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Cold heart protection via cardioplegia administration, limits the amount of oxygen demand. Systemic 
normothermia with warm cardioplegia was introduced due to the abundance of detrimental effects of 
hypothermia. A temperature of 32–33°C in combination with tepid blood cardioplegia of the same temperature 
appears to be protective enough for both; heart and brain. Reduction of nitric oxide (NO) concentration is 
in part responsible for myocardial injury after the cardioplegic cardiac arrest. Restoration of NO balance 
with exogenous NO supplementation has been shown useful to prevent inflammation and apoptosis. In this 
article, we discuss the “deleterious” effects of the oxidative stress of the extracorporeal circulation and the 
up‑to‑date theories of “ideal’’ myocardial protection.
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damaging excitation‑contraction proteins and 
limits nitric oxide (NO) bioactivity.[6]

Myoca rd ia l  p ro t ec t ion  dur ing  CPB 
is mostly consisted of two components: 
Hypothermia[7] to diminish oxygen demand, 
and potassium inducing electromechanical 
cardiac arrest.[8] The combination of the 
aforementioned methods has given just a few 
benefits, and it has been long proved that 
hypothermia has a detrimental impact on 

INTRODUCTION

Cardiopulmonary bypass  (CPB) triggers 
deleterious effects that may potentially cause 
dysfunction in almost every organ such as 
kidney, liver, lungs, central nervous system, 
and cardiovascular system.[1] Systemic 
inflammatory response syndrome  (SIRS) 
is considered as the main etiologic factor 
causing heart damage.[2] It is usually a result 
of temporary cross clamping myocardial 
ischemia and the subsequent reperfusion 
injury after the restoration of heart perfusion.[1]

Figure  1 shows the factors implicated in 
oxidative stress and their mode of action.

These factors induce oxidative stress via the 
generation of reactive oxygen species (ROS).[3] 
ROS, detected as radical adducts or lipid 
peroxides in coronary venous blood after 
aortic clamp release, can cause reperfusion 
injury and affect myocardial recovery.[4,5] 
Cardioplegia used in CPB also participates 
in cardiac injury via several ways such as 
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enzymatic and biochemical systems. Normothermia, 
although used by just a few surgical teams, limits the 
risk of postoperative complications.[9] As a consequence, 
there is a continuing debate as to which is the most 
secure method for myocardial protection if any. We will 
try to address this important issue.

DELETERIOUS CARDIOPULMONARY BYPASS‑INDUCED 
EFFECTS

SIRS is induced by CPB via the activation of neutrophils 
and endothelial cells,[10] as well as inflammatory 
mediators, such as Factor XII, kallikrein‑kinin, 
f ibr inolyt ic ,  and complement  systems and 
cytokines.[11,12] The pro‑inflammatory cytokines‑tumor 
necrosis factor‑α  (TNF‑α), interleukin‑6  (IL‑6) and 
IL‑8, and the anti‑inflammatory cytokine IL‑10 are also 
increased.[13,14]

Characteristic symptoms of SIRS are fever, elevated 
white blood cells, respiratory insufficiency, elevated 
heart rate, and a PaCO2 <32  mmHg. Figure  1 shows 
the main factors responsible for the initiation 
of the SIRS process.[15] Moreover, inflammation, 
infarction, and contractile impairment resulting in 
cardiac dysfunction can be the deleterious effects 
of reperfusion of the ischemic heart after CPB.[16] 
Apoptosis of cardiomyocytes can also be induced by 
ischemia and reperfusion[17,18] leading to ventricular 
dysfunction and subsequent heart failure[19] due to 
significant loss of myocardial tissue.[20] Myocardial 
temperature and flow deprivation time are the major 
factors that indicate whether CPB related myocardial 
ischemia‑reperfusion results in irreversible (myocardial 

