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Abstract

Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological 

functions. Studies in the past decade indicate that a large number of lncRNAs are enriched in the 

nucleus and originate from transcriptionally active regulatory elements. These lncRNAs associate 

with transcription factors and chromatin regulatory elements to fine-tune the transcriptional output 

of protein coding genes. Importantly, lncRNAs display exquisite tissue specificity in their 

expression. Understanding how lncRNAs associate with their protein or nucleic acid partners and 

how they modulate gene expression provides insight into their scope of biological function. This 

review discusses notable functional properties and mechanisms of action of lncRNAs that have 

resulted from recent progress made in the field.

LncRNAs cellular localization and maturation

In recent years, long non-coding RNAs (lncRNAs) have been increasingly appreciated as 

regulatory molecules that play a functional role in diverse cellular processes. Initial 

observation that lncRNAs predominantly stay in the nucleus after their synthesis and are 

tightly associated with chromatin suggested their possible role in transcriptional regulation 

through epigenetic mechanisms [1–4]. Earlier studies used genome-wide co-expression 

profile analysis between lncRNAs and protein-coding genes to infer repressor or activator 

functions of lncRNAs, their potential target genes and cellular pathways. Such analysis in 

four mouse cell types led to the finding that lncRNAs might exert their function in distinct 

and diverse biological processes such as embryonic stem cell pluripotency, cell proliferation, 

or neural process [1,2]. Expression of lncRNAs exhibit highly cell-type or developmental 

stage-specific patterns, and are often dysregulated in a disease state [1,4,5]. LncRNAs are 

emerging as significant players in diverse aspects of tumorigenesis and metastasis such as 

DNA damage and cell cycle control (reviewed in [6]). For example, expression analysis of 

the HOX loci identified a systematic variation in expression levels of lncRNAs among 

normal breast epithelia, primary tumor, and metastases. One of the lncRNAs, HOTAIR 
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showed a strong predictor value of breast cancer metastasis. Overexpression of HOTAIR was 

sufficient to cause increased cancer invasiveness and metastasis [7].

The GENCODE consortium effort on lncRNA profiling has yielded annotation of more than 

15,000 lncRNAs present in human cells (http://www.gencodegenes.org/) [4]. Initially 

identified lncRNAs were deemed to undergo maturation processes such as splicing and 

polyadenylation, therefore exhibiting the same structural features as protein-coding mRNAs 

[1]. However, compared to protein-coding mRNAs, they are generally present at much lower 

levels in the cell with some exceptions and exhibit rather modest level of evolutionary 

conservation. Adding to its complexity, a rather unique class of lncRNAs, termed enhancer 

RNAs (eRNAs) has emerged in parallel with conventional lncRNAs described above [8,9]. 

Enhancer RNAs are divergently transcribed by two independent RNA polymerase II 

(RNAPII) molecules at individual active enhancers. While the 5′ end of eRNAs are capped, 

unlike the originally defined lncRNAs, the major population of eRNAs are monoexonic and 

are not polyadenylated. Perhaps due to these characteristics, transcribed eRNAs are 

relatively unstable (half-life of ~7 min) and subject to rapid degradation [9,10].

Integrator, a multi-subunit complex associated with RNAPII functions in biogenesis of 

eRNAs through its catalytic RNA endonuclease activity that mediates 3′-end cleavage of 

eRNA primary transcripts leading to transcriptional termination [11]. Notably depletion of 

integrator reduces eRNA induction levels and enhancer-promoter looping, suggesting that 

proper termination of eRNAs is critical for eRNA biogenesis as well as enhancer function. 

Although these features of eRNAs would make them distinguishable from originally 

characterized canonical lncRNAs, recent transcriptome and functional analyses have 

suggested that many intergenic lncRNAs could also be categorized as eRNAs [12–14]. De 
novo transcriptome assembly of a large set of RNA-seq data covering a wide array of human 

tissue types identified over 50,000 lncRNAs present at a minimum of at least one copy per 

cell, which is a significant expansion from the manually catalogued GENCODE lncRNA 

dataset [12]. These lncRNAs are composed of both poly A+ and poly A− annotated 

transcripts [4,5,15]. This bimorphic feature of lncRNAs is reproducibly observed across 

multiple human cell types whereas protein-coding transcripts are strongly enriched in the 

polyA+ sample [12]. Stringent analysis of a set of intergenic lncRNAs by examining 

enhancer and promoter-characteristic histone marks (high K4me1/me3 and low K4me1/me3, 

respectively) for accurately determined transcription initiation sites revealed that intergenic 

lncRNAs are almost evenly divided between those arising from enhancer-associated 

(elncRNA) or promoter-associated (plncRNA) elements [14]. For example, a functionally 

characterized lncRNA, ncRNA-a3, displayed similar characteristics to eRNAs as it was 

shown to originate from a bi-directionally transcribed enhancer of the TAL1 gene [13,16]. 

