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Abstract Graphical representation of DNA sequences is one of the most popular techniques for

alignment-free sequence comparison. Here, we propose a new method for the feature extraction

of DNA sequences represented by binary images, by estimating the similarity between DNA

sequences using the frequency histograms of local bitmap patterns of images. Our method shows

linear time complexity for the length of DNA sequences, which is practical even when long

sequences, such as whole genome sequences, are compared. We tested five distance measures for

the estimation of sequence similarities, and found that the histogram intersection and Manhattan

distance are the most appropriate ones for phylogenetic analyses.
Introduction

Sequence alignment [1,2] is generally used to estimate similar-
ities between relatively short sequences less than about several

thousand characters, such as nucleotide sequences or amino
acid sequences. However, the time complexity of the alignment
is the square of the sequence length, thus the long sequence

length may result in enormous amount of computation time
[3]. Therefore, to reduce the time required for comparing long

sequences such as whole genome sequences, developing
so-called alignment-free methods becomes a necessity.

Graphical representation of biological sequences represents

one of the most popular methods for the alignment-free
sequence comparison [4]. Various methods based on graphical
representation have been introduced, and almost all methods

share the common basic procedure. Every base type in a
DNA sequence is replaced by an individual vector in a two-
dimensional (2D) [5,6], three-dimensional (3D) [7,8], or even
higher-dimensional [9] expression space. These vectors are then

connected successively, drawing a trajectory in the expression
space and finally, the distances between the trajectories, or
graphs, are calculated according to a predefined distance mea-

sure. While there exist many methods in the field of graphical
representation of biological sequences as mentioned above,
nces and
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further improvement in terms of the performance and the cal-
culation time is still required.

In this study, we propose a new method for sequence com-

parison based on the graphical representation. We expressed a
DNA sequence as a binary image—each pixel of a binary
image was plotted in either black or white—in a two-

dimensional space, and counted the occurrence frequencies
of 3 � 3 bitmap patterns in the binary image. The distance
between the binary images was measured based on the fre-

quency histograms of the bitmap patterns. Five frequently-
used distance measures were evaluated for their performance
in determining the distance between histograms based on the
phylogeny of 31 mitochondrial genome sequences. These

include histogram intersection [10], Manhattan distance,
Bhattacharyya distance [11], Jensen–Shannon divergence [12],
and Kendall’s rank correlation coefficient [13].

Methods

Generating a binary image from a DNA sequence

We describe here the step-by-step procedure used to generate a
binary image from a DNA sequence.

Graphical representation of a DNA sequence

Firstly, we assigned 2D numerical vectors on the xy-plane,
which are perpendicular or in opposite directions to each
Figure 1 Three independent assignments of vectors on the

xy-plane to individual nucleotides

There are three independent assignments under the symmetries of

90-degree rotations and the inversion with respect to the vertical

or horizontal axis. Four nucleotides A, T, G, and C are arranged

counterclockwise on the xy-plane ‘‘ATGC” (A), ‘‘ATCG” (B), and

‘‘AGTC” (C). Assignment A is used throughout the study.

Figure 2 Generating a binary image of sequence ‘‘ACATATG”

A. The primary graphical representation. B. The graphical representatio

Each grid represents an individual pixel of a binary image.
other, to A, T, G, and C. The number of independent varia-
tions of the assignments was 3!/2 = 3, including the assign-
ments that can be transformed into each other by 90-degree

rotations or the inversions with respect to vertical or horizon-
tal axes (Figure 1). We chose the assignment presented in
Figure 1A, where nucleotides A and T are placed in the upper

quadrants, and G and C in the lower ones, so that the GC
content of a DNA sequence can be grasped easily from the
resultant graphical representation. Note that, the assignment

presented in Figure 1B is also acceptable, but better results
are obtained with the former assignment as shown in
Figure 1A. Therefore, the assignment given in Figure 1A is
adopted throughout this article. Then, a 2D graph can be

drawn by consecutively connecting the vectors assigned to
the nucleotides of a DNA sequence. A graphical
representation of a sequence, ‘‘ACATATG”, is represented

in Figure 2A.
Multiplying weighting factors

In order to extract potential information conveyed by individ-

ual nucleotides, we introduced weighting factors, based on a
Markov chain model, into the process of binary images
generation [14]. To emphasize rare patterns that appear in

genome sequences, we used self-information I(E), the amount
of information that is received when a certain event E occurs,
as the weighting factor. Let P(E) be the probability that event

E occurs, I(E) is defined as I(E) = �log2P(E) in bit units. A
trajectory for each genome sequence in a 2D plane is drawn
as follows:

Ri ¼
Xi

k¼1

wkVk; ð1Þ

where Ri is the coordinate of the ith point on the trajectory,
Vk is the vector assigned to the kth nucleotide of the gen-
ome sequence, and wk is the corresponding weighting factor
I(E). Here, we defined P(E) according to the second order

Markov chain. The probability that nucleotide z occurs after
a pair of nucleotides xy (x, y, z 2 {A, T, G, C}) is calculated
using

PðzjxyÞ ¼ NxyzP
s2fA;T;G;CgNxys

; ð2Þ
n modified with weighting factors. C. The generated binary image.
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where Nxyz and Nxys (z, s 2 {A, T, G, C}) are the numbers of

occurrence of triplets xyz and xys, respectively, which were
measured in all analyzed DNA sequences.

Procedure of the graphical representation with weighting

factors is illustrated in Figure 2. Suppose that P(A|AC), P(T|
CA), P(A|AT), P(T|TA), and P(G|AT) are 0.20, 0.66, 0.41,
0.31, and 0.44, respectively, the weighting factors are calcu-
lated as 2.3, 0.60, 1.3, 1.7, and 1.2, respectively. The first two

in a series of vectors represented in Figure 2A are drawn with-
out weighting factors, because the corresponding weighting
factors are not available. Due to the occurrence of ‘‘AC” in

the preceding doublet, the third vector ‘‘A” is multiplied by
2.3, i.e., the weighting factor calculated for P(A|AC).
Similarly, the remaining vectors are multiplied by the corre-

sponding weighting factors. As a result, the graphical represen-
tation of sequence ‘‘ACATATG” is modified as shown in
Figure 2B.

Generating a binary image

A binary image is a digitized image in which each pixel is set as

either 0 or 1 typically plotted in white and black, respectively.
In this study, we set ‘‘1” for the pixels that include at least a
portion of a vector, and ‘‘0” for all other cases. The graphical
representation of a DNA sequence shown in Figure 2B was

then converted to a binary image (Figure 2C).

Local patterns of pixels of a binary image

Local pattern is defined as a bitmap image composed of the
adjacent pixels in a certain size of window. Each pixel of a bin-
ary image has two value options (0 and 1), and therefore, the

number of local patterns is 2n, where n is the number of pixels
in a window. Very large windows are dominated by white pix-
els, while the windows that are too small cannot have enough

variations to express a DNA sequence. Therefore, for this
study we chose the window size of 3 � 3, where the number
of the local patterns is 29 = 512. Local pattern with pixels that
are all white was not included in the local pattern histograms,

because it represents the empty background of the images.
A serial number was assigned to each local pattern by lining

up the pixels from the upper left corner to the lower right with

the upper left corner being the highest bit. Pixels were
expressed as binary numbers (‘‘0” for white and ‘‘1” for black).
Figure 3 shows five examples of the local patterns of window

size 3 � 3, with their serial numbers shown below, which will
help readers to understand the relationships between the local
patterns and their serial numbers.
Figure 3 Five examples of local patterns with their serial numbers bel

Each grid represents an individual pixel of a binary image. The serial n

to the lower right and interpreting them as a binary number (‘‘0” for

corner being the highest bit.
Counting the occurrence frequencies of the local patterns

Occurrence frequencies of the local patterns were counted by
sliding a 3 � 3 window by one pixel per move over the binary
image. If the trajectory of the graphical representation of a

DNA sequence is like a random walk, the average distance
between the origin and the terminus of the trajectory would
be O(L1/2), where L is the sequence length, and the rectangle
area covering the whole trajectory is proportional to L. Conse-

quently, the computation time to count the occurrence fre-
quencies would become O(L). However, this is not the case
in reality. In most cases, the trajectory is not like a random

walk but is a curved line of length O(L). Therefore, the compu-
tation time to count the occurrence frequencies becomes

OðL2Þ, which is the equivalent of the pairwise sequence
alignment.

To reduce the computation time, we developed a new

method for counting the occurrence frequencies. As shown
in Figure 4, a binary image is divided into squares of
10 � 10 pixels and squares containing at least one black pixel

are marked when generating the binary image (gray squares
in Figure 4). Occurrence frequencies of the local patterns
are counted only in the marked areas. Let W and H be the

width and length of the aggregate region of the marked areas,
respectively, then the computation time of counting is esti-
mated approximately as O(WH). For the binary images gen-
erated from mitochondrial genomes, W is almost independent

of the genome length L, and H is proportional to L (see
Results and discussion). Therefore, the computation time is
reduced to O(L). There remains room for improvement by

reducing the numerical coefficient. For instance, this coeffi-
cient can be reduced using a variable grid size instead of
the fixed size of 10 � 10, which can be adjusted adaptively

for the individual counting areas. In addition, since the count-
ing procedure is performed independently on the individual
areas of the binary images, parallel processing can be imple-

mented for the counting procedure, which would further
boost the performance of our method.