necrosis) or reversible (myocardial stunning) injury.[21] 
Cardiac‑specific troponin I (cTnI) and creatine kinase 
MB isoenzyme (CK‑MB) are the established markers of 
myocardial necrosis.[22] Patients undergoing coronary 
artery bypass graft (CABG) have been shown to have 
elevated cTnI levels as a result of myocardial damage. 
Handling the myocardium, placing sutures for 
cannulation and dissecting the myocardium to reveal 
a coronary vessel also lead to cTnI augmentation.[23,24] 
cTnI elevation has been correlated with the quality of 
myocardial protection.[23] Arterial values over 15 μg/l for 
cTnI and 30 μg/l for CK-MB demonstrates perioperative 
myocardial infarction (MI),[25] although 25% of post‑CABG 
patients have a CK‑MB mass value >35.8 μg/l without 
experiencing any ischemic complications.[26] Carrier 
et al.[27] suggested that postoperative MI is characterized 
by a value of cTnI in the serum over 39 ng/mL at 24 h 
postoperatively. However, clinical studies doubt if there 
is any significant correlation between necrosis and 
contractile function.[28‑30] Some studies[30‑32] demonstrate 
very close correlation among cardiac enzymes release, 
recovery of oxidative metabolism, and ischemic time 
while others[25,33] show that there is no such correlation. 
They conclude that the duration of cardioplegic 
cardiac arrest  (CCA) is not the principal factor of 
perioperative myocardial damage. An atherosclerosis 
both quality and route of delivery of cardioplegia and 
temperature are most likely to be responsible for the 
myocardial injury. Myocardial stunning seems to be 
induced by oxidative stress during reperfusion.[31] 
Activation of neutrophils,[34] poor perfusion of the 
peripheral tissues and the high oxygen tension used 
during CPB[35,36] are responsible for both coronary 
and systemic oxygen free radical generation after 
cardioplegia administration.[1,31] Moreover, peripheral 
alkyl‑  and alkoxyl‑  radicals appear to be released 
continuously during the cross‑clamp period apart 
from the reperfusion time of the ischemic heart.[1] 
The existence of a correlation between the severity of 
oxidative stress and postoperative recovery of cardiac 
function is also controversial.[31] During reperfusion, 
heart constitutes a source of ROS production and is 
also a target of systemic ROS generated by activated 
cells.[37‑39] ROS including alkyl‑  and alkoxyl‑  radicals 
could exacerbate myocardial ischemia‑reperfusion 
injury, as they are able to participate in cellular 
injury, affecting myocardial contractility.[40‑44] Ferrari 
et  al.[45] among other investigators,[46,47] support the 
existence of a relationship between oxidative stress 
and myocardial dysfunction. But, others[31,33,48] did 
not find such correlation. Karua et al.[31] suggest that 
CPB‑related oxidative stress does not influence the 
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postoperative myocardial recovery in CABG patients 
with good preoperative left ventricular function. Finally, 
a decrease of endogenous NO generation, catalyzed 
by inducible NO synthase  (iNOS), is possible after 
CPB due to cardioplegia‑induced cardiac arrest.[6] 
Temporary endothelial cell dysfunction results in a 
lack of NO sufficiency during the reperfusion period 
of CPB. Subsequently, vasospasm takes place due to 
low levels of NO.[49] NO appears to participate in the 
nuclear factor‑κB (NF‑κB) system,[16] in the evolution of 
cardiovascular injury[50] and in the anti‑inflammatory 
properties of the vascular endothelium.[51] Lower 
concentrations of bioavailable NO leads to chronic 
activation of NF‑κB, which is associated with 
inflammation.[52] NF‑κB stimulates the immune system, 
particularly B cells, and macrophages. Cytokines and 
oxygen radicals activate the aforementioned cells 
resulting in NF‑κB translocation. Alterations in NF‑κB 
system are determinants for the deleterious effects 
of CCA during CPB.[6] Yeh et  al.[6] proved that CCA 
under CPB induced a reduction of myocardial NO 
concentration with a subsequent increase of NF‑κB 
translocation. A  similar change was demonstrated 
concerning the expression of NF‑κB‑mediated genes.

