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Germany, 7NORMENT KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University

of Oslo, Oslo, Norway, 8Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,
9Clinical Epidemiology Unit, Karolinska Institutet, Stockholm, Sweden, 10Department of Epidemiology,
11Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA, 12Medical and Population

Genetics Program, Broad Institute, Cambridge, MA, USA, 13Division of Genetics, 14Division of

Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston,

MA, USA, 15Medical and Population Genetics Group, Broad Institute, Cambridge, MA, USA, 16Health

Science and Technology MD Program, Harvard University and Massachusetts Institute of Technology,

Boston, MA, USA, 17Queensland Centre for Mental Health Research, Park Centre for Mental Health,

Richlands, QLD, Australia, 18Division of Psychiatric Genomics, Mt Sinai School of Medicine, New York, NY,

USA, 19Virginia Institute of Psychiatric and Behavioral Genetics, 20Department of Human and Molecular

Genetics, 21Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA,
22Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 23Medical

Research Council (MRC) Centre for Neuropsychiatric Genetics and Genomics, 24Institute of Psychological

Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK, 25Division of

Rheumatology, Immunology, and Allergy, 26Division of Genetics, Brigham and Women’s Hospital, Harvard

Medical School, Boston, MA, USA, 27Program in Medical and Population Genetics, Broad Institute,

Cambridge, MA, USA, 28Department of Human Genetics and Disease Diversity, Graduate School of Medical

and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan, 29Queensland Centre for Mental

VC The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association 1706

International Journal of Epidemiology, 2015, 1706–1721

doi: 10.1093/ije/dyv136

Advance Access Publication Date: 18 August 2015

Original article

http://www.oxfordjournals.org/


Health Research, Wacol, QLD, Australia, 30Partners Center for Personalized Genetic Medicine, Boston, MA,

USA and 31Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK

*Corresponding author. The University of Queensland, Queensland Brain Institute, St Lucia, Brisbane, QLD 4072, Australia.

E-mail: naomi.wray@uq.edu.au

Accepted 12 June 2015

Abstract

Background: A long-standing epidemiological puzzle is the reduced rate of rheumatoid

arthritis (RA) in those with schizophrenia (SZ) and vice versa. Traditional epidemiological

approaches to determine if this negative association is underpinned by genetic factors

would test for reduced rates of one disorder in relatives of the other, but sufficiently pow-

ered data sets are difficult to achieve. The genomics era presents an alternative paradigm

for investigating the genetic relationship between two uncommon disorders.

Methods: We use genome-wide common single nucleotide polymorphism (SNP) data

from independently collected SZ and RA case-control cohorts to estimate the SNP correl-

ation between the disorders. We test a genotype X environment (GxE) hypothesis for SZ

with environment defined as winter- vs summer-born.

Results: We estimate a small but significant negative SNP-genetic correlation between SZ

and RA (�0.046, s.e. 0.026, P¼ 0.036). The negative correlation was stronger for the SNP

set attributed to coding or regulatory regions (�0.174, s.e. 0.071, P¼0.0075). Our analyses

led us to hypothesize a gene-environment interaction for SZ in the form of immune chal-

lenge. We used month of birth as a proxy for environmental immune challenge and esti-

mated the genetic correlation between winter-born and non-winter born SZ to be signifi-

cantly less than 1 for coding/regulatory region SNPs (0.56, s.e. 0.14, P ¼ 0.00090).

Conclusions: Our results are consistent with epidemiological observations of a negative

relationship between SZ and RA reflecting, at least in part, genetic factors. Results of the

month of birth analysis are consistent with pleiotropic effects of genetic variants depend-

ent on environmental context.
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Introduction

A long-standing epidemiological puzzle is the reduced

prevalence of rheumatoid arthritis (RA) in those with

schizophrenia (SZ) and vice versa. First identified nearly

80 years ago, it has been reported in nearly every observa-

tional study of the incidence of the two disorders. A meta-

analysis1 of nine studies found that risk of RA in SZ

subjects was less than 29% of the risk in the general popu-

lation. Under-reporting of somatic disease in those with se-

vere psychiatric conditions may be a contributing factor,2

but the prevalence of RA is not reduced in those with other

psychiatric disorders.1 Surprisingly, the reduced preva-

lences are observed despite the high prevalence of smoking

in SZ [odds ratio (OR)¼ 5.3],3 which is an established risk

Key Messages

• The proportion of variance in liability attributable to common SNPs is 0.223 (s.e. 0.006) for schizophrenia and 0.194

(s.e. 0.007) for rheumatoid arthritis.

• The MHC region is proportionally more important for rheumatoid arthritis than for schizophrenia; after excluding this

region, the proportion of variance attributable to common SNPs is reduced to 0.212 (s.e. 0.006) for schizophrenia and

0.137 (s.e. 0.007) for rheumatoid arthritis, respectively.

• The epidemiological observations of a negative relationship between SZ and RA reflects, at least in part, genetic

factors.
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factor for RA in general population samples (OR>2).4

Both disorders have similar lifetime risk (�1%), a waxing

and waning pattern of symptoms and increased mortality.

