer.

Materials and Methods

Expression constructs and cell culture

The human KIBRA cDNA and shRNA constructs have been previously described [37]. 

LNCaP-C4-2 cell lines with shControl or shYAP have been described in [34]. RWPE-1 and 

LNCaP cell lines and related media and supplements were purchased from American Type 

Culture Collection (ATCC, Manassas, VA, USA), and the cell lines were cultured following 

ATCC’s instructions. LNCaP-C4-2 was provided by Dr. Kaustubh Datta (University of 

Nebraska Medical Center) [40]. LNCaP-C33 and LNCaP-C81 cell lines were obtained from 

Dr. Ming-Fong Lin (University of Nebraska Medical Center) [41,42]. R1881 (an androgen 

analog) was purchased from PerkinElmer (Waltham, MA, USA). All other chemicals were 

either from Sigma (St. Louis, MO, USA) or Thermo Fisher (Waltham, MA, USA).

Generation of cell lines

Ectopic expression of empty vector (control) or KIBRA in the RWPE-1 and LNCaP cell 

lines was achieved by a retrovirus-mediated approach. ShRNA-mediated knockdown of 

KIBRA in LNCaP-C4-2 or LNCaP-C81 cells was achieved similarly. Virus packaging, 

infection, and resistance selection were done as described [37].

Antibodies

Mouse monoclonal antibodies against human KIBRA have been described [21] and were 

used for Western blot analysis throughout the study. Anti-WWC2 antibodies were purchased 

from Sigma. Anti-β-actin antibodies were from Santa Cruz Biotechnology (Dallas, TX, 

USA). Anti-YAP, anti-vimentin, and anti-E-cadherin antibodies were from Cell Signaling 

Technology (Danvers, MA, USA). Anti-N-cadherin antibodies were provided by Dr. Keith 

Johnson [43]. Total cell lysate preparation and Western blotting assays were done as 

previously described [21].

Cell proliferation, migration, invasion, and colony assays

Cell proliferation assays were performed as described in [44]. Cells (3,000/well) were 

seeded in a 24-well plate in triplicate. Colony assays (to assess anchorage-independent 

growth in soft agar) were done in 6-well plates as we have described [45]. In vitro cell 

migration and invasion assays were assessed using the Transwell system (Corning Inc., 

Corning, NY, USA) and BioCoat invasion system (BD BioSciences, San Jose, CA, USA), 

respectively, according to the manufacturer’s instructions. Cells (50,000 or 100,000) were 

seeded for each Transwell/Insert in duplicate and repeated twice [34]. The migratory and 

invasive cells were stained with ProLong Gold Antifade Reagent with DAPI [16,46] and 

counted under a 20X lens. The rates are the average of counts in five fields of view per 

Transwell/Insert.
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Quantitative real time-PCR

Total RNA isolation, RNA reverse transcription, and PCR were done with SYBR green 

(Bio-Rad) as previously described [37]. Primer sequences were as follows: WWC2: 5’-

tctggcctccagacattttt (forward); 5’-tctcacacaagcttattctcagg (reverse); WWC3: 5’-

agttcgtccccaacacaatc (forward); 5’-cgcgtcttttacattgacca (reverse). Other primers used in this 

study were listed in [34,37].

Prostate tumor samples

Normal prostate and tumor samples/proteins were obtained from Protein Biotechnologies 

and the Tissue Bank at the University of Nebraska Medical Center.

Statistical analysis

Statistical significance was analyzed using a two-tailed, unpaired Student’s t-test.
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Fig.1. KIBRA is transcriptionally upregulated in androgen-insensitive prostate cancer cells
(A, B) RWPE-1, LNCaP, LNCaP-C4-2, LNCaP-C33, and LNCaP-C81 cells lines were 

cultured as described in ‘Material and methods’. The total cell lysates were probed with the 

indicated antibodies. SE: short exposure; LE: long exposure.

(C) Quantitative RT-PCR of WWC1/2/3 in LNCaP and its sublines.

(D) LNCaP and LNCaP-C4-2 cells were treated with cycloheximide (CHX, 50 µg/ml) at the 

indicated time points and the total cell lysates were analyzed with the indicated antibodies. 

The relative intensity was shown from the average of three blots (Image J).

(E) LNCaP-C4-2 cell lines expressing control shRNA or shRNA against YAP were utilized 

to determine the indicated protein levels by Western blotting. Data were obtained from three 

(n=3) independent experiments (A–E) and expressed as mean ± s.e.m (C). *: p<0.05; **: 

p<0.01; ***: p<0.001 (t-test).
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Fig.2. KIBRA promotes proliferation, migration and invasion in RWPE-1 cells
(A) Establishment of RWPE-1 cells expressing vector (control) or KIBRA. WWC2 protein 

and WWC3 mRNA levels were determined in these cells.

