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ABSTRACT
Background: There is a paucity of studies that have prospectively
tested the energy surfeit theory of obesity with the use of objectively
estimated energy intake and energy expenditure in humans. An
alternative theory is that homeostatic regulation of body weight is
more effective when energy intake and expenditure are both high
(high energy flux), implying that low energy flux should predict
weight gain.
Objective: We aimed to examine the predictive relations of energy
balance and energy flux to future weight gain and tested whether
results were replicable in 2 independent samples.
Design: Adolescents (n = 154) and college-aged women (n = 75)
underwent 2-wk objective doubly labeled water, resting metabolic
rate, and percentage of body fat measures at baseline. Percentage of
body fat was measured annually for 3 y of follow-up for the ado-
lescent sample and for 2 y of follow-up for the young adult sample.
Results: Low energy flux, but not energy surfeit, predicted future
increases in body fat in both studies. Furthermore, high energy flux
appeared to prevent fat gain in part because it was associated with
a higher resting metabolic rate.
Conclusion: Counter to the energy surfeit model of obesity, results
suggest that increasing energy expenditure may be more effective for
reducing body fat than caloric restriction, which is currently the treat-
ment of choice for obesity. This trial was registered at clinicaltrials.
gov as NCT02084836. Am J Clin Nutr 2016;103:1389–96.
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INTRODUCTION

Because obesity is credited with 2.8 million deaths annually
(1), it is vital to identify factors that predict weight gain. On the
basis of the first law of thermodynamics (2), it is widely accepted
that a chronic positive energy balance is the core factor that drives
excessive weight gain (3). Highly controlled metabolic ward
experiments have found that humans assigned to a positive en-
ergy balance condition show greater weight gain than do humans
assigned to a balanced energy condition (4, 5). Yet, to our
knowledge, no study with free-living humans has tested whether

objectively measured energy balance, operationalized by habitual
energy intake minus habitual energy expenditure, predicts weight
gain over a multiyear follow-up, despite the fact that reduced-
calorie diets are the frontline treatment of obesity. Thus, we tested
whether objectively measured energy surfeit predicted future
body fat gain in 2 prospective studies.

Moreover, reduced-calorie diets have not produced the rate and
magnitude of weight loss predicted by the law of thermodynamics (6),
and most people who complete reduced-calorie weight loss treatments
regain the lost weight (7). According to the metabolic adaptation
hypothesis, physiologic compensatory responses to a negative energy
balance produce energy-sparing changes in metabolism that attenuate
weight loss and promote weight regain (8). Substrate conserving re-
sponses include reduced resting metabolic rate (RMR)6 and thermic
effects of feeding (9, 10), as well as increased metabolic efficiency
(11) and fractional energy absorption (12). Low patient adherence
also limits the efficacy of reduced-calorie treatment (8), apparently
because caloric deprivation increases the reward value of food (13).

One explanation for these findings is that homeostatic regulation
of body weight is most effectivewhen energy balance is sustained at
a high level of energy flux, operationalized as the total sumof energy
moving through a systemwith similar energy intake and expenditure
(14, 15). Maintaining high energy flux (high energy intake and
expenditure) induces metabolic changes that are more protective
against weight gain than a prolonged negative energy balance from
dietary restriction. Among endurance athletes who train regularly,
fat-free mass–adjusted RMR is elevated substantially during high
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energy flux periods compared with low energy flux periods induced
by reductions in energy intake and volitional exercise (16). Among
adults who regularly engage in aerobic endurance exercise, pro-
portional reductions of energy intake and expenditure reduce RMR
and skeletal muscle sympathetic nervous system activity (15).
Because RMR is the largest constituent of daily total energy ex-
penditure (TEE) (17) and some (but not all) studies show that low
RMR predicts future weight gain (18), high physical activity
coupled with high energy intake may protect against weight gain.
Thus, we also tested whether objectively measured energy flux
(habitual energy intake plus habitual energy expenditure) showed
a negative relation to future body fat gain, because this too has not
yet been tested with prospective data.

All together, the aim of this study was to determine how best to
combine the predictive power of habitual energy intake and
energy expenditure to forecast future weight change reliably,
because the results should guide the development of more ef-
fective obesity treatment strategies (NCT02084836).