On the other hand, there are also dissimilarities including

age at onset (16–30 years in SZ vs 25–55 years in RA)5 and

male:female ratio (nearly 3 females to 1 male for RA5 and

1 female to 1.4 males for SZ6). Sex differences were not

considered in early studies of the SZ-RA relationship, but

recent population-based studies from Sweden2 and

Denmark7 accounted for age and sex differences and still

reported reduced risks of RA in SZ compared with those

without SZ.

Both SZ and RA have a strong genetic component to

their aetiology. For both, heritabilities estimated from na-

tional hospital records (SZ 64%8 and RA 40%9) are lower

than estimates from twin studies (SZ 81%10 and RA

60%11). RA has two distinct subtypes classified on the

presence (seropositive) or absence (seronegative) of anti-

bodies to citrullinated protein antigen. Approximately

two-thirds12 of cases are seropositive, and of seronegative

cases 4–11% have been estimated to reflect misdiagnosis

(for example of ankylosing spondylitis) and 15–37% have

been estimated to be undetected seropositive.13 Using na-

tional data from Sweden, the heritability of seropositive

RA was estimated as �50% compared with �20% for

seronegative RA.9

A number of hypotheses have been proposed to explain

the SZ-RA protective relationship,14 including abnormal

tryptophan metabolism,15 prostaglandin deficiency,16–18

an imbalance in corticosteroids,19 psychosocial factors14

or consequence of medication.1 Definitive evidence to sup-

port these hypotheses is lacking. There is evidence that fac-

tors influencing immune activation, including

environmental insults such as infectious agents, are poten-

tial pathogenic mechanisms for both disorders.5,20 For ex-

ample, both RA and SZ have been linked, albeit with some

controversy, to increased rates of infection by viruses such

as Epstein-Barr virus and the parasite Toxoplasma gondii

(for a review see5). SZ is considered to be a neurodevelop-

mental disorder, and immune activation in early life may

be of particular importance, consistent with perinatal risk

factors21 such as infection and month of birth.22 RA is an

autoimmune disorder, and it has been suggested that there

is an autoimmune component to SZ.23,24 The autoimmune

theory of SZ is supported by epidemiological evidence

showing that whereas the relationship between SZ and RA

is a negative one, the risk of many other autoimmune dis-

orders is higher in SZ than in controls.7,25,26 An analysis of

Danish national records showed a dose-response relation-

ship between risk of SZ and hospitalizations for infection

and autoimmune disorders, where three or more infections

and an autoimmune disease were associated with an

incidence rate ratio of 3.40 [95% confidence interval (CI)

2.91–3.94].27 As for all autoimmune disorders,28 the major

histocompatibility complex (MHC) plays an important

role in RA29,30 but with different alleles being associated

with seropositive cases compared with seronegative

cases.13 A role for the MHC in the aetiology of SZ has

been proposed for decades,31 but the empirical evidence

has been less consistent than for RA. The first large gen-

ome-wide association studies (GWAS) for SZ identified the

MHC locus as the most strongly associated locus.32–34

Using the latest published GWAS results,35,36 the MHC

locus is the only locus that reaches genome-wide signifi-

cance for both SZ and RA. The most associated single nu-

cleotide polymorphism (SNP) for RA is associated with SZ

and vice versa; contrary to expectation, given the negative

SZ-RA association, the associated alleles are the same for

the two disorders, albeit stronger for RA than SZ (Box 1).

This unexpected result may reflect the well-recognised

complexity of the MHC region.37 The primary association

for rheumatoid arthritis is within HLA-DRB1 in the class

II MHC region, and has a large effect relative to the more

modest and less clearly localized effect in schizophrenia. It

may be the case that the role of HLA-mediated antigen rec-

ognition is simply different in the two diseases, playing a

dominant role in rheumatoid arthritis and perhaps a more

modest or absent role in schizophrenia. If the negative as-

sociation between RA and SCZ reflects genetic factors,

then it may be driven predominantly by non-HLA genetic

factors that are related to immune activation rather than

antigen recognition. Genome-wide significant variants ex-

plain 3.4% of the variance in liability to schizophrenia and

11.4% of the variance in liability of RA (Box 1). Genome-

wide polygenic methods38,39 have estimated that for SZ,

�23%40 of the variance in liability is attributable to com-

mon SNPs (or SNP heritability), and 14%41 to 18%39 for

RA excluding the contribution from the MHC region

(�5%). These results imply that more associated loci will

be identified for each disorder as sample size increases.