Therefore, some previously annotated lncRNAs appear to originate from functionally active 

enhancers, resulting in their new classification as eRNAs.

An increasing number of lncRNA and eRNA is shown to have a biological function based on 

experimental data, which is mainly obtained from loss-of-function or gain-of-function types 

of analysis (reviewed in [17]). However, we are still far from unambiguous assignment of 

function for most newly discovered lncRNAs. This effort should also include identification 

of transcripts previously annotated as lncRNAs that actually encode micropeptides as recent 
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genome-wide studies have proposed [18,19]. As the field of lncRNAs matures, additional 

tools and methodology are being developed to functionally characterize lncRNAs. These 

include functional validation of lncRNAs in vivo by creating KO mice [20–22]. Additional 

techniques include genome-wide identification of lncRNA interaction loci on chromosomes 

as well as their binding protein partners using chromatin isolation by RNA purification 

(ChIRP) [23] and capture hybridization analysis of RNA target (CHART) [24]. One effective 

way of validating lncRNA functionality is to determine proteins that directly bind to a 

lncRNA of interest and mechanistically characterize the significance of their interaction, 

which in principle should provide new molecular insight into the lncRNA role in biology.

Specific and promiscuous binding capacity of lncRNAs

Polycomb repressive complex-2 (PRC2) is a multi-subunit complex that mediates epigenetic 

silencing during development [25]. One of the core subunits present in the complex, EZH1/2 

has methyltransferase activity that critically underlies PRC2 function in gene silencing by 

generating a repressive histone modification mark, H3K27me3. The subunits of the PRC2 

complex have been the most common proteins identified in many studies as RNA-interacting 

partners associating with thousands of mRNAs and lncRNAs.

A microarray-based RNA immunoprecipitation (RIP) assay for ~1,000 human lncRNAs 

showed ~ 20% of tested lncRNAs interacting with PRC2 [3]. An early study of X 

chromosome inactivation (XCI) suggested sequence-specific interactions between lncRNAs 

and PRC2. PRC2 directly interacts with a 1.6 kb ncRNA RepA within Xist through its EZH 

subunit [26]. Furthermore, it was shown that the antisense Tsix RNA inhibits this 

interaction. RepA contains short tandem repeats of a 28-nt sequence that folds into two 

conserved stem-loop structures. The sequence of this repeating unit was sufficient for PRC2 

binding. Complementing these studies, a subsequent PRC2 transcriptome study showed the 

extensive localization of PRC2 near the 5′ end of repressed genes. Many short RNAs 

associated with paused RNAPII near the 5′ end of the Polycomb target genes (50–200 nt) 

were proposed to recruit PRC2, resulting in gene repression in cis [27]. The interaction was 

mediated via their stem-loop structures similar to that of RepA and SUZ12 subunit of PRC2. 

Artificial incorporation of a single unit of a two hairpin motif present in the PRC2 bound 

RNAs in front of the luciferase gene conferred specific binding of luciferase mRNAs with 

SUZ12 and also mediated a significant repression of luciferase expression. Similarly, 

another PRC2 transcriptome study in embryonic stem cells (ESCs) using native RIP-Seq 

determined that nearly 10,000 transcripts are present in various locations (antisense, 

intergenic, promoter-associate) throughout the genome [28]. An RNA EMSA assay with a 

few selected RNAs identified from the RIP-Seq additionally demonstrated direct and 

specific interactions between EZH2 and the stem-loop structure present in the tested RNAs. 

These studies collectively proposed that a single or tandem short stem-loop structure could 

serve as a PRC2 binding motif that mediates specific interactions between lncRNAs and 

PRC2.