METHODS

Research participants

To address the dual aims of our article, we conducted 2 in-
dependent prospective studies with humans wherein we collected
objective measures of total energy intake (TEI) and TEE over a
2-wk period and assessed body fat percentage over a 3-y follow-
up for study 1 and over a 2-y follow-up for study 2.

Data in text, tables, and figures are presented as means 6 SDs.
Participants in study 1 included 162 adolescents (82 female, 80
male; age = 15.3 6 1.1 y; BMI (in kg/m2) = 20.8 6 1.9; 4%
Hispanic, 1% Native American, 1% Asian/Pacific Islander, 76%
European American, and 18% mixed racial heritage) recruited in
Eugene, Oregon, via advertisements. Exclusion criteria were a BMI
,18 or.25, current use of psychoactive medications or drugs more
than weekly, pregnancy, head injury with a loss of consciousness,
substantial cognitive impairment, major medical problems, or cur-
rent Axis I psychiatric disorder (Supplemental Table 1).

Participants in study 2 included 91 late-adolescent women
aged 18–20 y (age = 18.4 6 0.57 y; BMI = 23.72 6 4.07; 90%
White, 2% American Indian or Alaska Native, 3% Asian, and
5% unreported) who were randomly selected from a large
obesity prevention trial in Eugene, Oregon targeting young
women with weight concerns. Exclusion criteria included those
who had diabetes, conditions requiring supplemental oxygen, or
pregnancy (Supplemental Table 1).

Participants and their parents (for minors) provided written
informed consent, and all research was conducted according to
the ethical standards required by these institutional review board–
approved studies.

Experimental design

Participants reported to the laboratory after a 10- to 12-h
overnight fast, at which time RMR was assessed (19). Air-
displacement plethysmography (ADP) was used to assess the
percentage of body fat of participants at baseline and at 1-, 2-, and
3-y follow-ups in study 1 and at baseline and at 1- and 2-y follow-
ups in study 2 with the Bod Pod S/T (COSMED, Rome, Italy).
After baseline RMR and ADPmeasures, daily TEI and TEE were

quantified for each participant. Given that self-reported energy
intake and energy expenditure are very inaccurate (20), we used
doubly labeled water (DLW) to provide an objective measure of
TEI and TEE over a 2-wk period (21).

RMR

RMR was assessed via the measurement of oxygen uptake and
carbon dioxide production for 20 min with the use of a ventilated
hood, as described elsewhere (19). Participants arrived at the
laboratory after a 10- to 12-h overnight fast, and then assumed
supine rest ($10 min) before the start of the test. For each RMR
trial, the first 5 min were discarded to ensure that participants
had reached steady state (CV ,10%) (Quark RMR; Cosmed).
All trials were performed in a sound- and light-controlled room.
Before the start of testing each day, the gas analyzer was cali-
brated with a 3-L syringe and standard gas mixtures of oxygen
(26% O2, with the balance nitrogen) and carbon dioxide (4%
CO2, 16% O2, and the balance nitrogen).

Percentage of body fat

ADP was used to assess the percentage of body fat of par-
ticipants. This was accomplished with the Bod Pod S/T by using

FIGURE 1 The relation of EnFlux, or energy intake plus energy expen-
diture, to percentage of body fat change over time (body fat percentage at
final follow-up minus body fat percentage at baseline) for both study 1 (n =
91) (A) and study 2 (n = 54) (B). EnFlux, energy flux; ffm, fat-free mass.
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recommended procedures and age- and sex-appropriate equations
(22). Body density was calculated as body mass (assessed by
direct weighing) divided by body volume. Body fat percentage
estimates showed test–retest reliability (r = 0.92–0.99) and
correlated with dual-energy X-ray absorptiometry and hydro-
static weighing estimates (r = 0.98–0.99) (23). In study 1, body
composition data were complete at baseline, 7% were missing at
the 1-y follow-up, 11% were missing at the 2-y follow-up, and
15% were missing at the 3-y follow-up (Supplemental Figure
1). In study 2, body composition data were complete at baseline,
7% were missing at the 1-y follow-up, and 12% were missing at
the 2-y follow-up (Supplemental Figure 2).