Distance measures between local pattern histograms

Different measures can be used to estimate the similarity/
dissimilarity between two histograms. In this study, we chose
five commonly-used measures and compared their perfor-

mance in the distance measures between the local pattern his-
tograms, which could be employed in our method. These
include histogram intersection (HI) [10], Manhattan distance

(MD), Bhattacharyya distance (BD) [11], Jensen–Shannon
ow

umbers are given by lining up the pixels from the upper left corner

white and ‘‘1” for black pixels, respectively), with the upper left
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Figure 4 Counting areas on a binary image

Counting the occurrence frequencies of local patterns is performed

only on the gray-colored areas, which include at least one black

pixel. W and H are the width and the length of the aggregation of

the colored areas, respectively.
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divergence (JS) [12], and Kendall’s rank correlation coefficient

(s) [13]. Their definitions and the modifications in this study
are listed in Table 1. pi and qi are the occurrence frequencies
of the local pattern of serial number i in histograms P and
Q, respectively; and N is the largest serial number of the local

patterns (i.e., N= 511 for 3 � 3 pixel local patterns). Note
that in the calculation of the distances, the occurrence frequen-

cies are normalized to be
PN

i¼1pi ¼
PN

i¼1qi ¼ 1.
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Evaluation of the calculated distances among the local pattern

histograms

To evaluate the calculated distances, we reconstructed phylo-

genetic trees from the distance matrix based on each distance
measure listed in Table 1. We then computed the Robinson–
Foulds (R–F) distances [16] between our trees and a reference
tree reconstructed using ClustalW based on the multiple

sequence alignment of the mitochondrial genome sequences.
The R–F distances were calculated by TREEDIST program
in Phylogeny Inference Package PHYLIP [17].
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Results and discussion

Genome sequences analyzed

Mitochondrial genome sequences of 31 mammalian species
(Table 2) with their respective accession numbers and
lengths, were obtained from the NCBI GenBank. These spe-
cies were selected for comparison according to Huang et al.

[6], except ape, Sumatran orangutan, goat, and giant panda
genomes, for simplicity. Mitochondrial genomes are widely
used to study genome evolution and phylogenetic inference,

which show a high mutation rate compared with the nuclear
genomes and a nearly uniform size across mammalian
species [18].



Table 2 Mitochondrial genomes analyzed

GenBank accession No. Species Length (bp)

V00662 Human 16,569

D38116 Pygmy chimpanzee 16,563

D38113 Common chimpanzee 16,554

D38114 Gorilla 16,364

X99256 Gibbon 16,472

Y18001 Baboon 16,521

AY863426 African green monkey 16,389

D38115 Bornean orangutan 16,389

U20753 Cat 17,009

EF551003 Tiger 16,990

EF551002 Leopard 16,964

U96639 Dog 16,727

EU442884 Wolf 16,774

AJ002189 Pig 16,680

AF010406 Sheep 16,616

V00654 Cow 16,338

AY488491 Buffalo 16,355

X97336 Indian rhinoceros 16,829

Y07726 White rhinoceros 16,832

X63726 Harbor seal 16,826

X72004 Gray seal 16,797

AJ224821 African elephant 16,866

DQ316068 Asiatic elephant 16,902

DQ402478 Black bear 16,868

AF303110 Brown bear 17,020

AF303111 Polar bear 17,017

AJ001588 Rabbit 17,245

X88898 Hedgehog 17,447

X14848 Norway rat 16,300

AF348082 Vole 16,312

AJ238588 Squirrel 16,507
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Weighting factors calculated from the occurrence frequencies

of trinucleotides

We counted the number of occurrences of every tri-nucleotide
in all the mitochondrial genome sequences listed in Table 2 by
Table 3 Calculated weighting factors for each tri-nucleotide

1
st
base

2
nd

b

A C

A 1.64 1.66

1.90 1.80

2.94 3.28

1.84 1.76

C 1.68 1.80

1.91 1.70

2.88 3.57

1.80 1.65

G 1.57 1.70

2.07 1.51

2.30 3.95

2.17 1.86

T 1.71 1.54

2.01 1.82

2.56 3.38

1.85 1.85

Note: Weighting factors are calculated with the 31 mammalian mitochond
sliding a window of length three one nucleotide per move, and
calculated the weighting factors as described in the Methods

section. The occurrence frequencies of all tri-nucleotides
detected in each genome sequence are listed in Table S1. The
obtained weighting factors are shown in Table 3. The high
ase
3
rd
base