However, additional characterizations of the RNA binding specificity both in vitro as well as 

in vivo have provided somewhat perplexing results suggesting that a functional PRC2-RNA 

interaction could occur both in a specific and promiscuous way. The affinity of PRC2 to 
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known specific RNA targets, HOTAIR and RepA was measured to be in the mid-nanomolar 

range, but surprisingly a similar affinity was observed for irrelevant RNAs including 

bacterial mRNA [29]. Such promiscuous PRC2 binding was also suggested in vivo by 

showing that PRC2 associates with both repressed and active genes. This result was in 

disagreement with an earlier study showing that PRC2 binds RepA selectively, with high 

specificity compared to non-relevant RNA transcripts [30]. A concerted effort toward 

consensus on the binding specificity and promiscuity of PRC2 for RNA suggested that 

promiscuous and specific RNA-binding activities of PRC2 in vitro are not mutually 

exclusive and both can be functional [31,32]. Both human and mouse PRC2 complexes bind 

RNA with mid to low nanomolar affinity although RepA showed several fold higher affinity 

than size-matched irrelevant mRNAs under specific binding conditions. PRC2 binding 

affinity was proportionally increased with RNA length irrespective of sequence (see also 

review in [29]).

In an in vivo context, other factors influence the intrinsic binding property of PRC2 [32]. 

Association of JARID2 with PRC2 inhibits its interaction with RNA [30]. Phosphorylation 

of the EZH2 subunit in a cell cycle dependent manner enhances the RNA binding affinity 

[33]. ATRX directly promotes the loading of Xist to PRC2 and is required for genome-wide 

PRC2 localization on chromatin [34]. Conversely RNA loading to PRC2 was shown to 

inhibit the HMT activity of PRC2 [30,35,36]. These allosteric features and the 

aforementioned promiscuous nature of PRC2-RNA interaction imply that the RNA-guided 

PRC2 recruitment to chromatin in vivo involves rather complex mechanisms.

A prediction that could be inferred from the promiscuous nature of PRC2-RNA interaction 

is that PRC2 might track along transcriptionally active regions and indeed analysis of EZH2 

RIP-seq data sets generated with mouse ESCs revealed broad association of PRC2 in both 

transcriptionally repressed and active genes [29]. Consistently PRC2 occupies a large 

fraction of active promoters in mouse ESCs at low levels through direct binding of EZH2 to 

the 5′ region of nascent RNAs transcribed from the promoter regions [37]. Those promoter 

regions showing the interaction with PRC2 still exhibit typical active promoter marks 

(H3K4me3) with little repressive mark (H3K27me3). An emerging model based on these 

observations is that PRC2 can be targeted to broad regions of chromatin through its 

promiscuous interaction with various types of RNAs, but its subsequent repressive activity 

depends on local chromatin environment [32]. PRC2 at active promoters might be released 

by highly expressed elongating RNAs (decoy) or its HMT activity is suppressed by active 

histone marks such as H3K4me3 and H3K36me3 [38,39] or by nascent RNA [30,35,36]. 

Scanning through the genome using this RNA-dependent mechanism allows PRC2 to reach 

the genes that have been silenced and to deposit repressive H3K27me3 marks, thereby stably 

maintaining the repressive state. Co-existence of specific and promiscuous interaction 

capacity of PRC2 and additional allosteric regulation imposed by other factors in vivo could 

explain why many lncRNAs have been shown to interact with PRC2 and support the idea 

that the promiscuous nature of RNA-protein interaction – without requiring any discernable 

sequence or structural motifs but with the affinities higher than the non-specific interaction 

levels [32] – might be a widely utilized molecular mechanism by which many lncRNAs 

interact with and regulate their cognate target proteins.
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Multimodal interaction capacity of lncRNAs

A growing number of lncRNAs show their capacity to interact with more than one protein 

partner depending on the context (Figure 1). The lncRNA steroid receptor RNA activator 

(SRA) probably represents a prominent example for having the multimodal capacity to 

interact with multiple protein partners [40]. Originally identified as a novel modulator of 

nuclear receptor (NR) function in a ligand-dependent manner [41], SRA interacts directly 

and indirectly with many other transcription regulators [40]. Notably, SRA forms a complex 

with the DEAD box RNA helicase p68, which in turn interacts with the MyoD transcription 

factor to promote muscle gene expression and cellular differentiation [42]. The p68/SRA 

complex can also contribute to proper insulator function of CTCF by stabilizing the 

interaction of cohesin with CTCF [43]. In breast cancer cells, SRA can interact with 

unliganded PR, HP1γ, and LSD1 to form a repressive complex and silence PR target genes 

[44]. Another intriguing property of SRA is that it has the ability to interact with both the 

epigenetic repressor and activator, PRC2 and trithorax group (TrxG) complexes, 

respectively. This binding property is consistent with the finding that some SRA binding 

sites in human pluripotent stem cells exhibit bivalent domains (H3K27me3-H3K4me3). 

