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Abstract

Purpose of review—The endothelial cell plasma membrane is a metabolically active, dynamic 

and fluid microenvironment where pericellular proteolysis plays a critical role. Membrane-

anchored proteases may be expressed by endothelial cells, as well as mural cells and leukocytes 

with distribution both inside and outside of the vascular system. Here we will review the recent 

advances in our understanding of the direct and indirect roles of membrane-anchored proteases in 

vascular biology and the possible conservation of their extravascular functions in endothelial cell 

biology.

Recent findings—Membrane-anchored proteases belonging to the serine or metalloprotease 

families contain amino- or carboxy-terminal domains which serve to tether their extracellular 

protease domains directly at the plasma membrane. This architecture enables protease function 

and substrate repertoire to be regulated through dynamic localization in distinct areas of the cell 

membrane. These proteases are proving to be key components of the cell machinery for regulating 

vascular permeability, generation of vasoactive peptides, receptor tyrosine kinase transactivation, 

extracellular matrix proteolysis and angiogenesis.

Summary—A complex picture is emerging of the interdependence between membrane-anchored 

protease localization and function that may provide a mechanism for precise coordination of 

extracellular signals and intracellular responses through communication with the cytoskeleton and 

with cellular signaling molecules.
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Introduction

Endothelial cells regulate communication between the blood and the subendothelial tissues 

critical for a wide range of important physiological processes including hemostasis, the 

transport of solutes and macromolecules, regulation of vasomotor tone, angiogenesis, and 

the trafficking of leukocytes for innate and adaptive immunity [1]. The endothelial cell 
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plasma membrane is a metabolically active, dynamic and fluid microenvironment where 

pericellular proteolysis plays a critical role. For many years, investigative studies have 

largely focused on the proteolytic enzymes that mediate pro-coagulant and anti-coagulant 

activities, given the critical importance of endothelial cells in maintaining hemostatic 

balance. The activities of secreted, pericellular coagulation proteases (e.g. thrombin, Factor 

Xa), the plasminogen system (e.g. tPA, uPA and plasmin) and the matrix metalloproteinases 

(MMPs) are well studied in this regard. Recently there has been an increase in the 

identification of plasma membrane-tethered proteases, such as the family of membrane-

anchored serine proteases, the ADAM family, and the membrane-type MMPs (MT-MMPs), 

whose direct and indirect roles in vascular functions, blood vessel growth, development and 

structure are becoming evident through studies of murine deficiencies and dysregulation in 

human diseases (Table 1). The membrane-anchored proteases are widely distributed both 

inside and outside of the vascular system and may be expressed by endothelial cells, mural 

cells, and/or leukocytes. Membrane anchorage enables these proteases to initiate pericellular 

proteolysis in the cell microenvironment, and to interact with membrane proteins on the 

same cells or on nearby cells. The specific functions of many of these proteases in vascular 

biology, and in some cases, even their expression by endothelial and mural cells, are poorly 

understood. In this review, we will focus on the current knowledge of membrane-anchored 

proteases in vascular biology with an emphasis on recent findings, and the possible 

conservation of their extravascular functions in endothelial cell biology.

Membrane anchoring domains

The membrane-anchored proteases associated with the vasculature and discussed here all 

belong to the serine protease or metalloprotease families (Figure 1). The unique feature of 

these membrane-anchored protease families that distinguishes them from secreted soluble 

proteases such as MMPs and blood coagulation proteases, is that they contain domains 

which tether them directly to the cell surface, with their catalytic domains exposed to the 

extracellular environment. The manner in which they are linked to the cell surface may be 

through Type I or Type II single pass transmembrane domains, or via 

glycophosphatidylinositol (GPI)-anchors [47,49–52] (Table 1). All of these membrane-

anchored proteases are synthesized with an N-terminal signal sequence which directs their 

trafficking to the cell surface. Type I membrane-anchored proteases are then anchored via a 