Energy balance and energy flux

We used DLW to provide an objectivemeasure of TEI and TEE
over a 2-wk period because this is the gold standard measure of
these 2 constructs (21). The DLWmethod was validated previously
against continuous indirect calorimetry and weighed food intake
and has 1–2% accuracy (CV = 2–12%; error of ,3%) (24). Fur-
thermore, the 2-wk DLW protocol yields energy intake data that
are w25% more accurate than measures collected via survey in-
struments (25), and it is a reliable measure of habitual energy
expenditure (test–retest measures reflecting a CV of 5.1%) (26).
DLW also has shown 18-mo test–retest reliability (r = 0.80) (27).

At baseline, DLW was administered immediately after par-
ticipants tested negatively for pregnancy (if applicable). Doses

were 1.6–2.0 g H2
18O (10 atom %)/kg estimated total body

water. Spot urine samples were collected immediately before
DLW was administered and 1, 3, and 4 h after dosing. Two
weeks later, 2 additional spot urine samples were collected at the
same time of day as 3- and 4-h postdosing samples. No samples
were the first void of the day. Participants were required to avoid
traveling .322 km from the study site in the 2 wk between the
second and third visits to the laboratory because regional vari-
ation in the amount of 18O and D2

18O in water would have in-
troduced error variance.

TEE was calculated with the use of equation A6 (1986), di-
lution space ratios (28), and the modifiedWeir’s equation (1949),
as previously described (29). TEE per day was divided by the
number of days between baseline and 2 wk after testing to
calculate mean TEE. Mean energy intake per day was calculated
from the sum of TEE from DLW and the estimated change in
body energy stores from serial body fat measurements, assessed
via ADP, performed at baseline and 2 wk after dosing. This
figure was divided by the number of days between baseline and
2 wk after testing to calculate the daily source of energy sub-
strates from weight loss or storage of excess energy intake as
weight gain (30). The equation used for each participant was as
follows: TEI = TEE + [(2-wk weight – baseline weight) 3
7800)]/(2-wk date – baseline date). The 7800 kcal/kg value is an
estimate of the energy density of adipose tissue (31).

For both samples, we calculated a continuous variable rep-
resenting energy balance (TEI 2 TEE) and a second continuous

TABLE 1

Effects for percentage of body fat change (final-year follow-up and baseline D) over time for sample 11

Measures added to model Coefficient SE df t P Partial r

Step 1: DLW EnBal (whole-sample analysis)

Intercept 212.55 7.48 118 21.68 0.096

Baseline %BF 20.04 0.07 153 0.56 0.168 0.04

Age, y 0.97 0.48 153 2.04 0.043 0.16

DLW EnBal 20.05 0.04 153 21.06 0.290 20.09

Step 2: DLW EnBal (out-of-balance group excluded)

Intercept 212.38 8.51 75 21.45 0.150

Baseline %BF 0.00 0.08 93 0.00 0.977 0.00

Age, y 0.88 0.54 93 1.62 0.109 0.17

DLW EnBal 20.07 0.05 93 21.47 0.147 20.15

Step 3: DLW EnFlux (out-of-balance group excluded)

Intercept 24.07 9.14 75 20.44 0.658

Baseline %BF 20.01 0.08 93 20.10 0.921 20.01

Age, y 0.79 0.53 93 1.49 0.142 0.15

DLW EnFlux 20.06 0.03 93 22.41 0.019 20.24

Step 4: DLW EnBal + DLW EnFlux (out-of-balance group

excluded)

Intercept 4.36 10.88 75 0.40 0.690

Baseline %BF 20.01 0.08 93 20.08 0.938 20.01

Age, y 0.73 0.53 93 1.39 0.170 0.14

DLW EnBal 0.14 0.10 93 1.41 0.164 0.14

DLW EnFlux 20.14 0.06 93 22.36 0.021 20.24

Step 5: DLW EnFlux + RMR at baseline (out-of-balance

group excluded)