MYOCARDIAL PROTECTION

The basic role of myocardial protection during cardiac 
surgery is a balance between a bloodless, motionless 
operating field and the maintenance of the myocardial 
function.[9] Hypothermia or normothermia can be both 
used for CPB.[2] Provided that the myocardium constitutes 
a source of cytokines,[53,54] both perfusion temperatures 
of CPB and cardioplegia type are able to affect the 
generation of inflammatory mediators, such as IL‑6 
and TNF‑α.[2] Cardioplegia induces electromechanical 
arrest. Therefore, myocardial metabolism is reduced, 
and intermittent ischemia is bearable.[55,56] The optimal 
choice of cardioplegia, though, is controversial. In 
the UK, 56% of surgeons performing on‑pump CABG 
prefer cold blood cardioplegia, 14% of them prefer 
warm blood cardioplegia and 14% use crystalloid 
cardioplegia, whereas retrograde infusion is the method 
of choice for 21% of them. The rest 16% of surgeons 
apply cross‑clamp fibrillation, avoiding any type of 
cardioplegia.[57] A retrospective review[58] studied 22 
papers with equal to or over  50  patients each with 
respect to types of cardioplegia, Guru et al.[59] reported 
a correlation of blood cardioplegia with significantly 
lower CK‑MB levels and significantly fewer cases of 
low output syndrome in their meta‑analysis of 34 
randomized trials. Øvrum et  al.[60] demonstrated no 

clinical differences among 1440  patients undergoing 
either antegrade cold blood or crystalloid cardioplegia, 
whereas Martin et  al. [61] never completed their 
1001  patients study comparing warm blood to cold 
crystalloid cardioplegia because of a high incidence of 
neurological complications associated with the former. 
Ten of the rest 19 studies showed that blood cardioplegia 
was superior to crystalloid cardioplegia in terms of 
statistically significant clinical effects. Five of them also 
demonstrated the superiority of the former with regard 
to enzyme release.[58] Barra et al.[62] reported a linear 
correlation of the cold crystalloid antegrade cardioplegia 
with the perioperative MI risk, elevated by four times. 
Despite its efficacy in causing electromechanical 
arrest, hyperkalemic crystalloid cardioplegia is only 
partially cardioprotective.[63] Ventricular dysfunction 
after cardioplegia infusion is possible potentially due 
to postoperative cardiomyocyte apoptosis.[63,64]

Blood has a lot of superior properties that make its 
substance unique to be compared to crystalloid.[65] 
Retrograde cardioplegia has been proved to efficiently 
provide myocardial protection.[66] Nevertheless, it 
is not protective enough for the interventricular 
septum and the right ventricle[67] due to anatomical 
variations of the coronary vascular bed.[68] On the 
other hand, antegrade hyperkalemic warm blood 
infusion permits diastolic cardiac arrest and preserves 
high energy phosphate levels.[69] At the present time, 
potassium infusion, providing a nonbeating heart due 
to the electromechanical cardiac arrest caused, and 
hypothermia, providing low oxygen needs, are the axis 
of myocardial protection.[9]

Benefits gained by hypothermia
It was in the 1960s that hypothermic cardioplegia was 
firstly introduced. It showed the result of decreasing 
myocardial metabolism, which was determinant for 
myocardial protection against ischemia.[70] Systemic 
hypothermia leads to hypothermia of the heart, as well as 
to repression of myocardial oxygen consumption.[71] When 
the myocardial temperature is low its metabolism tends to 
be low as well.[72‑74] In conclusion, the electromechanical 
arrest is responsible for a 90% reduction in oxygen 
consumption.[9] Although hypothermia further reduces 
myocardial oxygen consumption, it offers a minor 
additional benefit in the order of 7%.[55,75]