Given the substantial genetic contribution to both dis-

orders, can the negative association between SZ and RA be

attributed to genetic factors? This can be investigated from

traditional epidemiological studies by measuring risk of

RA in relatives of those with SZ compared with relatives of

control subjects, and vice versa. As RA and SZ are rela-

tively uncommon, very large cohorts of families with mul-

tiple family members measured for both disorders are

needed, and this has not been achievable through the fam-

ily study framework from which estimates of heritability

are traditionally derived. National databases provide the

only viable strategy to explore a genetic relationship

through traditional epidemiological methods, but few

countries have suitable national recording frameworks.
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Box 1. Comparison of GWAS results of SZ36 and RA.35

a. MHC locus. Odds ratios for the two most highly associated SNPs for SZ, rs115329265 (aka rs1233578, hg19:chr 6:

28 712 247 bp), RAF¼0.85 and for RA, rs9268839 (aka rs116633882, hg19:chr 6: 32 428 772 bp) RAF¼ 0.45. Both are

located in the MHC region and the LD r2 of these SNPs is zero. We note that the RA allele tags the HLA DRB-1 allele,

but that the SZ allele is not associated with any classical HLA allele, although it is reported36 to be in LD r2¼ 0.32 with

an eQTL SNP for HLA-A. The association P -values are listed above the error bars.

b. Variance explained by genome-wide significant (GWS) loci, reported as associated at P<5e-8.

• For SZ 128, statistically independent GWS loci are reported.36 Together these explain 3.4% of the variance in liabil-

ity (calculated from reported RAF and OR using INDI-V71 assuming lifetime risk of 1%); all SNPs associated with

P<0.05 explain 7% of variance in out of sample prediction.36 Of these 128 SNPs, 102 could be matched to GWAS

results for RA. The minimum P-value in RA of a SZ GWS locus was 0.004.

• For RA, 101 independent GWS loci are reported.35 Together these explain 11.4% of the variance in liability (using

INDI-V71 assuming lifetime risk of 0.7%). All SNPs could be matched to GWAS results for SZ. The minimum

P-value in SZ of an RA GWS locus was 2.06e-05 (see MHC locus above).

c. QQ plots: (i)- P-values from SZ GWAS for 101 RA GWS loci; (ii) P-values from RA GWAS for 102 SZ GWS loci.
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A Danish national study25 compared 7704 persons in

Denmark diagnosed with SZ and their parents with a sam-

ple of matched subjects and their parents. Contrary to a

hypothesis of a negative genetic association, this study

found significantly increased rates of RA in parents of those

with SZ compared with parents of control subjects. A

Swedish national study reported that first-degree relatives of

schizophrenia patients were not at reduced risk of RA, but

the risk for seronegative RA was significantly decreased in

children and siblings of SZ probands [hazard ratio

(HR)¼ 0.13; 95% CI 0.02–0.95, and HR¼ 0.67; 95% CI

0.50–0.91, respectively].2 These studies assumed that risk in

first-degree relatives is only attributable to genetic factors,

but sharing of environmental factors could also contribute.

The genomics era provides a new opportunity to investi-

gate whether the SZ-RA relationship may be attributable

to genetic factors, by determining whether common alleles

conferring increased risk to SZ are protective against RA

and vice versa. The hypothesis has been considered for can-

didate genes outside the MHC region, but no shared asso-

ciations were found.42,43 Comparison of the latest GWAS

results for SZ36 and RA35 shows evidence for more associ-

ation of the genome-wide significant (GWS) loci from each

disease in the other disease than expected by chance

(Box 1). Across GWS SNPs, there is a positive correlation

between the OR of the two disorders (Box 1), although

this relationship is dominated by the positive correlation

between SNPs in the MHC region described above.

Here we use linear mixed model methods, applied to

genome-wide SNPs from case-control cohorts collected for

GWAS, to explore the relationship between SZ and RA.44

By comparing additive genetic similarities between SZ and

RA cases with their genetic similarities with controls, we

quantify the relationship between the disorders by the

SNP-genetic correlation.44,45 Since this approach uses un-

related cases and controls to estimate the SNP correlation,

estimates are less likely to be confounded with shared en-

vironmental factors that can bias estimates from family

studies or population studies where individuals are meas-

ured for both phenotypes. We use this framework to ex-

plore the genetic relationship between SZ and RA.

Methods

Data

Three RA and two SZ GWAS data sets (see Supplementary

Table 1, available as Supplementary data at IJE online)

were made available to us. Briefly, the Stahl et al. (‘Stahl’)

RA sample comprises 5441 seropositive cases and 22 532

controls of European ancestry from six independent case-

control cohorts.39,46 The Okada et al. (‘Okada’) RA sam-

ple has 3427 cases (1840 seropositive) and 6837 controls

of European descent from five independent case-control

cohorts,35 including the Corrona RA cohort. The

Epidemiological Investigation of Rheumatoid Arthritis

(EIRA) sample comprises 770 seronegative RA cases

(EIRA seropositive cases from this cohort were already

included in the Stahl sample). The Psychiatric Genomics

Consortium (PGC) for Schizophrenia Wave 1 sample com-

prises data from 17 GWAS cohorts47 and a total of 9431

cases and 12 848 controls; and the Swedish (SWE) sample

d. OR plots: (i) RA GWS loci (correlation 0.35, P¼ 4.0e-4, becomes non-significant if SNPs with the two largest OR are

excluded); (ii) SZ GWS loci (correlation 0.24, P¼ 0.015, which becomes non-significant if the MHC SNP is excluded).
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comprises 5193 case and 6391 controls48 in four cohorts

defined by genotyping platform which were independent

of Swedish samples in PGC. All sample sizes are those after

sample quality control (QC).