Intercept 22.94 12.6 75 1.82 0.073

Baseline %BF 0.03 0.07 93 0.35 0.728 0.04

Age, y 0.22 0.56 93 0.39 0.696 0.04

DLW EnFlux 20.03 0.03 93 20.96 0.339 20.10

Baseline RMR 20.79 0.24 93 23.32 0.001 20.43

1DLW, doubly labeled water; EnBal, energy balance; EnFlux, energy flux; RMR, resting metabolic rate; %BF,

percentage of body fat.
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variable representing energy flux (TEI + TEE) for each partic-
ipant. In both samples, TEE and energy flux were normally
distributed (P . 0.05). It is important to note that, by definition,
energy flux refers to the absolute level of energy balance (15).
Accordingly, any participants with a TEI value that was .33%
greater or less than their TEE value were considered to be
markedly out of energy balance and omitted from the analyses
involving energy flux. This is necessary because otherwise it
would be possible for participants to have the same energy flux
value, but for completely opposing reasons (e.g., one participant
could be consuming 3000 kcal/d but expending only 2000 kcal/d,
whereas another could be consuming 2000 kcal/d, but ex-
pending 3000 kcal/d, but both would have the same energy flux
value). In total, 60 participants in study 1 (39%) and 20 par-
ticipants in study 2 (27%) were excluded from analyses in-
volving the energy flux variable because they were out of energy
balance.

Statistical analyses

The Stata 12 software package was used for the statistical
analyses. Shapiro-Wilk W tests were conducted to examine data
normality. Pearson product moment or Spearman rank-order
correlations, as appropriate, were used to determine relations
between RMR and DLW measures of energy flux. Multiple
linear regression analyses, which support multilevel longitudinal
data arrangements, were used to determine whether DLW-

measured energy balance and energy flux at baseline predicted
change in percentage of body fat over follow-ups (both sam-
ples), with final models controlling for baseline energy balance,
age, and percentage of body fat. Results were very similar when
controlling for fat-free mass and BMI instead of percentage of
body fat. The assumptions of statistical tests regarding the ho-
mogeneity of variances were tested with Bartlett’s test for
parametric data and Levene’s test for nonparametric data. The
statistical threshold was set to an a of P , 0.05.

RESULTS

Sample characteristics

For 8 adolescents, DLW data were invalid, reducing this
sample (study 1) to n = 154. For study 2, records for ADP-
measured percentage of body fat and/or DLW data were missing
or void for 16 participants, reducing this sample to n = 75.

Multiple linear regression analyses

The negative association we observed upon initial inspection
of the data between energy flux and percentage of body fat
change is depicted for sample 1 in Figure 1A and sample 2 in
Figure 1B. Change in percentage of body fat was modeled as
3- and 4-level models in studies 1 and 2, respectively, in which
participants were nested within groups. We undertook several

TABLE 2

Effects for percentage of body fat change (final-year follow-up and baseline D) over time for sample 21

Measures added to model Coefficient SE df t P Partial r

Step 1: DLW EnBal (whole-sample analysis)

Intercept 28.30 4.31 61 21.93 0.064

Baseline %BF 20.01 0.03 74 20.53 0.601 20.06

Age, y 0.51 0.24 74 2.14 0.041 0.24

DLW EnBal 0.01 0.02 74 0.40 0.692 0.04

Step 2: DLW EnBal (out-of-balance group excluded)

Intercept 25.08 5.07 45 21.00 0.327

Baseline %BF 20.03 0.03 54 21.03 0.315 20.14

Age, y 0.37 0.27 54 1.38 0.182 0.18

DLW EnBal 20.02 0.02 54 20.78 0.444 20.11

Step 3: DLW EnFlux (out-of-balance group excluded)

Intercept 20.80 5.13 45 20.16 0.877

Baseline %BF 20.02 0.03 54 20.81 0.426 20.11

Age, y 0.25 0.25 54 1.00 0.326 0.13

DLW EnFlux 20.02 0.01 54 22.13 0.045 20.28

Step 4: DLW EnBal + DLW EnFlux (out-of-balance group

excluded)

Intercept 0.68 5.04 45 0.14 0.894

Baseline %BF 20.01 0.03 54 20.54 0.598 20.07

Age, y 0.28 0.25 54 1.15 0.264 0.15

DLW EnBal 0.05 0.03 54 1.60 0.124 0.21

DLW EnFlux 20.04 0.02 54 22.58 0.017 20.33

Step 5: DLW EnFlux + RMR at baseline (out-of-balance

group excluded)

