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Different analytical methods can yield competing interpretations of evolution-

ary history and, currently, there is no definitive method for phylogenetic

reconstruction using morphological data. Parsimony has been the primary

method for analysing morphological data, but there has been a resurgence

of interest in the likelihood-based Mk-model. Here, we test the performance

of the Bayesian implementation of the Mk-model relative to both equal and

implied-weight implementations of parsimony. Using simulated morphologi-

cal data, we demonstrate that the Mk-model outperforms equal-weights

parsimony in terms of topological accuracy, and implied-weights performs

the most poorly. However, the Mk-model produces phylogenies that have

less resolution than parsimony methods. This difference in the accuracy and

precision of parsimony and Bayesian approaches to topology estimation

needs to be considered when selecting a method for phylogeny reconstruction.
1. Introduction
Morphology once provided the only means of inferring evolutionary trees, but it

was effectively rendered obsolete by molecular sequence data and the development

of sophisticated molecular evolutionary models for phylogenetic analysis [1]. How-

ever, with the recognition that fossil species are integral to correctly inferring

patterns of character evolution and changes in diversity, as well as in establishing

evolutionary timescales, morphological data are enjoying a phylogenetic renais-

sance [2], allowing fossil species to be assigned to their correct branches in the

Tree of Life. Methods for phylogenetic analysis of morphological data remain

underdeveloped and though likelihood models are available that may more

accurately accommodate the vagaries of morphological datasets [3], including

high rates of heterogeneity and a preponderance of missing data [4], parsimony

remains the method of choice, principally perhaps as a consequence of tradition.

Indeed, a recent simulation-based study by Wright & Hillis [5] demonstrated that

a Bayesian implementation of Lewis’s Mk-model [3] strongly outperforms parsi-

mony, especially when rates of character change are high, or when relatively few

characters are analysed. The conclusions drawn by Wright & Hillis [5] were

based on data effectively simulated using the Mk-model, potentially biasing the

test in favour of the Mk-model. Furthermore, they did not consider whether the

simulated data exhibited realistic levels of homoplasy, analysed unrealistically

large simulated datasets, and evaluated only the relative performance of
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Table 1. The differences in median and the 95th percentile range of Robinson – Foulds values between the Mk and both parsimony models are greater in the full
dataset compared with the realistic homoplasy subsets. mk, Bayesian Mk model; ew, equal-weights parsimony; iw, implied weights parsimony and its attendant K values.

100 characters 100 characters CI 350 characters 350 characters CI 1000 characters 1000 characters CI

mk 45 (29 – 64) 40.5 (28.2 – 62.5) 20 (10 – 51) 19.5 (10.2 – 57.3) 19.5 (10.2 – 57.3) 11 (5 – 27.8)

ew 61 (31 – 98) 53 (29 – 91.8) 27 (12 – 70) 28 (12 – 74.8) 28 (12 – 74.8) 16 (6.2 – 43.7)

iw k2 89 (39 – 119) 77 (38.2 – 117.7) 36 (18 – 76) 36 (17.2 – 81.3) 36 (17.2 – 81.3) 19.5 (10 – 35.7)

iw k3 76 (38 – 112) 69 (36.4 – 108) 32 (16 – 69) 34 (15.2 – 70) 34 (15.2 – 70) 18 (9.2 – 35.7)

iw k5 68 (36 – 104) 61 (32.2 – 102) 30 (14 – 66) 31.5 (15.2 – 68) 31.5 (15.2 – 68) 18 (9 – 34)

iw k10 63 (34 – 100) 55.5 (32 – 98) 28 (13 – 68) 30 (15.2 – 69.7) 30 (15.2 – 69.7) 16 (8 – 34)

iw k20 64 (34 – 100) 53 (33 – 97.8) 28 (14 – 68) 30 (13.2 – 71.7) 30 (13.2 – 71.7) 17 (8 – 39.3)

iw k200 65 (34 – 100) 55 (32.2 – 97.7) 28 (14 – 72) 30.5 (15 – 76) 30.5 (15 – 76) 18 (8 – 44)
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equal-weights parsimony when morphological data are now

commonly analysed under implied-weights parsimony [6].