All data sets were processed through similar QC and

imputation pipelines47 using the CEUþTSI Hapmap

Phase 3 data as the reference panel. We augmented these

QC so that estimates of genetic variance would not be

influenced by artefacts of genotyping.38 SNPs with an im-

putation r2> 0.6 and an MAF> 0.01 in all cohorts were

retained, resulting in 797 875 SNPs for analysis. Sex

chromosome data were not available for all data sets and

so were excluded. If any pair of individuals had an esti-

mated similarity relationship coefficient49>j0.05j, one per-

son was excluded at random so that all SZ cases, RA cases

and controls were unrelated. The final analysis data set

consisted of 8064 seropositive RA cases (including 1131

RA cases of unknown status of which at least two-

thirds12,13 are expected to be seropositive), 1197 seronega-

tive RA cases and 26 737 controls plus and 12 793 SZ cases

and 15 912 controls (Figure 1). Given accumulating evi-

dence that seropositive and seronegative RA should be re-

garded as different clinical entities,13 we did not combine

seropositive and seronegative RA cases.

SNP heritabilityand SNP genetic correlation

The bivariate linear mixed model genomic relationship ma-

trix (GRM) restricted maximum likelihood (GREML) ap-

proach44 implemented in GCTA50 was used to estimate

SNP heritabilties, the SNP coheritability and the SNP cor-

relation between the disorders. The standard error (s.e.) of

each estimate was calculated by the delta method51 which

has been shown to agree well with s.e. expected from nor-

mal distribution theory.52 We used the estimate and its s.e.

to generate a Wald statistic to test hypotheses that SNP

heritabilities were different from zero and that SNP correl-

ations were less than zero; the directional hypothesis for

the correlation is justified by the epidemiological data re-

ported in the Methods section. The model of analysis esti-

mates SNP heritabilities as the proportion of variance in

case-control status attributable to genome-wide SNPs, but

estimates of SNP heritabilites and coheritabilities are pre-

sented on the liability scale,38,44 assuming population life-

time risk of 1% for SZ, 0.7% for seropositive RA and

0.3% for seronegative RA, so that they can be compared

with estimates from epidemiological data. We note that

when genetic relationships between individuals are small,

the relationship between disease and liability scale is ap-

proximately linear and so the estimated genetic correlation

is independent of scale.44 A SNP correlation of zero is esti-

mated if the genome-wide relationship between cases of

one disorder is the same with the cases as with the controls

of another disorder. A SNP correlation reflects the magni-

tude of the covariance term between the traits relative to

the product of the standard deviations, and so can be high

even when the covariance is low. A genome-wide SNP cor-

relation could represent a uniform correlation across the

genome or a weighted average of higher and lower correl-

ations. Hence, we undertook genomic partitioning analyses

which included multiple additive genetic random effects

terms in the linear mixed model with multiple GRM con-

structed from non-overlapping SNP sets.45,49 Cohort and

the first 20 principal components were included as covari-

ates in all analyses. Sex was included as a covariate for SZ

and in some analyses for RA. SNP heritabilities are pre-

sented on the liability scale. Follow-up analyses were con-

ducted by sex and considering functional annotation.

Sensitivity analysis

We explored the sensitivity of our results and sought to ex-

clude the possibility that genetic outliers could explain our

results. We tested this by restricting the coefficient of simi-

larity between any pair of individuals to be< j0.025j. As

one individual from a pair was excluded at random, we

constructed 20 randomly drawn samples with restricted

ancestry, and drew 20 random samples of the same size

from the sample with coefficient of similarity< j0.05j.

Benchmarking with epidemiological

observations

From epidemiological studies we can obtain estimates of

the population risk of SZ and RA, KSZ and KRA,

Figure 1. Sample sizes.
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respectively, and also for the probability of RA in those

with SZ, KRAjSZ. We assume that the phenotypic liabilities

of SZ (lSZ) and RA (lRA) are distributed as bivariate normal

with mean 0, standard deviation 1 and correlation RSZ�RA:

V
lSZ

lRA

 !
¼

VðlSZÞ CovðlSZ; lRAÞ

CovðlSZ; lRAÞ VðlRAÞ

" #

¼
1 RSZ�RA

RSZ�RA 1

" #

The variances and covariance of liabilities among those af-

fected with SZ

V
lSZjDSZ

lRAjDSZ

 !
¼ ¼

1� kSZ RSZ�RAð1� kSZÞ

RSZ�RAð1� kSZÞ 1� R2
SZ�RAkSZ

" #

where ksz¼ isz(isz–tsz) and reflects the proportional vari-

ance reduction as a consequence of ascertainment on SZ

status,50,51 with meanðlSZjDSZ
Þ ¼ iSZ ¼ dSZ

KSZ
, with dsz the

height of the normal curve at the threshold tsz defined from

Pðz > tSZÞ ¼ KSZ. From KRAjSZ we define the normal dis-

tribution threshold53,54 for RA in those with SZ as

tRAjSZ ¼ tRA�iSZRSZ�RAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�kszR2