However association of p68 helicase with SRA tips the balance toward favoring the 

interaction with TrxG. Therefore, SRA may function as a scaffold to organize multiple 

factors that regulate gene expression in a context-specific manner.

A lncRNA, Fendrr provides another case for dual interaction capacity with PRC2 and TrxG. 

For proper development of the heart and body wall, Fendrr controls expression of several 

transcriptional regulators in E8.5 embryonic hearts and caudal ends by altering chromatin 

architecture at the promoter regions of those genes [45]. Fendrr could do this by its ability to 

interact with both PRC2 and WDR5 subunit of TrxG/Mll. The primary role of Fendrr is to 

repress lateral plate mesoderm (LPM) controlling genes by recruiting the PRC2 complex to 

their promoters. In parallel, Fendrr is also involved in the upregulation of a separate set of 

genes by increasing the level of the activating H3K4me3 mark, thereby modifying the 

expression level of those genes. However how Fendrr can mechanistically accommodate 

those two complexes with opposing functions has not been understood.

Kcnq1ot1 is a lncRNA transcribed in an antisense orientation with respect to its host gene 

Kcnq1 playing an important role in the silencing of eight to ten protein-coding genes spread 

over a 1 Mb region [46]. It interacts with two different HMTs (G9a and PRC2) as well as 

DNMT1 to silence both ubiquitously and placental-specific imprinted genes. The 5′ end of 

Kcnq1ot1 RNA contains 890 bp silencing domain that harbors several conserved repeats 

[47]. This domain is specifically required for recruiting DNMT1 to maintain CpG 

methylation of somatic differentially methylated regions (DMRs) acquired during post-

implantation development [48]. This mechanism selectively underlies the maintenance of 

silencing of ubiquitously imprinted genes [49]. On the other hand, repressive histone 

modification mediated by G9 and PRC2 was shown to mediate the imprinting of placental-

specific imprinted genes [50]. These studies demonstrate how dynamic association of 

lcnRNA with its various protein partners underlies a lineage-specific transcriptional 

silencing mechanism for imprinted genes.

Kim and Shiekhattar Page 5

Curr Opin Genet Dev. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recently, a novel approach called RNA antisense purification followed by quantitative mass 

spectrometry (RAP–MS) expanded the Xist interactome [51]. Three proteins (SHARP, SAF-

A and LBR) were required for Xist-mediated transcriptional silencing. Identification and 

additional characterization of these proteins advanced mechanistic understanding of Xist-
mediated XCI. Briefly, SAF-A was previously shown to interact directly with Xist and is 

required for tethering Xist to the inactive X chromosome in differentiated cells [52]. Xist 
interacts directly with SHARP to recruit SMRT to these DNA sites and activates HDAC3 

[53]. This cascade of interactions results in gene silencing and chromosome condensation by 

promoting histone deacetylation as well as RNAPII exclusion. Following the initiation of 

XCI, Xist recruits PRC2 to the X chromosome in an HDAC3-dependent manner to maintain 

the epigenetic inactive state. Therefore, this study illustrates the usefulness of identifying 

lncRNA interaction partners in understanding the biological function and the mechanism of 

action of lncRNAs.

Diverse mechanisms for targeting of lncRNAs to specific genomic loci

An important yet unresolved question is how lncRNAs can find their cognate targets to exert 

their function. Currently available evidence suggests several possible mechanisms (Figure 

2).

1) Recruitment of lncRNA by specific DNA binding proteins

The roX1 and roX2 non-coding RNA genes are integral components of the male-specific 

lethal (MSL) dosage compensation complex in Drosophila, which is responsible for 

increasing transcript levels on the single male X chromosome to equal the transcript levels in 

XX females [54]. Recruitment of the MSL complex to their entry sites on the X 

chromosome is mediated by a zinc finger protein, CLAMP (chromatin-linked adaptor for 

MSL proteins). CLAMP recognizes and binds GA-rich sequences called MSL-recognition 

elements (MREs), and brings the MSL complex to those sites to initiate the dosage 

compensation process [23,24,54]. Dali is a conserved lncRNA that control a large number of 

neural differentiation genes in trans [55]. It can be recruited to the promoters of target genes 

primarily by its ability to directly interact with DNMT1, which in turn take Dali to distantly 

located target genes via indirect interactions with several DNA binding proteins.