In an attempt to evaluate the relative performance of likeli-

hood and parsimony methods for the phylogenetic analysis of

discrete character morphological data, we simulated datasets of

100, 350 and 1000 discrete morphological characters using a

modified HKY85 model, discriminating datasets that failed to

meet expected levels of homoplasy. We evaluated the relative

performance of equal-weights parsimony, implied-weights

parsimony and model-based methods of phylogenetic analysis

in terms of their ability to recover the tree used to simulate the

data. We found that the Mk-model performs best in the analysis

of all simulated datasets, largely because the Bayesian consen-

sus trees are poorly resolved. Equal-weights parsimony

exhibits lower levels of accuracy but this is combined with

higher resolution. Implied-weights parsimony performed

most poorly of all the methods considered.
2. Material and methods
To simulate binary morphological data, we used the HKY þ
Gcontinuous model to generate nucleotide data which we translated

into purines (0) and pyrimidines (1)—R/Y coding. The recoded

HKY-model possesses an uneven equilibrium distribution of

state frequencies, resulting in structurally realistic morphological

matrices while facilitating violation of assumptions of the Mk-

model; thus, our data are not biased in favour of either method

of phylogenetic inference. Initial tests were performed to deter-

mine values for the model parameters which produce binary

data with empirically observed levels of homoplasy [7]. Following

[5], data were simulated using the lissamphibian tree presented in

[8], yielding datasets of 100, 350 and 1000 characters; most real

morphological datasets contain in the order of 100 characters,

but we included 350 and 1000 character matrices to investigate

the effect of scaling and for ease of comparison to [5]. In total,

100 unique underlying substitution rates were drawn from a

U(0.1,10) distribution, facilitating rates spanning two orders of

magnitude. For each substitution rate, 10 unique matrices were

produced, modelling among-character rate heterogeneity as

gamma distributed uniquely within each matrix.

Matrices were analysed with the Mk þ G model using default

priors in MRBAYES v. 3.2 [9], and both standard and implied-

weights parsimony in TNT [10]. The Mk-model is more suitable

for our simulated data than the Mkv-model as we did not strip

invariant sites from the final matrices. Majority-rule consensus

trees were produced for each method. For implied-weights parsi-

mony, we used a range of K-values: 2, 3, 5, 10, 20 and 200.
As the underlying substitution rate is varied, the per-matrix level

of homoplasy may violate the empirically observed range; to pro-

duce the most empirically justified morphological matrices, we

implemented an empirically derived minimum consistency

index (CI) cut-off of 0.26 [7] for each simulated dataset and

repeated analyses for these treated matrices (electronic supple-

mentary material, figure S1). This cut-off reduced the size of the

datasets to 128 (100 characters), 149 (350 characters) and 126

(1000 characters) matrices. In-depth description of the initial par-

ameter value tests and further details of matrix generation are

presented in the electronic supplementary material.

The accuracy of topologies estimated by the different recon-

struction techniques was assessed using the Robinson–Foulds

distance [11] from the generator tree. We also explored the relation-

ship between resolution of output trees, measured by the number

of nodes per tree.
3. Results
The Mk-model achieved the highest levels of accuracy across

all datasets. Median Robinson–Foulds distances are lower for

the Mk-model compared with both equal-weights and

implied-weights parsimony (table 1 and figure 1), and for

all approaches, accuracy of topology reconstruction increases

with increasing dataset size. Furthermore, equal-weights

parsimony out-performs implied-weights parsimony for all

datasets and values of K, but this is less pronounced for the

1000 character dataset (table 1). For convenience, all further

results for implied weights are for K ¼ 2.

The same relative performance of the phylogenetic recon-

struction methods is seen when considering only those

datasets exhibiting realistic levels of homoplasy. The median

Robinson–Foulds distance for the Mk-model is still lowest

for each dataset, but the median and range of Robinson–

Foulds distances for equal and implied-weights parsimony

are closer to the distribution seen from the Mk-model (table 1

and figure 1). Additionally, for a given dataset, there is a similar

Robinson–Foulds distance regardless of the reconstruction

method employed (electronic supplementary material, figure

S2). Unless otherwise stated, all subsequent results are from

the subset of datasets exhibiting realistic levels of homoplasy.

The higher accuracy (lower Robinson–Foulds values) of the

Mk-model against other methods for 100 and 350 characters is

due to trees being less resolved (figure 2). The density of Robin-

son–Foulds distance is lower for the Mk compared with equal

weights, which itself is lower than implied weights, but both

equal and implied weights achieve higher levels of
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Figure 1. Mk tree reconstructions (blue) outperform equal-weights parsimony (grey) and implied-weights parsimony (green) for 100, 350 and 1000 characters
(a,c,e,g), and these differences remain in the subset of the simulated data matrices that exhibit realistic levels of homoplasy (b,d,f,h). Bars above the plots
mark the 95th percentile range for each method, and dashed vertical lines show the median values. Percentage topology error (g,h) is the Robinson – Foulds
value of the reconstructed tree compared with the worst possible value, as shown in [5].
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precision (number of nodes reconstructed). These differences

are negligible in the 1000 character datasets (figure 2).