SZ�RA

p

Solving the quadratic for RSZ�RA gives

RSZ�RA ¼
iSZtRA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2SZt2

RA � ðt2
RAjSZ þ i2SZÞðt2

RA � t2
RAjSZÞ

q
ðt2

RAjSZ þ i2SZÞ
(equation 1)

Genotype x environment analysis

Our analyses led us to a postulate a hypothesis of genotype

x environment interaction for SZ. Specifically we hypothe-

sized that the SNP correlation would be less than 1 for cod-

ing and regulatory SNPs in a bivariate analysis in which the

two traits are winter-born and non-winter born SZ cases

and controls. We undertook a bivariate GREML analysis to

test this hypothesis. Month of birth was only available for

the SWE SZ sample, which comprised winter-born cases

(born January to April22, n¼ 1511) and winter-born con-

trols (n¼ 2036), as well as non-winter cases (n¼ 2962) vs

non-winter controls (n¼ 3772); 199 individuals did not

have month of birth recorded. To visualize the interaction,

we identified 47318 SNPs associated with schizophrenia36

at P< 0.05 (the threshold that maximized out of sample pre-

diction across multiple cohorts;36 the SNPs were quasi-inde-

pendent with minor allele frequency> 0.05, pairwise

linkage disequilibrium r2< 0.25 in a 250-kb window). We

identified the risk alleles of the SNPs that defined the odds

ratio to be greater than 1. We undertook association analysis

(logistic regression with 20 principal components, cohort

and sex as covariates) in the Swedish sample that had season

of birth recorded. We estimated the OR of the risk alleles

and compared mean OR for SNPs annotated as C&R (cod-

ing/regulatory, the genomic region showing strong negative

SNP correlation between SZ and RA, 2820 SNPs, 6%) and

not coding/regulatory, testing the hypothesis H0: Mean OR

for winter-born sample¼Mean OR for other sample.

Results

SNP heritability and SNP genetic correlation

The estimated SNP heritability for RA seronegative cases

was indistinguishable from zero (�0.006, s.e. 0.025,

P¼ 0.98). Despite the smaller sample size for seronegative

cases, the s.e. shows that it was powered to detect SNP her-

itability> 5%. Given there was no evidence of contribu-

tion to risk of common variants for this sample, detection

of a genetic relationship between these cases and SZ was

not possible. Hence, all reported analyses are for seroposi-

tive RA cases only. Given the major contribution of the

MHC region in RA (which may violate underlying assump-

tions of GREML55,56), we undertook analyses using as the

phenotype residuals after adjusting for the 550 SNPs (the

number after pruning for SNPs with linkage disequilbrium

r2> 0.99) located within the MHC region (29–34Mb in

chromosome 6) and for the other covariates. For SZ, the

estimated SNP heritabilities were 0.223 (s.e. 0.006) includ-

ing the MHC region and 0.212 (s.e. 0.006) after correcting

for the MHC region. For RA, the estimated SNP heritabil-

ities were 0.194 (s.e. 0.007) including the MHC region and

0.137 (s.e. 0.007), after correcting for the MHC region.

The estimated SNP genetic correlations were �0.046 (s.e.

0.026) and �0.065 (s.e. 0.030) for including the MHC and

after correcting for the MHC, respectively, which were sig-

nificantly less than zero (P-values¼ 0.036 and 0.015, re-

spectively) (Figure 2; Supplementary Table 2, available as

Supplementary data at IJE online). We confirmed that the

method to estimate P-values was robust, by checking the

P-value from a likelihood ratio test comparing models with

and without genome-wide SNP effects.

To aid interpretation and comparisons, we also present

the SNP genetic covariance or coheritability, the latter rep-

resents the relationship between the disorders on the same

scale as the heritability (Supplementary Table 2). Subset

analyses (PGC-SZ/Stahl-RA, PGC-SZ/Okada-RA, SWE-

SZ/Stahl-RA and SWE-SZ/Okada-RA) showed negative

genetic correlations estimated for all combinations except

PGC-SZ/Stahl-RA (Figure 2, Supplementary Table 2). We

explored the sensitivity of our results and sought to exclude

the possibility that genetic outliers could explain our results
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(see Methods). We found that the SNP correlation between

SZ and RA was significantly (P¼ 0.0049) more negative in

20 samples drawn from our data when ancestry was more

restricted (similarity relatedness coefficient< j0.025j)
[�0.054, standard deviation over replicates (s.d.) 0.002 vs

�0.047 s.d. 0.001] (Supplementary Figure 1). This sensitiv-

ity analysis implies that the negative correlation is not driven

by ancestry artefacts and provides confidence that SNP cor-

relation between SZ and RA is negative.