Intercept 20.35 5.19 45 20.07 0.946

Baseline %BF 20.02 0.03 54 20.78 0.446 20.11

Age, y 0.33 0.27 54 1.21 0.239 0.16

DLW EnFlux 20.02 0.01 54 21.63 0.117 20.22

Baseline RMR 20.08 0.10 54 20.83 0.417 20.43

1Data are log-transformed. DLW, doubly labeled water; EnBal, energy balance; EnFlux, energy flux; RMR, resting

metabolic rate; %BF, percentage of body fat.
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analyses to determine the relative contributions of energy bal-
ance and energy flux to future gains in body fat. Specifically,
a 5-tiered hierarchical regression analysis was conducted with
percentage of body fat and age at baseline included as fixed
regressor variables in all models. First, energy balance was en-
tered as the sole predictor of percentage of body fat change over
follow-up for all participants in study 1 (n = 154) and study 2
(n = 75). Second, energy balance was entered as the sole pre-
dictor of percentage of body fat change for participants who
were not markedly out of energy balance in study 1 (n = 94) and
study 2 (n = 55). Third, energy flux was entered as the sole
predictor of percentage of body fat change with the same par-
ticipants that were included in the last step for studies 1 and 2.
Fourth, both energy balance and energy flux were entered as
predictors of percentage of body fat change to determine the
unique predictive effects of these 2 factors in these same sam-
ples. Last, RMR was entered with energy flux to determine
whether this diminishes the predictive effects of energy flux,
which would be consistent with the notion that RMR at least
partially explains the effect of energy flux on percentage of body
fat change, again in the same samples.

The results of the regression analyses for study 1 and study 2
are shown in Tables 1 and 2, respectively. Energy balance did
not significantly predict future body fat change in study 1 or
study 2, irrespective of which participants were included (all
participants or with markedly out-of-balance participants re-
moved) or which covariates were incorporated. In contrast, en-
ergy flux showed a significant inverse relation to future change
in body fat in both study 1 (step 3: r = 20.24, P = 0.019; Table
1) and study 2 (step 3: r = 20.28, P = 0.045; Table 2). That is,
higher energy flux predicted less future body fat gain, and lower
energy flux predicted greater future body fat gain. Furthermore,
the predictive effects of energy flux remained significant even
when covarying for energy balance in both studies in step 4
(study 1: r = 20.24, P = 0.021; study 2: r = 20.33, P = 0.017).
The inclusion of RMR in the model rendered energy flux
a nonsignificant predictor of body fat gain in both studies,
consistent with the notion that individual differences in RMR
mediated the effects of energy flux on body fat change. Notably,
the predictive effects of energy balance and energy flux were
similar between studies, despite the fact that the participants in
the sample for study 1 were all in a healthy BMI range at
baseline, whereas the participants in the sample for study 2 had
higher body fat and variability in body fat at baseline.

RMR

Analyses indicated that baseline RMR values for the ado-
lescent sample (study 1) were normally distributed (permitting
the use of Pearson correlational analysis) and that data for the
young adult sample (study 2) were skewed negatively (neces-
sitating Spearman correlational analysis). RMR (kcal $ kg fat-
free mass–1 $ d–1) correlated positively with energy flux (kcal $
kg fat-free mass–1 $ d–1) in study 1 (r = 0.303, P = 0.003; Figure
2A) as well as in study 2 (r = 0.313, P = 0.021; Figure 2B) (out-
of-balance groups excluded from analyses).

RMR was positively correlated with change in percentage of
body fat in study 1 (r = 0.26), but not in study 2 (r = 0.01). In
both studies, change in percentage of body fat over follow-up
was not significantly related to baseline fat-free mass (study 1,

r = 0.05; Study 2, r = 0.01), TEI (study 1, r = 20.021; study 2,
r = 0.03), or TEE (study 1, r = 20.09; study 2, r = 20.03).

Percentage of body fat change over time

To provide a clear indication of the amounts of energy intake
and energy expenditure that were associated with body fat gain
compared with loss, participants in study 1 were divided into 4
groups as follows: 1) TEI and TEE were arranged into tertiles; 2)
low energy flux participants were identified as those who oc-
cupied the lower tertile for both TEI and TEE; 3) midenergy flux
participants were classified as those who occupied the middle
tertile for both TEI and TEE; 4) high energy flux participants
were those who occupied the upper tertile for both TEI and TEE;
and 5) the remainder of the sample (those who showed mis-
matched TEI 2 TEE tertile gradations) was classified as “out-of-
balance.” In study 1, 39.0% of adolescents (n = 60) were classified
as out-of-balance (unmatched TEI 2 TEE tertile gradations),
20.1% (n = 31) were classified as low flux (energy flux = 82.1 6
9.1 kcal $ kg fat-free mass21 $ d21), 17.5% (n = 27) were midflux
(energy flux = 104.3 6 3.4 kcal $ kg fat-free mass21 $ d21), and
23.4% (n = 36) were high flux (energy flux = 129.76 11.1 kcal $ kg
fat-free mass21 $ d21) (Figure 3).