2) Through the formation of RNA/DNA triple helix

RNA:DNA triple helixes can be formed by Hoogsteen- or reverse Hoogsteen base-pairing 

between single-stranded RNAs and DNA strands [56]. De novo CpG methylation of rRNA 

genes is mediated by promoter associated RNA (pRNA) complementary to the rDNA 

promoter. pRNA was shown to form a DNA:RNA triplex which is then specifically 

recognized by the DNA methyltransferase DNMT3b [57]. During differentiation of lateral 

mesoderm, a lncRNA, Fendrr is targeted to the promoters of Foxf1 and Pitx2 genes by 

forming a triplex structure with double stranded Foxf1 and Pitx2 promoter fragments at the 

complementary region [45]. MEG3 is targeted to the vicinity of the TGF-β pathway genes 

through the formation of RNA:DNA hybrid triplex structures using its GA-rich sequences. 

MEG3 then negatively regulates those TGF-β pathway genes by recruiting PRC2 [58]. 

MEG3-mediated triple helix formation was observed both in vitro and in vivo and appears to 
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occur at a large number of TGF-β pathway genes, suggesting that triplex helix formation 

might be the major targeting mechanism of MEG3.

R loops are three-stranded nucleic acid structures that are formed by nascent RNA 

hybridizing to the DNA template, leaving the nontemplate DNA single-stranded [59–61]. In 

mammalian cells, R loops are abundantly formed at the 5′ ends of genes with G-rich 

transcripts, as well as near RNAPII pause sites [62–64]. A recent study demonstrates that the 

R loop can shape the epigenetic landscape and control the differentiation program in ESCs 

by differentially recruiting two key chromatin-regulatory complexes, Tip60–p400 histone 

acetyltransferase complex and PRC2 [65]. The genes that form no or low level of R loops 

are preferential binding sites for PRC2 but are poor Tip60-p400 substrates. Conversely, 

Tip60–p400 prefers genes that form a high level of R loops, which is not a good substrate for 

PRC2. This study highlights the importance of the molecular context in which the RNA is 

presented as a key factor in recruiting a regulatory complex.

3) RNA:RNA interaction

Some lncRNAs form RNA:RNA complexes with other RNA species as a targeting 

mechanism. The function of lincRNA-p21 in translation inhibition relies on its ability to 

interact with target mRNAs, which is promoted by a translational repressor protein, RcK 

[66]. EBER2, an abundant nuclear noncoding RNA expressed by the Epstein-Barr virus 

(EBV) is specifically targeted to the terminal repeats (TRs) of the latent EBV genome 

through the base-pairing with nascent transcripts from the TR locus [67]. The EBER2 then 

promotes the recruitment of the B cell transcription factor PAX5 to the TR locus. Showing 

the functional relevance of the EBER2 targeting mechanism, EBER2 knockdown 

phenocopies PAX5 depletion and also decreases EBV lytic replication. The EBER2 guide 

function of PAX5 to the TRs was also observed in primate herpesvirus CeHV15, suggesting 

that such a pairing mechanism of a trans-acting noncoding RNA might be evolutionarily 

conserved. Another example is shown by TINCR, a lncRNA that controls human epidermal 

differentiation by a post-transcriptional mechanism [68]. It stabilizes a large number of 

differentiation mRNAs post-transcriptionally by directly interacting with them through a 25-

nucleotide ‘TINCR box’ motif that is strongly enriched in interacting mRNAs. The effect of 

TINCR-mediated stabilization of differentiation mRNAs was also dependent on interaction 

with the staufen1 (STAU1) protein.