C-terminal hydrophobic region which spans the plasma membrane. Similarly, GPI anchored 

proteases possess a C-terminal hydrophobic region, which is modified by the addition of a 

GPI lipid moiety that anchors the protease to cholesterol rich regions in the plasma 

membrane. In Type II membrane-anchored proteases the N-terminal signal sequence is not 

removed after trafficking to the cell surface, and serves to anchor the N-terminus to the cell 

membrane, with the C-terminal catalytic domain localized to the extracellular space. In 

comparison to secreted proteases this surface localized context provides a higher degree of 

specificity in the substrates these proteases will encounter, with a requirement that they be 

either found co-localized on the cell surface or in the nearby pericellular environment. The 

type of membrane anchor can serve to target these proteases to specific membrane 

localizations (eg. apical, basolateral, cell junctions and cell protrusions) and microdomains 

(eg. lipid rafts), and their cytoplasmic extensions are frequently associated with membrane 
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trafficking and/or signal transduction. In some situations, and frequently in response to 

inflammatory stimuli, the extracellular domains of membrane-anchored proteases are shed 

from the cell surface [47,49,53], which may indicate a down-regulation of the proteolytic 

functions of these enzymes. In addition, other mechanisms for regulation of cell surface 

protease activities exist, including natural inhibitors such as Kunitz-type inhibitors and 

serpins for the serine proteases and TIMPs for the metalloproteases, and protease 

endocytosis and turnover [47,54].

Activation of membrane-anchored proteases

Most of the membrane-anchored proteases are synthesized as inactive proteins, which are 

converted to active protease forms by other proteases, or indirectly activated by cellular 

stimuli, such as sheer stress, cytokines and growth factors. The serine proteases, with the 

exception of the prolyl oligopeptidases, require a conformational change which generates an 

active site following cleavage of a propeptide that remains tethered to the catalytic domain 

through disulfide linkages [54]. In contrast, the MT-MMPs and the ADAMs are synthesized 

with a fully functional active site that is shielded by the prodomain until being processed 

during secretion by proprotein convertases [47,55,56]. Classically ADAMs were thought to 

be activated by cleavage between the pro- and catalytic domains at a canonical furin 

cleavage site (RXXR). However recent evidence has identified a second furin cleavage site 

embedded in the pro-domain that is critical for the activation and catalytic activity of 

ADAMs 9, 10 and 17 [57]. In addition, ADAM17 requires catalytically inactive members of 

the rhomboid family of proteases, iRhom1 and iRhom2, to mediate its intracellular transport 

and maturation, and mutations in iRhom2 may predispose patients to an inherited cancer 

susceptibility syndrome [58**]. Membrane-anchored serine proteases, such as matriptase, 

can self-activate or proteolytically activate other precursor serine protease zymogens [54], 

and further, non-enzymatic stimulation of matriptase activation by prostasin and activation 

of prostasin by the matriptase zymogen has been reported [59,60], suggesting complex 

interrelationships between these enzymes.

Ectodomain shedding of cell surface molecules

The ADAM proteases are recognized to play a major role in ectodomain shedding of a 

number of transmembrane molecules that play pivotal roles in the control of cell adhesion 

and cell signaling processes [61–65]. ADAM17 is a central regulator of the tumor necrosis 

factor (TNF) receptor and epidermal growth factor receptor (EGFR) signaling pathways that 

drive inflammation and injury/repair responses. Although both ADAM17 and ADAM10 

have been considered the primary proteases responsible for ectodomain shedding of the 

Notch receptor during sprouting angiogenesis, a recent study finds that ligand-induced 

Notch signaling is initiated primarily by ADAM10 [32*]. During this process, ADAM17 

appears to promote sprouting angiogenesis by down-regulating the inhibitor of angiogenesis 

thrombospondin 1 (TSP1) [32*].
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Influence of membrane dynamics on substrate accessibility