There is a significant overlap in the set of nodes correctly

recovered across methods, when mapped against the reference

phylogeny (figure 2; electronic supplementary material, figure

S3). In particular, for all methods there is a trend for nodes

closer to the root to be more accurately estimated in small data-

sets, but this relationship decreases as the number of characters

increases (electronic supplementary material, table S2 and

figures S2, S4, S5). The percentage of times a node from the

reference tree was accurately reconstructed showed a strong

correlation for 100 and 350 characters, but decreases with

1000 characters (electronic supplementary material, table S2).
4. Discussion
Only minor differences are seen in the accuracy of phylogenetic

topology reconstruction between the Bayesian implementation
of the Mk-model and parsimony methods. Our findings both

support and contradict elements of the results of Wright &

Hillis [5] in that we can corroborate their observation, that the

Mk-model outperforms equal-weights parsimony in accuracy,

but the Mk-model achieves this at the expense of precision.

Unexpectedly, implied-weights parsimony is less effective

than either equal-weights parsimony or the Mk-model, in data-

sets with small numbers of characters. Implied-weights

parsimony outperforms equal-weights parsimony only in the

analyses of unrealistically large datasets. These results challenge

the increasingly common view that implied-weighting better

accommodates homoplasy than does equal-weights parsimony

[6], and this result is true for a range of K-values (table 1).

In comparison with the other approaches, equal-weights

parsimony analyses of the datasets exhibiting realistic levels

of homoplasy and large number of characters yield a set of

trees with a longer tailed distribution of Robinson–Foulds dis-

tances. In large part, this reflects estimation of a small quantity

of trees markedly different from the generating tree (figure 1).
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Figure 2. The Mk model exhibits higher accuracy with lower precision than parsimony methods; these results are less clear as more characters are added. Contour
plots of Robinson – Foulds distances against the number of resolved nodes in each tree; the contours represent the density of the distribution of trees.
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Inaccuracy in topological estimation is more prevalent towards

the tips in all analyses, with the inclusion of more characters

reducing the intensity of this phenomenon. For this effect to

be completely removed, it would require the analysis of well

over 1000 empirically justifiable characters, a number that is

rarely achieved for morphological datasets. The accuracy of

node reconstruction is correlated significantly between all

three techniques, demonstrating that most nodes in the tree

that were difficult to resolve for one method were difficult to

resolve for all. This phenomenon is observed across all charac-

ter quantities and suggests a general difficulty in accurately

estimating topology given the same data.

Our results can be interpreted to advocate use of the Mk-

model over parsimony methods in the analysis of discrete

morphological data. Parsimony methods produce precision

without the accuracy achieved by the Mk-model and precision

without accuracy is a poor basis for any science. We anticipate

that the implementation of the Mk-model within a maximum-

likelihood framework will exhibit levels of accuracy and

precision more comparable to the parsimony methods, simply

because it estimates a single, fully resolved topology. Integration

over parameters while producing an acceptable level of accuracy

is a quality of Bayesian inference, and our Mk-model results

are probably dependent on a Bayesian implementation. While

comparative phylogenetic methods often require fully resolved

trees, these may be accommodated through analyses using

the posterior sample of trees estimated using the Mk-model.

Therefore, the prior requirement of a fully resolved tree need

not necessarily lead to a preference for parsimony over the

Mk-model.
In comparison to parsimony methods, the Mk-model has

undergone little development since its conception [12,13],

while attempts to improve the performance of parsimony

methods, like implied-weights parsimony [3], have not led to

increased accuracy (table 1). Thus, model-based phylogenetics

can be expected to offer more opportunity for development,

e.g. through relaxing the assumption of symmetrically distrib-

uted stationary distribution of character states [12,13] and

improvement in the accuracy of phylogeny estimation from

discrete character data. We suggest, however, that more focus

should be invested in assessing whether the data are suffi-

ciently informative to discriminate between competing

phylogenetic hypotheses.
5. Conclusion
Phylogenies produced using likelihood models are more accu-

rate than parsimony approaches, but have lower precision.

Likelihood models offer greater scope for development in

attempting to achieve greater accuracy but, in the interim, we

suggest that phylogeneticists should consider the aims of

their analyses when choosing the appropriate method.
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