4) LncRNA targeting by enhancer-promoter looping

Chromatin organization in the nucleus can arrange specific lncRNA target genes to be in 

close proximity to the origin of lncRNA transcription (see also review in [69]). This 

mechanism would in principle allow extensive interactions between lncRNAs and their 

target sites located in the same or even different chromosomes. HOTTIP is responsible for 

coordinating activation of HOXA genes despite its origin at the distal end of the human 

HOXA cluster [70]. This long-range action is mediated by pre-configured chromosomal 

looping that brings HOTTIP into close proximity of its target genes. HOTTIP then brings a 

member of the Mixed Lineage Leukemia (MLL) family of SET domain-containing lysine 

methyltransferases, MLL1 by physically interacting with the adaptor protein WDR5 to drive 

transcription of HOXA genes by promoting H3K4me3 modifications. Although several 
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lncRNAs and eRNAs have been shown to play a role in promoting enhancer-promoter 

looping [17,71–74], the eRNA implicated in the regulation of immediate early genes (IEGs) 

in neurons appears to act downstream of enhancer-promoter looping. In the study of 

enhancer function in Arc gene induction in neurons, the enhancer-promoter interaction 

occurs prior to eRNA synthesis in a stimulus-dependent manner and appears to be pre-

requisite for eRNA transcription as Arc eRNA was only transcribed from WT but not when 

the Arc promoter region is deleted despite the wild-type level of RNAPII binding occurring 

at the enhancer [8]. Consistently, knockdown of Arc eRNA did not affect the enhancer-

promoter interaction. Instead the eRNA promotes Arc induction by facilitating the release of 

negative elongation factor NELF from paused RNAPII through its competition with nascent 

RNAs [10]. Although further study would be necessary to see if this type of eRNA action 

commonly occurs at many enhancers, the study proposes a model that eRNA function at 

specific targets can be arranged by chromosomal looping. Transcription of eRNAs generally 

occurs with a faster kinetics than target protein-coding RNAs, but they are inherently 

unstable with a observed half-life less than 7.5 min, which would prevent eRNAs from 

acting distantly from their transcription sites [9,10,75]. Taken together, these findings 

suggests that the localized abundance of eRNAs in the proximity of target genes might allow 

effective and specific eRNA action, which is coordinately arranged by multiple mechanisms 

such as the timing and kinetics of eRNA transcription and inherent RNA stability. A similar 

mechanism has been proposed for site-specific action of Tsix RNA in facilitating locus-

specific targeting of CTCF. Newly transcribed Tsix RNA selectively recruits CTCF to the 

site of synthesis but then rapidly turns over to enable its site-specific action [76].

Allosteric regulation by lncRNAs

An increasing number of studies are finding that lncRNAs can allosterically alter the activity 

of their interacting proteins (Figure 3). An RNA-binding protein, TLS regulates transcription 

by inhibiting CBP HAT activity in a RNA-dependent manner [77]. The N terminus of TLS 

possesses a strong inhibitory activity for CBP HAT but binding of TLS C-terminus prevents 

its inhibitory function. A noncoding RNA (ncRNACCND1) expressed from the 5′ regulatory 

regions of a TLS target gene, CCND1 was shown to allosterically modify TLS in cis to 

relieve its auto-inhibitory configuration, thereby repressing CCND1 expression. lncRNAs 

can also influence enzymatic activity of chromatin remodelers. Evf2 is a lncRNA involved in 

neural development by regulating expression of homeodomain transcription factors DLX5 

and DLX6 in the developing mouse forebrain [78]. It forms a complex with transcription 

DLX homeodomain proteins at the ultraconserved intergenic regions to repress gene 

expression. Mass spectrometry analysis of the Evf2-DLX1 complex revealed the association 

of the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1, SMARCA4) 

and Brahma-associated factor (BAF170, SMARCC2) in the developing mouse forebrain 

[79]. The association of BRG1 with Evf2-DLX1 is mediated by direct interaction with 

DLX1 but Evf2 increases BRG1 binding to key Dlx5/6 enhancers and also inhibits BRG1 

ATPase and chromatin remodeling activities, causing gene repression. Additional in vitro 
studies show that both RNA-BRG1 binding and RNA-dependent inhibition of BRG1 

ATPase/remodeling activity are rather promiscuous, suggesting that context is a crucial 

factor in RNA-dependent chromatin remodeling inhibition [79]. Very recently, it was shown 
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that lncRNAs transcribed from regulatory elements such as eRNAs and promoter-associated 

ncRNAs can regulate gene expression in cis by stabilizing the interactions between 

transcription factors (TFs) and the regulatory elements they occupy [80]. Although how 

mechanistically these ncRNAs can mediate this function is not understood, perturbation of 

RNA levels affects binding levels of the TF, YY1 across the entire genome, suggesting that 

stable maintenance of TF binding might be a widespread mechanism contributed by 

regulatory element-derived lncRNA. It also illustrates a positive feedback loop that 

reinforces regulatory elements contributing to the stability of gene expression programs.