The actin cytoskeleton is important for controlling membrane-anchored protease localization 

on the plasma membrane as well as substrate accessibility. Recent studies demonstrate that 

MT1-MMP and one of its substrates, the heparin-binding adhesion molecule CD44, can co-

localize through anchoring to the actin cytoskeleton through ezrin/radixin/moesin (ERM) 

protein-mediated interactions between their cytoplasmic tails [66]. It remains to be seen 

whether other membrane proteases and adhesion molecules are linked to the cytoskeleton 

via intracellular complexes. The cytoskeleton can also mediate substrate accessibility. The 

transmembrane endothelial adhesion molecule CX3CL1 exists within confinement regions 

structured by the cortical actin cytoskeleton, which precludes its association with ADAM10. 

Disruption of the actin cytoskeleton in response to secreted inflammatory cytokines, 

leukocyte-endothelial cell interactions or changes in mechanical force exerted by the 

endothelium can reduce CX3CL1 sequestration and increase CX3CL1–ADAM10 

interactions, resulting in enhanced shedding of soluble CX3CL1, a chemoattractant for 

circulating leukocytes [67**].

Influence of membrane microdomains/lipid rafts on membrane-anchored 

protease functions

A striking feature of the GPI-anchored proteases is their enrichment in lipid raft membrane 

microdomains. Testisin is a GPI-anchored serine protease expressed in microvascular 

endothelial cells [68] that cleaves and activates the seven-transmembrane G-protein-coupled 

protease-activated receptor, PAR-2, to release its tethered ligand for signal activation [69*]. 

Interestingly, the activation of PAR-2 by testisin induces internalization of PAR-2 and loss 

from the cell surface [69*], which has the potential to alter PAR-2 signal activation by 

soluble proteases that may be present in the extracellular microenvironment. PAR-2 can 

localize to lipid raft domains; indeed localization of tissue factor (TF) and PAR-2 in lipid 

rafts is critical for TF:FVIIa to trigger PAR-2-mediated cell signaling [70]. Lipid raft 

localization has also been found to regulate the cleavage specificity of PAR-1 in endothelial 

cells, rendering PAR-1 shielded from interaction with coagulation proteases [71]. The 

importance of lipid raft localization to PAR signaling responses after membrane-anchored 

protease activation is an interesting area for future investigation.

Vascular permeability barrier

Adjacent endothelial cells are linked by multi-protein intercellular junctional complexes 

composed of tight junctions, adherens junctions and gap junctions which mediate vascular 

integrity and control vascular permeability across the paracellular pathway [72]. Vascular 

permeability is controlled by the oligomerization of the membrane-spanning occludin and 

claudins, including claudin-5, vascular endothelial cadherin (VE-cadherin) and the 

endothelial junctional adhesion molecule JAM-A, which interact with cytoplasmic zona 

occuldens (ZO) proteins in intercellular junctional complexes and link to the actin 

cytoskeleton [73]. Wide variations in permeability exist across the vascular tree, with 

capillaries being most permeable and the blood brain barrier being relatively impermeable 

by comparison. Several ADAMs mediate the shedding of cell-cell adhesion molecules to 
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modulate vascular permeability during excessive inflammation and hypoxia [27,74]. Both 

ADAM12 and ADAM17 were recently reported to contribute to impaired neural vascular 

barrier function induced by hypoxia through the degradation of claudin-5 in brain 

microvascular endothelial cells [34**]. Inhibition of either ADAM12 or ADAM17 was 

sufficient to rescue the loss of barrier function in retinal neural vasculature in vivo under 

hypoxic conditions. Upon hypoxia induction, it was found that the subcellular localization of 