DELETERIOUS EFFECTS OF HYPOTHERMIA

Despite reducing metabolic activity, hypothermia induces 
many detrimental effects.[9,76] It has an adverse impact 
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on the metabolic and functional recovery of the heart 
as a result of reduced mitochondrial respiration[77‑80] 
and decreased the production of myocardial high 
energy phosphates.[79‑81] It also affects various enzymatic 
systems, such as sodium, potassium, and calcium 
adenylpyrophosphatase, altering the ionic composition of 
the cell and water homeostasis.[9,77‑80] High arterial partial 
pressures  (PaO2) and hypothermia make their control 
difficult leading to free radical generation damaging 
cellular membranes during reperfusion.[82] Paralysis of 
the diaphragm may be also induced by heart cooling 
methods.[83] Oxygen delivery to tissues is decreased due 
to an increase in hemoglobin affinity for oxygen[9,84] 
and due to an hemodilution‑related decrease of blood 
oxygen‑carrying capacity.[76] Furthermore, hypothermia 
leads to metabolic acidosis, increased plasma viscosity, 
reduced erythrocyte deformability, and subsequently 
lower flow through the micro‑capillaries.[9] Cerebral 
blood flow is also decreased because of temperature 
lowering.[76] In addition, systemic vascular resistance, 
the so‑called cardiac afterload, is increased due to 
elevated serum norepinephrine concentrations caused 
by hypothermia.[85] Hypothermia‑induced vascular 
spasm also impedes blood supply.[9] According to Lahorra 
et al.,[86] cold cardioplegia combined with heart cooling 
leads to increased intracellular calcium, increased energy 
consumption, raised left intraventricular pressures, and 
increased coronary resistance. Inflammation is just delayed 
by hypothermia but not stopped.[87] However, in spite of 
elevated inflammatory cytokines levels, which are able to 
induce iNOS activity, hypothermia appears to be associated 
with decreased NO generation at least until 24 h after the 
end of CPB.[2,88]

BENEFICIAL EFFECTS OF NORMOTHERMIA WITH WARM 
CARDIOPLEGIA

As a result of the aforementioned mechanisms, 
continuous normothermic blood cardioplegia has 
been introduced.[89,90] Lichtenstein et  al.,[91] studying 
720 patients who underwent CABG under normothermia, 
showed that normothermic electromechanical arrest 
was well tolerated for over 15 min by the myocardium. 
Normothermic myocardial protection is achieved 
by the continuous administration of hyperkalemic 
normothermic blood during the aortic cross‑clamp 
time.[92] According to Lichtenstein et al.,[89,90] continuous 
hyperkalemic blood infusion preserving cardiac arrest 
and providing oxygen for the normothermic myocardium 
offers adequate myocardial protection throughout the 
cardiac surgery. Cardiac arrest is achieved by the infusion 
of blood cardioplegia containing high levels of potassium 

and it is preserved by low potassium blood cardioplegia 
infusion during the rest of the cross‑clamp time. The latter 
is also useful as a continuous source of oxygen for the 
normothermic myocardium. However, during coronary 
anastomosis, the infusion of blood cardioplegia must be 
temporarily stopped, so as for a bloodless operating field 
to be provided.[92] Active continuous rewarming is also 
necessary to achieve systemic normothermia, meaning 
a temperature equal to 37°C, as the body temperature 
lowers in the operating room. Either retrograde or 
antegrade warm blood cardioplegia can be used to 
achieve warm heart protection.[9] Lots of benefits are 
obtained by normothermia. Firstly, continuous warm 
blood administration provides a constant oxygen supply 
preserving aerobic metabolism. Better tissue oxygen 
transfer is also achieved thanks to the near normal 
hemoglobin affinity for oxygen, normal enzymatic 
activity, and normal erythrocyte deformability. Viscosity 
is also maintained by normothermia.[9] Furthermore, as 
the skin is warmed under normothermia, the adrenergic 
response is minimized, thus diminishing the afterload 
and elevating the cardiac index.[23] Additionally, the 
complications caused by high PaO2 are prevented 
using normothermia permitting the control of PaO2. 
Ischemia‑reperfusion injury from free radicals is 
avoided as aerobic cardioplegic perfusion takes place. 
Neither intracellular pH nor the acid‑basic balance is 
affected resulting in the better gas transfer. Ionic status 
and water homeostasis are also preserved thanks to the 
normal supply of adenosine triphosphate to ion pumps.[9] 
Moreover, spontaneous defibrillation after cross‑clamp 
release is more possible, and MI tends to be less common 
when CPB is performed under warm heart protection.[93] 
Finally, normothermia may decrease the CPB‑related 
inflammatory response.[94] Apart from Lichtenstein et al. 
who highlighted the clinical benefit of normothermia, 
particularly in prolonged aortic cross‑clamp time (6.5 h).[91] 
Bert et al.[95] also reported data favouring normothermia 
against hypothermia with regard to postoperative clinical 
outcomes. Lots of other studies[96‑101] demonstrate a 
superiority of systemic and myocardial temperature 
preservation. Tavares‑Murta et al.[2] compared 10 patients 
who were submitted to CPB under hypothermia  (29–
31°C) with crystalloid cardioplegia  (HC group) to 10 
other patients who received normothermic (36.5–37°C) 
CPB with blood cardioplegia  (NB group). All of them 
presented elevated cytokine levels, but this change took 
place earlier and for a longer time in HC group. The same 
group had significantly higher peak levels of IL‑6, which 
were significantly correlated (P < 0.01) with peak levels 
of IL‑8. NO generation was also decreased in HC group. 
Moreover, two groups of patients were compared by 
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Bical et al.[102] using warm blood protection in Group I 
and cold blood protection in Group II with intermittent 
antegrade cardioplegia in both groups. They reported 
higher levels of coronary sinus lactate at cross‑clamp 
removal in Group I, while more myoglobin was generated 
after reperfusion in Group II. Troponin I levels were also 
higher in Group II. Thus, warm cardioplegia protection 
was better than cold.