Total percentage of fat mass at baseline and at years 1–3 of
follow-up for these 4 groups is depicted in Figure 3. Notably,

FIGURE 2 Significant associations between EnFlux and RMR for both
study 1 (A) and study 2 (B). EnFlux, energy flux; ffm, fat-free mass; RMR,
resting metabolic rate.
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percentage of body fat increased for the low energy flux, mid-
energy flux, and out-of-balance groups (increases of 2.3%,
2.7%, and 3.7%, respectively), whereas percentage of body fat
decreased for the high flux group (reduction of 2.2%). Further-
more, even though adolescents who were out-of-balance showed
a similar level of energy surfeit than did their high flux peers (out-
of-balance = 8.4 6 2.4 kcal $ kg fat-free mass–1 $ d–1 compared
with high flux = 9.5 6 10.8 kcal $ kg fat-free mass–1 $ d–1, P =
0.79), the former group showed a greater percentage of body fat
gain from baseline through 3-y follow-up (out-of-balance = 3.7%
compared with high flux = 22.2%; z = 2.93, P = 0.003).

Self-reported habitual dietary macronutrient (carbohydrate,
fat, and protein) and total daily sugar intake measured with the
Block food-frequency questionnaire (32) were analyzed to test
for confounding due to between-group differences in dietary
intake. However, groups were similar when these data were
expressed in absolute (g/d) and relative (% TEI) terms (data
collected at baseline).

DISCUSSION

A noteworthy finding to emerge from our data is that energy
balance did not prospectively predict weight gain in either
sample, despite the fact that we used gold-standard objective
estimates of TEI and TEE, objectively measured body fat, and
had power to detect clinically meaningful effects. To our
knowledge, these null findings are novel, because no prospective
study with free-living humans has tested whether energy balance,
defined as habitual energy intake minus habitual energy ex-
penditure, predicts body fat change over a multiyear follow-up.
One can argue that the 2-wk interval during which TEI and TEE
were assessed was too brief to provide accurate estimates, but TEI
and TEE did have predictive validity when combined via addition

(energy flux) rather than subtraction (energy balance). These null
findings from these 2 studies do not provide support for the
predictive validity of the energy surfeit theory of obesity.

In contrast, low energy flux predicted future body fat gain in
both samples; these predictive effects were medium (r = 20.24
and r = 20.33 in studies 1 and 2, respectively), whereas those
for energy balance were trivial (r =20.09 and r = 0.04 in studies
1 and 2, respectively). Moreover, the predictive effects for en-
ergy flux are larger than those for other established obesity risk
factors, such as parental obesity (mean r = 0.20) (33, 34) and
impulsivity (mean r = 0.13) (35, 36). To our knowledge, this
represents another novel finding, because no study has tested
whether energy flux predicts future body fat gain in free-living
humans over a multiyear follow-up with the use of objective
measures of energy intake and expenditure. Collectively, the re-
sults suggest that relatively low energy flux, rather than a positive
energy balance, predicts future weight gain.

Evenmore remarkable, given the energy surfeitmodel of obesity,
the low energy flux group that showed increases in body fat was in
a negative energy balance at baseline (2437 kcal/d), whereas the
high energy flux group that showed decreases in body fat was in
a positive energy balance at baseline (458 kcal/d). Indeed, TEI for
the high energy flux group was greater than for all of the other
groups, yet this was the only group that lost body fat over time.