Sex analyses

Given that risk of RA is higher in females and risk of SZ is

higher in males, we undertook SZ/RA analyses stratified

by sex (i.e. four-trait multivariate GREML, in which the

four traits were SZ-male, SZ-female, RA-male, RA-female

each matched by their sex-specific control set) to determine

if SNP correlations (based on autosomal SNPs) were sex

dependent. Sex information was missing for �11% of the

RA sample who were excluded in the analysis. Based on re-

ported male:female population ratios,5,6 we assumed the

male and female baseline risks were 0.42% and 0.98% for

seropositive RA, and 1.15% and 0.85% for SZ respect-

ively. SNP heritabilities were significantly greater when

estimated from males compared with females for SZ (male

0.258, s.e. 0.010, female 0.214, s.e. 0.012, P¼0.0053) but

not for RA (male 0.174, s.e. 0.016, female 0.158, s.e.

0.013, P¼ 0.43) (Figure 2, Supplementary Table 2); these

estimates must be interpreted with caution, recognizing

that they are dependent on the lifetime risk of disease

chosen for each sex. SNP correlations between sexes were

high but were significantly different from 1 for both RA

(P¼ 6.1e-06) and SZ (P¼2.4e-07, Supplementary

Table 2). All SNP correlation point estimates are negative

between male/female SZ/RA analyses.

Functional annotation analyses

Previous studies40,41,57 have demonstrated that contributions

to SNP heritabilities are not distributed equally over the gen-

ome. We therefore set out to test if the SNP-correlation

between SZ and RA was dependent on SNP annotation.

We undertook genomic partitioning analyses in which

multiple additive genetic random effects terms were con-

sidered in the linear mixed model,45,49 with multiple GRM

each constructed from SNPs grouped by a functional anno-

tation. Following Gusev et al.,57 SNPs were classified as

being in coding/regulatory (in exons, 3’ UTR, 5’UTR, 1-kb

region up- and downstream of transcription start and end

site and noncoding RNA), DNase I hypersensitivity sites

(DHS) and intronic or intergenic regions. SNPs with mul-

tiple annotations were allocated with hierarchical prefer-

ence of coding/regulatory, over DHS and over intronic. For

SZ, all annotations had estimates of SNP heritability that

were significantly greater than zero (Figure 3;

Supplementary Table 3, available as Supplementary data

at IJE online), although the proportion of total variance

allocated to intergenic SNPs was significantly less than ex-

pected given the proportion of all SNPs annotated to that

group (Figure 3; Supplementary Table 3). For RA, the

coding/regulatory and DHS annotations had SNP heritabil-

ity estimates that were both significantly different from

zero and were higher than expected based on the propor-

tion of SNPs in those functional partitions (Figure 3;

Supplementary Table 3). As a consequence in RA, and in

contrast to SZ, neither intronic nor intergenic variants

Figure 2. Genome-wide estimates: (i) SNP heritability; (ii) SNP correl-

ation (using RAþ ve only). Estimates are from analyses using as the

phenotype residuals after adjusting SNPs in the MHC region unless

otherwise stated.
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made a significant contribution to SNP heritability, a find-

ing that is underscored by the fact that the proportion of

all SNP heritability contributed by these types of variant is

significantly less than expected based upon the proportion

of SNPs of these classes. Given that in RA, SNP heritability

is essentially restricted to SNPs in coding/regulatory and

DHS regions, these are the only classes of SNP for which

meaningful estimates of SNP correlation between SZ and

RA can be made. We note that currently available DHS an-

notation may be biased towards cell types of relevance to

RA compared with SZ. We estimated a significant and

stronger genetic correlation for coding/regulatory region

regions (�0.322, s.e. 0.115, P¼0.003) (Figure 3;

Supplementary Table 3) than for the whole genome.

Immune related pathway analyses

Since RA is an autoimmune disease and since the epi-

demiological negative relationship between SZ and RA

has contributed to the autoimmune hypothesis of SZ, we

set out to test if the SZ-RA SNP correlation is more nega-

tive in SNPs in immune-related pathways. To avoid mul-

tiple testing, we selected a single immune gene set based

on previous work using the Stahl GWAS results of Hu

et al.58 Using gene expression from 223 murine immune

cell types, they reported over-representation of RA-associ-

ated SNPs in genes expressed specifically in CD4þ ef-

fector memory T cells, with strongest over-representation

in genes expressed in the subcutaneous lymph node subset

named T.4Mem44h62l.LN.58 We selected the top 4000

genes expressed in the T.4Mem44h62l.LN cells to be in

the ‘T4Mem’ set. The arbitrary threshold of 4000 genes

generated an SNP set of about 10% of the total SNPs ana-

lysed. We tested if the T4Mem genes make an enriched

contribution to SNP heritabilities and the SNP correl-

ation, partitioning the coding/regulatory, DHS and in-

tronic partitions into T4Mem and non-T4Mem classes

(Supplementary Table 4, available as Supplementary data

at IJE online). As expected, there was a significant enrich-

ment for variance attributable to the T4Mem class for RA

(28% of the SNP heritability compared with only 11.5%

of SNPs, 2.5 fold enrichment, P¼ 2.0e-11). Interestingly,

there was also significant enrichment of variance attribut-

able to T4Mem regulatory SNPs in SZ (16% of SNP herit-

ability, P¼ 2.4e-04). We did not find evidence that SNPs

in this group of genes were more negatively correlated

than those in the rest of the genome, although the patterns

of correlations are difficult to interpret, and the size of

the standard errors means that the sample is underpow-

ered (Supplementary Table 4).