ADAM12 and ADAM17 changed rapidly from cytoplasmic to cell membrane-associated, 

thus enabling a rapid proteolytic response. Inhibition of either ADAM12 or ADAM17 was 

sufficient to rescue the loss of barrier function in retinal neural vasculature in vivo under 

hypoxic conditions, suggesting their inhibition could offer novel treatment strategies for 

diseases associated with an impaired neural barriers. ADAMs may also regulate vascular 

permeability though mechanisms independent of junction molecule shedding, as ADAM15 

is reported to induce hyper-permeability of endothelial barriers through Src/ERK1/2 

signaling [75,76]. Further, a recent study has identified that the targeting of the 3' UTR of 

ADAM15 by the microRNA (miR)-147b attenuates ADAM15 expression. Whether 

miR-147b and/or other microRNAs regulate additional proteases and may be exploited to 

enhance endothelial barrier protection is an interesting area for further investigation.

Generation of vasoactive peptides

Several membrane-anchored proteases play key roles in cardiovascular remodeling, 

hypertension and angiogenesis through the cleavage and activation of vasoactive peptides. 

Corin present on cardiomyocytes converts the atrial natriuretic peptide (ANP) precursor, 

pro-ANP, to mature ANP, for the regulation of salt-water balance and blood pressure [15]. 

ANP also protects the endothelial cell barrier against hyperpermeability through its ability to 

modulate Rho-dependent actin remodeling [77]. Angiotensin converting enzyme (ACE) and 

ACE2 produce the vasoactive pro-inflammatory peptides Ang-II and its counter-regulatory 

peptide Ang-(1–7), respectively [78]. This is important because the balance between 

ACE/Ang II/AT1 receptor and ACE2/Ang-(1–7)/Mas receptor is critical for vascular 

homeostasis, especially the regulation of vasoconstriction and proliferation. Overexpression 

of ACE2 can protect endothelial cell function by promoting endothelial cell migration, and 

decreasing Ang II induced effects such as pro-inflammatory cytokines and adhesion 

molecules [79*].

Receptor tyrosine kinase transactivation

Various mechanisms of ligand activation and transactivation of receptor tyrosine kinases 

depend on membrane anchored proteases. Matriptase is an efficient proteolytic activator of 

pro-hepatocyte growth factor (HGF), the ligand for the c-Met receptor tyrosine kinase 

[10,49] that stimulates cell proliferation and promotes activation of pro-angiogenic and 

vasoprotective pathways in the vasculature [80]. Several of the membrane-anchored 

proteases, including essentially all of the known ADAMs, shed mature ligands that in turn 

transactivate receptor tyrosine kinases to promote pro-angiogenic pathways in endothelial 

cells [27,81–83]. Agonists of multiple G protein-coupled receptors (GPCR) can activate 

ADAMs to produce mature EGFR ligands that lead to EGFR transactivation; signaling 

events that may require trafficking and compartmentalization of the GPCR and ADAM 
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providing the temporal and spatial regulation necessary for rapid and specific signal 

activation [84]. Further, a recent report indicates that heterotrimeric G-proteins may also 

directly activate membrane tethered proteases in a membrane delimited manner [85*]. MT1-

MMP was shown to be activated via a direct binding interaction with activated G-protein βγ 

subunits, resulting in HB-EGF release and EGFR transactivation [85*]. It remains to be 

determined whether other membrane-anchored proteases may be activated by the same or 

different G-proteins in a similarly direct manner.

Membrane regulated and directed ECM proteolysis

During angiogenesis, endothelial cells initiate new blood vessel growth and invasion into the 

extracellular matrices (ECM). MT1-MMP functions as the major membrane-anchored 

collagenase, while MT1-MMP, MT2-MMP, and MT3-MMP all have fibrin degrading 

activities [47,56,86,87]. Shear wall stress stimulates the activation of MT1-MMP by 

proprotein convertases [88] and its translocation to the plasma membrane at the tips of 

growing vessels to promote ECM degradation [89]. MT1-MMP and most of the MT-MMPs, 

with the exception of MT4-MMP, have the demonstrated capability of activating pro-