Future questions for the field

We have come a long way in understanding the diversity of cellular and tissue localization as 

well as the molecular characteristics of lncRNAs. However, many mechanistic questions 

remain unanswered. Chief among these is the elucidation of specific molecular determinants 

of lncRNAs that underlie their precise function. Do lncRNAs contain unique sequence or 

specific structural bases that govern their association with protein partners or their target 

DNA/RNA elements? Future experiments using scanning CRISPR/Cas9 mutagenesis of 

lncRNAs in vivo would be an important way to address the structural underpinnings of 

lncRNAs that result in altered function in specific cellular contexts. It is also clear that 

additional studies using a variety of organismal models will be necessary in order to 

understand their conserved evolutionary function as well as their full scope of importance. 

Using approaches such as genome-wide RNA interference or CRISPR/Cas9 screens in 

Caenorhabditis elegans or Zebrafish for eRNAs and other lncRNAs will be an insightful 

addition to current studies using mammalian cell culture systems. Furthermore, detailed 

targeted deletions of lncRNAs and interference with their transcription through insertion of 

termination sequences will be needed to gain a precise understanding of individual lncRNAs 

using mouse models. With the advent of new genome-wide technologies the next few years 

will usher in a renewed understanding of the role of lncRNAs in metazoans.
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Figure 1. Multimodal interaction capacity of lncRNAs
Several lncRNAs including HOTAIR, SRA, and Fendrr can function as a scaffold organizing 

multiple proteins or protein complexes (shown in the diagram as complexes A, B, and C). 

Such multimodal interactions may not be static but rather dynamically regulated depending 

on the genomic context in which lncRNAs play a role. The complexes shown here can be 

PRC2 and TrxG for Fendrr; PRC2, TrxG, CTCF, and PR for SRA; PRC2, DNMT1, and G9a 

for Kcnq1ot1; SHARP, SAF-A and LBR for Xist as described in the text.

While SRA can interact with both PRC2 and TrxG, association of p68 helicase causes 

preferential binding of SRA to TrxG, which might be induced by p68-mediated alteration of 

SRA secondary structure. Note that although the diagram shows that RNA helicase action 

triggers release of complex B, it might act positively in other context promoting the 

association of protein complexes with RNA.
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Figure 2. Various targeting mechanism of lncRNAs
A) Recruitment of lncRNA by specific DNA binding proteins. As part of the male-specific 

lethal (MSL) dosage compensation complex in Drosophila, roX2 can be recruited to its 

target genes by CLAMP (chromatin-linked adaptor for MSL proteins). Dali can be brought 

to the promoter region of its target by interacting with DNMT1.

B) Targeting by chromosomal arrangement. HOTTIP and Arc eRNAs are placed in 

proximity to their target genes by a pre-configured enhancer-promoter looping mechanism. 

Targeted degradation of lncRNAs before diffusing away from their origin might be a 

mechanism to prevent lncRNAs from acting on nonspecific target genes.

C) RNA:RNA interaction. lincRNA-p21 can function as a translation inhibitor by forming a 

duplex with target mRNA in the cytoplasm. RNA-RNA base-pairing also occurs in the 

nucleus as shown by EBER2.

D) Formation of RNA/DNA triple helix. Formation of RNA:DNA triplex or R loop between 

DNA region of target genes (e.g., promoter) and lncRNAs is not only a targeting mechanism 

for lncRNA (e.g., MEG3) but also an allosteric regulation mechanism (e.g., Tip60–p400)
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Figure 3. Allosteric regulation by lncRNAs
A) Enzyme activity of epigenetic regulators such as CBP acetyltransferase and the SWI/

SNF-related chromatin remodeling complex can be allosterically regulated by lncRNA 

action. A lncRNA, Evf2 binds and inhibits BRG1 ATPase activity of the SWI/SNF complex, 

causing repression of its target genes. ncRNACCND1 indirectly inhibits CBP HAT activity by 

allosterically activating CBP inhibitor protein, TLS in cis.

B) Nascent transcripts attached to RNAPII near the promoter or enhancer can contribute to 

the stable maintenance of certain transcription factors (e.g., YY1) at their cognate binding 

sites in cis. Alternatively liberated RNAs can facilitate TF release as shown by Arc eRNA.
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