G T

2.08 1.68 A

1.58 1.94 C

2.22 2.85 G

2.23 1.79 T

1.82 1.37 A

1.83 2.03 C

2.43 3.01 G

2.00 2.03 T

1.57 1.33 A

1.87 2.23 C

2.45 2.73 G

2.27 2.07 T

1.46 1.55 A

2.12 1.87 C

2.31 3.02 G

2.29 1.94 T

rial genomes.
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value of weighting factors indicate that the corresponding
tri-nucleotides rarely occur in the genome sequences, whereas
low value of weighting factors indicates that the corresponding

tri-nucleotides occur frequently in the genome sequences. To
validate the robustness of the weighting factors shown in
Table 3, we randomly selected 15 species (out of the original

31 genome sequences) and recalculated the weighting factors.
We repeated this trial 100 times and obtained the average
values very similar to those presented in Table 3, with the max-

imum standard deviation of 0.07 (data not shown). These
results suggest that the weighting factors shown in Table 3 rep-
resent a snapshot of a comprehensive picture of the mam-
malian mitochondrial genomes examined.

Graphical representations of mitochondrial genomes

Graphical representations of the 31 mammalian mitochondrial

genomes were drawn by our method without (Figure 5) and
with weighting (Figure 6), respectively. The trajectories on
the graphs in Figure 5 look very similar to each other, except

for slight differences of their gradients. On the other hand,
closely-related species, such as primates, cats, elephants, and
bears, share similar trajectories, whereas trajectories between

distant species are different (Figure 6). Comparing the graphs
with and without weighting indicated that weighting makes it
possible to distinguish even between the graphs of closely-
related species. This demonstrates the effectiveness of our

method of graphical representation for the visual inspection
of the sequence similarities.

Local pattern histograms counted on the graphical

representations

We counted the occurrence frequencies of the local patterns for

the 31 mammalian species, and constructed the local pattern
histograms to explore which patterns are dominant. These
histograms are shown in Figure S1. Local patterns 1, 4, 10,

34, 64, 84, 136, 160, 256, and 273 are detected more than
1000 times in each genome sequence. These local patterns
are frequent because all vectors assigned to the nucleotides
are on the diagonal lines of the xy-plane (Figure 1), and the

binary images do not contain many black pixels. These
frequent local patterns are depicted in Figure S2.
Construction of phylogenetic trees based on the local pattern

histograms

A phylogenetic tree was reconstructed to evaluate our method

from the calculated distance matrix based on HI, using
Unweighted Pair Group Method with Arithmetic mean
(UPGMA) (Figure 7). The same tree is obtained using MD.

Phylogenetic trees generated based on BD, JS, and Kendall’s
s are presented in Figure S3. All the trees were drawn by the
statistical analysis software R, using ‘‘ape” package. The tree
based on HI (and MD) seems to be reconstructed well, since

primates, elephants, cats, bears, etc. are located in their respec-
tive clades (Figure 7). On the other hand, some species are
located in inadequate places on the trees based on the other
distance measures. For instance, sheep is separated from
buffalo–cow pair in the tree built using BD as shown in

Figure S3A, pig and white rhinoceros are included in primates,
and leopard is separated from cat–tiger pair in the tree built
using Kendall’s s as shown in Figure S3B.

Table 4 shows Pearson’s correlation coefficients calculated
between the distance matrices based on the five distance mea-
sures. HI–MD pair and BD–JS pair are strongly correlated,

confirming the topological similarity of the resultant phyloge-
netic trees in Figures 7 and S3. To quantitatively evaluate the
phylogenetic trees built in this study, we measured the
Robinson–Foulds (R–F) distances [16] between the trees

we constructed and a reference tree reconstructed using
ClustalW based on the multiple sequence alignment of the
mitochondrial genome sequences (Figure S4). As shown in

Table 5, among the five distance measures, trees built with
HI and MD had the lowest R–F distances with that built with
ClustalW, suggesting their superior performance in building

phylogenetic trees.
We compared our tree reconstructed by HI (and MD) in

Figure 7 with those given by Huang et al. [6] and Yu et al.

[19] for further evaluation. The overall configuration of the
tree we constructed roughly agrees with the trees shown in
these studies, except for the position of hedgehog. Krettek
et al. [20] performed a phylogenetic analysis using concate-

nated sequences of 13 mitochondrial protein-coding genes of
nine mammals, including human, harbor seal, cow, and hedge-
hog, and identified the position of hedgehog as basal relative to

the other species included. Our results are consistent with those
obtained by Krettek et al. [20], rather than Huang et al. [6] and
Yu et al. [19].