ADDITIONAL BENEFITS OF TEPID (32°C) CARDIOPLEGIA

The safe duration of a cardioplegia break under 
normothermia is unclear, so tepid cardioplegia 
constitutes an alternative choice.[101,103] It has the ability 
to protect the myocardium even during cardioplegia 
interruptions apart from effectively promoting aerobic 
metabolism.[70] Comparing this type of cardioplegia 
with warm blood cardioplegia, the myocardial oxygen 
consumption is similar, while anaerobic lactate and 
acid washout is less during the former.[104] Furthermore, 
during lukewarm  (tepid) blood cardioplegia more 
glucose and oxygen are consumed by the myocardium, 
whereas less lactate is generated than during cold 
cardioplegia.[70] Moreover, although warmth protects 
the heart, it negatively affects the brain.[105] Warm 
blood cardioplegia is commonly used under systemic 
normothermia, which raises the hazard of cardiac 
surgery‑associated neurological disorders.[70] Hvass and 
Depoix[106] demonstrated no increase in neurological 
disorders at 37°C. In a study published in Lancet in 
1994,[107] exanimating 1732  patients operated under 
lower systemic temperature, found no significant 
difference neither concerning the myocardium nor 
the incidence of neurological disorders. Martin et al.[61] 
and Guyton et  al.[108] comparing 493  patients who 
underwent CABG under warm blood cardioplegia 
and a systemic temperature of 35°C with a series 
of 508  patients who were operated under cold 
cardioplegia (8°C) and a systemic temperature of 28°C 
found similar results with regard to perioperative 
infarction, mortality, and intra‑aortic counterpulsation 
requirement, respectively. Nevertheless, as far as 
neurological complications were concerned, they 
were significantly more frequent in the normothermic 
group (4.5%) than in the cold one (1.4%). A systemic 
temperature of 32–33°C combined with lukewarm 
blood cardioplegia seems to be more protective for 
the cerebrum overcoming the hazard of neurologic 
complications under normothermic conditions.[9,70,109] 
Apart from not influencing the neurologic system 
and preserving physiological and enzymatic systems, 
tepid (32°C) protection is superior to cold protection 