Benchmarking with epidemiological observations

We can benchmark our estimated SNP correlation between

RA and SZ of �0.046 relative to expectation from epi-

demiological data. Using the meta-analysis result that the

risk of RA in those with SZ is 29% of the risk in the

general population,1 we estimate that this implies a

phenotypic correlation between the disorders of �0.15

(equation 1; KSZ¼ 0.01 and KRA¼ 0.01, respectively,

KRAjSZ¼ 0.29*KRA). More recent epidemiological stud-

ies2,7 imply a substantially smaller negative phenotypic

correlation (��0.05). Phenotypic correlation is considered

a reasonable benchmark for genetic correlation,59 and

Figure 3. Genomic partitioning analyses; (i) Percentage of SNP heritabil-

ity attributed to each functional annotation class for SZ and RA, com-

pared with the percentage of SNPs attributed to each class. Adjacent to

the bars are the P-values for H0: percentage of variation attributed to

annotation class ¼ percentage of SNPs attributed to the annotation

class; (ii) SNP correlation between SZ and RA based on annotation.

Estimates are from analyses using as the phenotype residuals after ad-

justing SNPs in the MHC region. When the MHC is included, the coding/

regulatory correlation is �0.174, s.e. 0.071, P¼ 0.0075.
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therefore our small negative estimate of the genetic correl-

ation is consistent with the epidemiological data.

However, the genetic relationship between SZ and RA is

complex. As an autoimmune disease, the MHC region con-

tains risk factors for RA which alone explain �5% of the

variance in liability to RA, whereas the most significant in-

dividual SNP association for SZ, also in the MHC region,

explains only �0.1% of variance in liability (ref60 and con-

sistent with Table 1 with and without MHC region). These

MHC risk alleles are positively correlated in SZ and RA,

although clearly the effect sizes are very different. In ana-

lyses in which we first removed the contribution to vari-

ance of the MHC region, the magnitude of negative

correlation between SZ and RA increased (�0.065, s.e.

0.015, P¼ 0.015), and increased further still when con-

sidering only SNPs in coding and regulatory regions of the

genome (�0.322, s.e. 0.115, P¼0.003), indicating that re-

gions of the genome other than the MHC region contribute

to the epidemiological observations.

Genotype x environment analysis

Although RA is well recognized as an immune disorder,

the contribution of immune activation to SZ is open to de-

bate (see Introduction). To add further insight to the com-

plex relationship between SZ and RA, we postulated that

if there is any interplay in risk for SZ between environmen-

tal risk factors associated with immune challenge and

genes that are relevant to the immune response, it is likely

to occur at the coding and regulatory regions. This is based

on the rationale that these are the sets of variants that both

capture the SNP heritability of RA (i.e. are likely to be

most enriched for genes with influences on immune activa-

tion) and are negatively correlated with SZ (i.e. are both

immune activation and SZ relevant). If our hypothesis is

correct, we predict that the apparent effect sizes in schizo-

phrenia at these loci will be greater in those exposed to a

relevant immune challenge than in those who are not.

Consequently, we predict that the negative correlation be-

tween SZ and RA will be larger at these loci in cases

exposed to an immune challenge. At present, our ability to

test this G x E hypothesis is limited by availability of sam-

ples that are both genetically informative and recorded for

environmental risks. We therefore sought a proxy for im-

mune challenge in SZ.

A robust epidemiological finding in SZ research is that

people with the disorder are more likely to be born in win-

ter or spring than summer or autumn61 (odds ratio 1.07,

95% CI 1.05–1.08, estimated from a meta-analysis of 27

studies62). Winter/spring birth is also associated with rec-

ognized immune-mediated disorders including RA.63

Candidate exposures underlying this finding include

seasonally varying factors such as prenatal vitamin D, or

maternal/fetal exposure to infections. Both factors can im-

pact on the immune system.64–66 In the absence then of dir-

ect measures of immune activation, we used season of

birth as our proxy measure; in doing so, we are aware this

proxy measure is only likely to be weakly correlated with

exposure and hence its use will adversely affect power.