These results imply that high energy flux predicted future body
fat loss because it was associated with a higher RMR: the cor-
relations between energy flux and RMRwere r = 0.30 and r = 0.31
in studies 1 and 2, respectively, and the predictive relations be-
tween energy flux and future body fat change became nonsig-
nificant when RMR was entered as a covariate. The results are
consistent with the thesis that homeostatic regulation of body
weight is more effective when energy balance is sustained at high
levels of energy intake and energy expenditure (14, 15),

FIGURE 3 Total fat mass (percentage) at baseline and years 1–3 of follow-up (study 1). Data are means 6 SEs. Labels refer to body fat (percentage) at
final follow-up. Whereas no group differences were seen for percentage of body fat at baseline or follow-up at years 1 and 2, out-of-balance participants
exhibited greater overall body adiposity at year 3 of follow-up than did their high-flux counterparts. Per group is reported. *P = 0.005; 1-factor ANOVAwith
Bonferroni adjustment. ffm, fat-free mass; TDEE, total daily energy expenditure; TDEI, total daily energy intake.
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supporting the premise that energy-restrictive diets, particularly
when coupled with low exercise, may not be optimal for weight
loss. Results converge with evidence that 1) assignment to a 7-d
high-intensity exercise condition increases RMR relative to
a no-exercise condition (d = 1.8) (37), 2) mean daily RMR is
higher in obese persons (mean BMI = 35) during periods of high
than during low energy flux (1816 compared with 1747 kcal/d,
respectively) (38), 3) caloric restriction diets reduce oxygen re-
quirements and RMR (39, 40), and 4) restrictions in energy intake
induce less metabolic compensation when accompanied by ex-
ercise than when not accompanied by exercise (41).

High energy flux may also reduce body fat gain because
exercise reduces brain reward region response to food cues. Acute
high-intensity exercise decreased reward (putamen, orbitofrontal
cortex) and gustatory (insula, rolandic operculum) region re-
sponse to high- and low-calorie food images compared with
responsivity after a sedentary condition (42, 43). Furthermore,
exercise reduces the preference for high-fat foods compared with
a nonexercise control condition (44). Pretest-to-posttest reduc-
tions in anterior insula response to food cues after a 6-mo su-
pervised exercise program correlated positively with changes in
fat mass (r = 0.61) (45). Exercise-induced fat mass loss, even as
modest as 2.1%, was associated with reduced activation in in-
trinsic default mode network activity (46).

Although we did not assess physical activity in research
participants, the findings imply that regular physical activity may
be key for effective long-term weight management, extending
previous evidence that exercise is the best predictor of successful
weight loss maintenance (47), and that high objectively measured
exercise correlates with weight loss maintenance (48). Daily
exercise can attenuate and even prevent increases in visceral
adipose tissue in the presence of overeating (49).

Low-calorie diets theoretically reduce volitional physical
activity and nonexercise-associated thermogenesis, which pro-
mote weight regain because they foster energy conservation (50).
Critically, DLW-assessed physical activity and total daily kilo-
calorie expenditure decreased in overweight participants when
placed on a low-calorie diet (6890 kcal/d) (41). These data
suggest that low physical activity is both a cause and a conse-
quence of the preservation of a eucaloric state at low levels of
energy flux.

The present study has several limitations. First, we did not have
sufficient power to detect small effects. Second, although energy
flux, but not energy balance, predicted future body fat gain in
healthy-weight adolescents and slightly heavier young adults,
results may not generalize to other populations (e.g., children and
older adults). Third, because we did not assess TEI and TEE
repeatedly during follow-up, we could not confirm the temporal
stability of energy flux and energy balance or test whether chronic
low energy flux is associated with future body fat gain and chronic
high energy flux with future body fat loss. Fourth, we did not
include an objective measure of macronutrient intake, which would
be useful for determining whether individuals at a high compared
with a low energy flux habitually consume low-energy–density
foods with a more favorable macronutrient profile than low
energy flux. Fifth, we did not include an objective measure of
physical activity so that we could investigate the effect of chronic
physical activity on body fat change over time.

In conclusion, the results indicated that low energy flux (i.e.,
low levels of habitual caloric intake coupled with low levels of

energy expenditure) predicted future body fat gain. The fact that
the null predictive relations between energy balance and future
body fat gain, the significant predictive inverse relation be-
tween energy flux and future body fat gain, and the association
between energy flux and RMR each replicated in 2 samples
increases the confidence that can be placed in these findings.
Results also implied that a low RMR may be a key physiologic
mechanism underlying this relation. These findings do not pro-
vide support for the widely accepted theory that energy surfeit
drives weight gain, and imply that weight loss might be more
attainable via high physical activity that is coupled with high
energy intake, rather than subscription to commonly prescribed
low calorie diets.
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