(B) The proliferation curve of the cell lines established in (A).

(C, D) Cell migration effect was determined with the cell lines in (A). Representative photos 

for migrating cells are shown in (D).

(E, F) Cell invasion effect was determined with the cell lines in (A). Representative photos 

for invading cells are shown in (F).
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(G) Anchorage-independent growth (colony assay in soft agar) was determined with the cell 

lines established in (A). No colony was formed in RWPE-1-vector and –KIBRA cells.

(H) Total cell lysates from cell lines established in (A) were probed with the indicated 

antibodies. Data were obtained from three (n=3) independent experiments (A–H) and 

expressed as mean ± s.e.m (B, C). *: p<0.05; **: p<0.01; ***: p<0.001 (t-test).
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Fig.3. KIBRA promotes proliferation, migration and invasion in LNCaP cells
(A) Establishment of LNCaP cells expressing vector (control) or KIBRA. WWC2 protein 

and WWC3 mRNA levels were determined in these cells.

(B) The proliferation curve of the cell lines established in (A).

(C, D) Cell invasion effect was determined with the cell lines established in (A). 

Representative photos for invading cells are shown in (D).

(E, F) Cell migration effect was determined with the cell lines established in (A). 

Representative photos for invading cells are shown in (F).
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(G, H) Anchorage-independent growth (colony assay in soft agar) was determined with the 

cell lines established in (A).

(I) Representative photos of LNCaP-vector or LNCaP-KIBRA cells that have been cultured 

in normal medium (FBS) or androgen deprivation medium (CSS) for 4 days. FBS: fetal 

bovine serum; CSS: charcoal striped serum. Data were obtained from three (n=3) 

independent experiments (A–I) and expressed as mean ± s.e.m (B, C, E, G). *: p<0.05; **: 

p<0.01; ***: p<0.001 (t-test).
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Fig.4. KIBRA knockdown impairs motility and anchorage-independent growth in prostate 
cancer cells
(A) Establishment of LNCaP-C4-2/C81 cells expressing control shRNA (shControl) or 

shRNA against KIBRA (shKIBRA).

(B) The proliferation curves (determined by MTT assays) of the cell lines established in (A).

(C, D) Cell migration effect was determined with the cell lines established in (A). 

Representative photos for migrating cells are shown in (C).

(E) Cell invasion effect was determined with the cell lines established in (A).
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(F) Colony formation assays in LNCaP-C4-2 cells established in (A). Data were obtained 

from three (n=3) independent experiments (A–F) and expressed as mean ± s.e.m (B, D-F). *: 

p<0.05; **: p<0.01; ***: p<0.001 (t-test).
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Fig. 5. KIBRA is induced by R1881 and is required for AR signaling activation
(A) Total cell lysates from various stable cell lines were probed with the indicated 

antibodies.

(B) LNCaP cells were treated with R1881 as indicated. Total protein lysates were subjected 

to Western blot analysis.

(C) LNCaP-C4-2 and LNCaP-C81 cells were treated with R1881 (1 nM) for 24 h and total 

protein lysates were subjected to Western blot analysis with the indicated antibodies.
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(D, E) Quantitative RT-PCR in LNCaP or LNCaP-C81 cells treated or not treated with 

R1881 (1 nM) for 24 h.

(F) LNCaP-C81 cells were treated with cycloheximide (CHX, 50 µg/ml) at the indicated 

time points and the total cell lysates were analyzed with the indicated antibodies. The 

relative intensity was shown from the average of three blots (Image J).

(G) Quantitative RT-PCR for PSA in LNCaP-C4-2 cells with control or KIBRA knockdown.

(H) Total cell lysates from various stable cell lines were probed with the indicated 

antibodies. Data were obtained from three (n=3) independent experiments (A–H) and 

expressed as mean ± s.e.m (D–G). *: p<0.05; ***: p<0.001 (t-test).
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Fig. 6. KIBRA is overexpressed in prostate cancer
(A–D) KIBRA mRNA is increased in clinical samples. Data were mined from published 

studies through biogps.org (A) and oncomine.org (B–D). The original references are: [47] 

(A), [48] (B), [49] (C), and [50] (D). The box (B–D) extends from the 25th to 75th 

percentiles. The line is plotted at the median and the whiskers go to the smallest and the 

largest value for each group (B–D).

(E) Total protein lysates from prostate tumors and normal prostate tissue were subjected to 

Western blot analysis with the indicated antibodies.
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