Month of birth was only available for the SWE SZ sam-

ple. We selected quasi-independent SNPs associated at

P<0.05 and minor allele frequency> 0.05 (47 318 SNPs)

from the largest published schizophrenia meta-analysis.36

We next divided them into coding/regulatory (2820 SNPs,

6%) and non coding/regulatory sets. We undertook a bivari-

ate GREML analysis of the SWE datasets in which the two

traits were winter-born (January to April) vs non-winter

born SZ cases and controls; this division was justified by

studies using Swedish data.22 The correlation between win-

ter/non-winter born was significant for coding/regulatory

SNPs (0.56, s.e. 0.14, P¼ 0.0009) but not so for other SNPs

(0.95, s.e. 0.05, P¼0.15) (Supplementary Table 5, available

as Supplementary data at IJE online). To visualize this inter-

action, and to demonstrate that effects sizes of the coding/

regulatory SNP set are increased in the winter-born cohort,

we present the mean association OR for the different season

by annotation classes estimated in the SWE SZ sample

(Figure 4). We confirmed that results were robust to the P-

value threshold used for selection of associated SNPs

(Supplementary Table 6, available as Supplementary data at

IJE online) and we checked the seasonal trend by using slid-

ing window definitions of 4-month season definitions

(Supplementary Table 7, available as Supplementary data at

IJE online). The results are consistent with our G x E hy-

pothesis of immune-related disruption proxied by winter

birth, in concert with risk variants in coding/regulatory re-

gions increasing risk of schizophrenia.

Strengths and limitations

The strength of our methodological approach to explore the

genetic relationship between SZ and RA is that it is based

on genome-wide genotype data and uses independently col-

lected data for the two diseases studied. While under review,

two studies have investigated the relationship between SZ

and RA based partially67 or fully68 on GWAS summary

statistics; one reported a non-significant small positive rela-

tionship67 and the other a non-significant small negative re-

lationship.68 Use of genotype data is computationally more

demanding but is considered more definitive than methods

based on summary statistics,57 and such an approach is

needed when the relationship between the disorders is

benchmarked by a weak phenotypic correlation of �0.05 to

�0.15. The results here indicate that there is a subset of
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genetic variants that are risk alleles for SZ and protective

for RA, and vice versa. Furthermore, as sample sizes in-

crease, more fine-scaled partitioning of variance by annota-

tion and genomic region will become possible and specific

variants involved will be identified. Our analyses indicate

that these pleiotropic loci are located in the coding/regula-

tory regions of the genome, hinting at directly functional

variants. Pleiotropy could help explain why common risk

variants are maintained in the population, since selection

operates on the net effect of fitness.

As limitations, we first note that cases and controls for

each disorder were not screened for the other disorder.

However, since both disorders are uncommon, the impact

is expected to be small. Second, we were unable to investi-

gate the relationship between SZ and seronegative RA be-

cause we found no evidence of SNP heritability for this

case group. An analysis of seronegative RA is of particular

interest since a recent epidemiological study found that

decreased risk of RA in relatives of those with SZ was only

apparent for seronegative RA.2 The stringent QC needed

for case-control GREML analyses may remove true sig-

nals38 and this may play a role in the seronegative samples

available here. Nonetheless, a lower SNP heritability for

seronegative RA vs seropositive RA is consistent with recent

estimates of heritability based on family data,9 and also con-

sistent with smaller OR for seronegative genetic associations

than for seropositive associations.13,69 A SNP correlation of

0.98, s.e. 0.165, was estimated in a Han Chinese sample;69

we note that the proportion of seronegative cases in this

study was high (519/952¼ 55%) and any misclassification

could serve to inflate the correlation.70 Third, the non-avail-

ability of sex chromosome data meant that we could only

explore sex differences based on autosomal SNPs. Fourth,

we did not have the power to break down the signal attrib-

uted to coding/regulatory regions into more finely defined

functional categories. Last, given the limitations on the data

available to test the G x E hypothesis, alternative explan-

ations for our results cannot be excluded.

Discussion

In summary, we have applied a mixed linear model method

to estimate the genetic correlation between RA and SZ.

Epidemiological evidence has demonstrated decreased

prevalence rates of RA in SZ cases, consistent with a pheno-

typic correlation of liabilities of up to �0.15. We show that

there is a small but significant negative correlation across

the genome and the signal is stronger for SNPs annotated as

coding and regulatory. Given that RA is an immune-related

disorder and that a role for immune activation has long

been hypothesized for SZ, a negative genetic correlation

could imply that variants in immune response pathways

have different roles in different tissues and/or in response to

different challenges. The immune activation hypothesis of

SZ is partly founded on an increased risk for SZ associated

with month of birth. Our hypothesis that increased effect

sizes for SZ-associated SNPs in the coding/regulatory SNP

set for a winter-born case-control set was supported by our

analyses, although other explanations for these results may

be possible. Most importantly, if the complexity of SZ is to

be unraveled, then data sets that are informative for both

genetic and environmental risk factors are essential. Since

SZ is an adult-onset disorder, and yet perinatal and child-

hood experience, especially infections, are known environ-

mental risk factors, then prospective gathering of data in

nationally accessible repositories is needed.
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Hôpital Bichat Claude Bernard, Assistance Publique des Hôpitaux
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