Consideration of the execution time

We further compared the execution time for handling 31 mam-

malian mitochondrial genomes, between ClustalW and our
method. The most time-consuming process in ClustalW is mul-
tiple sequence alignment, whereas for our method, counting

the occurrence frequencies of the local patterns in the binary
images is the most time-consuming step. It takes around
60 min to perform the multiple sequence alignment in Clus-

talW, using Intel Core i5-4690 CPU of 3.50 GHz. Nonetheless,
with the same PC configuration, counting the occurrence fre-
quencies takes about 260 s in our method, representing

approximately a 14-fold decrease in execution time. Other
steps in our method, such as calculating weighting factors,
making distance matrices, and drawing phylogenetic trees,
require several seconds at most for each.

Execution time depends on the number of sequences
involved. Multiple sequence alignment by ClustalW is per-
formed by combining pairwise sequence alignment of all the

pairs of the sequences involved. Therefore, the dependency

of the execution time on the number of sequences S is OðS2Þ
for ClustalW. For the method we present in this paper, this

dependency is O(S), since the counting of the occurrence fre-
quencies of local patterns in our method is independently per-
formed on the sequences involved.



Figure 5 Graphical representation of mitochondrial genomes of 31 mammalian species without weighting

The graphs are drawn on the xy-plane without weighting.
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Figure 6 Graphical representation of mitochondrial genomes of 31 mammalian species with weighting

The graphs are drawn on the xy-plane with weighting. The trajectories among closely-related species, such as primates, cats, elephants,

bears, and so on, are similar to each other. On the other hand, trajectories between the species in different orders are distinct.
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Table 4 Pearson’s correlation coefficients of the five distance measures

HI MD BD JS

MD 0.99933

BD 0.97994 0.97277

JS 0.98091 0.97389 0.99997

s 0.94098 0.93999 0.93992 0.9405

Note: HI, histogram intersection; MD, Manhattan distance; BD, Bhattacharyya distance; JS, Jensen–Shannon divergence; s, Kendall’s s.

Table 5 Robinson–Foulds distances calculated for the five distance measures

Distance measure Robinson–Foulds distance

Histogram intersection 30

Manhattan distance 30

Bhattacharyya distance 34

Jensen–Shannon divergence 34

Kendall’s s 46

Note: Robinson–Foulds distances are calculated between reference tree built using ClustalW and the trees built based on the five distance measures

in this study.

Figure 7 Phylogenetic tree reconstructed by our method based on HI and MD

The tree is reconstructed using UPGMA algorithm based on the distance matrix calculated by HI and MD. Scale bars are not indicated,

since absolute values of distances derived from the distance measures used in this study are less informative. HI, histogram intersection;

MD, Manhattan distance. Tips before species’ names are indicated as follows: ‘‘*”, primates; ‘‘=”, glires (rodents and rabbit); ‘‘+”, cats;

‘‘^”, dogs; ‘‘>”, cetartiodactyla (bovines and pig); ‘‘%”, rhinoceros; ‘‘‘‘”, seals; ‘‘<”, bears; ‘‘&”, elephants; and ‘‘�”, hedgehog.
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Conclusion
In this study, we proposed a novel alignment-free method for

the estimation of similarities between DNA sequences. In this
method, we express DNA sequences as binary images by
replacing individual nucleotides with 2D vectors and connect-

ing them successively. We counted the occurrence frequencies
of 3 � 3 bitmap patterns in the binary images, and measured
the distances between them based on the frequency histograms
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of the bitmap patterns. We chose five frequently-used distance
measures to estimate similarity/dissimilarity between two
histograms: histogram intersection, Manhattan distance,

Bhattacharyya distance, Jensen–Shannon divergence, and
Kendall’s rank correlation coefficient.

We compared our phylogenetic trees with a reference tree

reconstructed by ClustalW for mitochondrial genomes of 31
mammalian species. Among the five distance measures, his-
togram intersection and Manhattan distance showed the best

performance in terms of Robinson–Foulds distance between
the phylogenetic trees. In addition, a more appropriate posi-
tioning of hedgehog in the phylogenetic tree was obtained
when compared with the phylogenetic tree reconstructed by

Huang et al. [6] and Yu et al. [19].
The most time-consuming step in our method is counting

the occurrence frequencies of local patterns. Its time complex-

ity is O(L) for sequence length L, which is practical even for
very long sequences.
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