in terms of reduced ventricular rhythm disorders, 
spontaneous defibrillation and blood loss.[91,99,102] 
Moreover, prolongation of the aortic cross‑clamp time 
without worsening operative mortality and morbidity 
can be achieved via continuous retrograde lukewarm 
blood cardioplegia under systemic normothermia.[68] 
Less myocardial injury and better functional recovery 
of the left ventricle constitute additional benefits 
gained by tepid cardioplegia.[70] Continuous tepid 
blood cardioplegia is advantageous in preventing 
cardiomyocytes from apoptosis and maintaining 
coronary endothelium integrity. Myocardial injury 
induced by cardiac arrest and endothelial dysfunction 
due to reperfusion injury are minimized by this type of 
cardioplegia thanks to adequate supply of nutrients and 
oxygen and the concomitant washout of all the metabolic 
waste.[63] Engelman et  al.[110] compared three groups 
undergoing coronary surgery: Group  I ‑   cold  (20°C 
systemic temperature, 8–10°C blood cardioplegia), 
Group  II ‑   tepid  (32°C systemic temperature, 32°C 
blood cardioplegia), and Group  III ‑   warm  (37°C 
systemic temperature, 37°C blood cardioplegia). No 
death was noticed in either of these groups. Group I 
was associated with a more prolonged hospital stay 
and a postoperative CK‑MB increase. Neurological 
complications were significantly lower in the tepid 
group  (2%) against the 18.9% percentage of the 
cold group and 9.3% in one of the warm group. In 
Badak et  al.’s study,[70] comparing tepid with cold 
blood cardioplegia during CABG, 30  patients were 
randomized into two groups of 15  patients  (a tepid 
and a cold one). The tepid group was characterized by 
greater myocardial oxygen extraction, greater oxygen 
and glucose consumption, and lower lactate generation 
than the cold one. In the early post‑CPB period, the left 
ventricular stroke work index was also greater in the 
tepid group and the early postoperative CK‑MB levels at 
6, 12, and 24 h were significantly lower than in the cold 
group. Finally, significantly more patients submitted to 
cold heart protection needed defibrillation compared 
to those undergone tepid heart protection. In a recent 
review study conducted by Zeng et al. in 2014,[111] has 
been showed that cold blood cardioplegia reduces 
perioperative MI when compared with cold crystalloid 
cardioplegia. No differences in the overall incidence 
rates of spontaneous sinus rhythm, mortality (within 
30 days), atrial fibrillation, or stroke were observed.

ROLE OF NITRIC OXIDE IN MYOCARDIAL PROTECTION

NO participates in several ways in the vascular bed.[112] 
It causes vasodilation on vascular smooth muscles via 
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activation of soluble guanylyl cyclase and subsequent 
cyclic guanosine monophosphate formation. Adhesion, 
inflammation, and proliferation of endothelial cells 
are also inhibited by NO. Therefore, exogenous NO 
supplementation also plays a significant role in myocardial 
protection by restoring NO concentration diminished 
by CCA under CPB.[111] Multiple benefits can be 
obtained by restoration of NO concentration including 
repression of the NF‑κB translocation and reduction of 
the generation of inflammatory cytokines.[6] NO donor 
throughout reperfusion limits myocardial injury and 
the inflammatory response (lower IL‑6, IL‑8 and TNF‑α 
levels).[113] Additionally, NO donor prevents the apoptosis 
of cardiomyocytes and preserves their contractile 
function.[6] Lower levels of markers of myocardial damage 
are also noticed after the infusion of blood cardioplegia 
enriched with the substrate for NO synthesis L‑arginine.[111] 
Experiments have recently been conducted to investigate 
the cardioprotective role of oxytocin,[113] “h ANP shot’’ using 
human atrial natriuretic peptide[114] and the use of statin 
and angiotensin receptor blocker.[115] Cardioprotection and 
lung protection is also the “cornerstone’’ for a successful 
open heart intervention.[116]

CONCLUSIONS

It is obvious that CPB itself, as well as CCA under CPB 
have some detrimental impacts on the myocardium. 
However, which is the ideal myocardial protection? In 
spite of the cardioprotective properties of cold heart 
protection thanks to limiting the needs in oxygen, 
systemic normothermia with warm cardioplegia was 
introduced due to the abundance of detrimental effects 
of hypothermia. Nevertheless, although normothermia 
is the best choice for heart protection, it is not for the 
brain. A temperature of 32–33°C in combination with 
tepid blood cardioplegia of the same temperature 
appears to be protective enough for both of them 
making the procedure less invasive and permitting cost 
reduction too. In addition, since the reduction of NO 
concentration is in part responsible for myocardial injury 
after CCA under CPB, the restoration of NO balance with 
exogenous NO supplementation is ultimately useful to 
prevent inflammation and apoptosis.
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