MMP-2 [47,90], which is able to degrade multiple ECM proteins including collagens, fibrin, 

fibronectin and vitronectin. Studies of MT4-MMP loss-of-function in mice [26**] show that 

its activity is required for vascular smooth muscle cell maturation and arterial wall function 

in vivo and its absence results in predisposition to thoracic aortic aneurysms. The phenotype 

is associated with reduced cleavage of the extracellular matrix protein, osteopontin, 

important for embryonic development of the aorta. MT1-MMP may also stimulate 

proMMP-2 activation through paracrine mechanisms. For example, activation of the 

endothelium by Ang II promotes aortic stiffness by triggering endothelin-1 release, which in 

turn acts on aortic smooth muscle cells to induce furin up-regulation, leading to increased 

activation of MT1-MMP and pro-MMP2 [91]. Conversely, in some contexts, MT1-MMP 

may down-regulate proteolytic activity, for example by proteolytically processing and 

inactivating MMP-11 [92]. Both hepsin and matriptase can activate latent pro-urokinase, 

releasing a potent plasmin-initiated proteolytic cascade that results in the degradation of 

fibrin and several other ECM proteins, activates MMPs, and can induce the release of growth 

factors like TGF β, bFGF, and VEGF from the ECM, to enhance endothelial cell migration 

and invasion [93].

Endothelial protease expression

Expression of genes by endothelial cells may be constitutive or inducible, or may be 

restricted to subsets of endothelial cell phenotypes in the vascular tree. Endothelial cells 

have been reported to express mRNAs encoding the membrane-anchored serine proteases 

testisin, hepsin, matriptase, TMPRSS2, dipeptidylpeptidase IV, and seprase [68]. Our 

analysis of DataSets in the Gene Expression Omnibus (GEO) repository (http://

www.ncbi.nlm.nih.gov/geoprofiles) reveals that several membrane-anchored proteases with 

no known roles in vascular biology are differentially regulated in response to various stimuli. 

In a study characterizing the endothelial response to laminar shear stress, TMPRSS11A and 

ADAM18 transcripts were found to be upregulated in response to higher shear stress levels 

[94]. In a separate study, hepsin transcripts were upregulated in endothelial cells isolated 
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from cirrhotic livers in rats and neonatal murine retinal endothelial cells, which also 

displayed expression of TMPRSS12 [95] [96]. In another study of retinal angiogenesis 

utilizing laser capture microdissection of endothelial cell tips, matriptase transcripts were 

elevated nearly two fold as compared to the surrounding tissue [97]. Investigating 

transcriptional changes during capillary tube formation on a matrigel basement membrane, 

ADAM19 transcripts were upregulated over time [98]. TMPRSS2 transcript levels were 

found to be upregulated when comparing proliferative phase endometrial endothelial cells 

from polycystic ovary syndrome to normal endometrial endothelial cells [99]. Future studies 

will be required to analyze proteome expression and determine the pathophysiological 

functions of membrane-anchored proteases not previously associated with endothelium, in 

vascular functions and angiogenesis.

Conclusion

The interdependence between protease localization and function provides a mechanism for 

coordination of extracellular signals and intracellular responses. The membrane-anchored 

proteases are uniquely positioned at the endothelial plasma membrane to coordinate the 

release of ECM components, to proteolytically activate cell surface proteins such as PARs, 

growth factors, and cytokines, to interact with cell surface adhesion receptors and generate 

soluble ligands, and to communicate with the cytoskeleton and with cellular signaling 

molecules. While significant progress has been made in understanding the effects of changes 

in the levels and activities of some of these enzymes, more research is needed on the 

importance of distinct membrane and subcellular localizations in the control of vascular 

function under physiological conditions and how pathological states, such as inflammation, 

change the exposure to substrates that modulate endothelial cell functions. A better 

understanding of these mechanisms has the potential to provide new insights into 

perturbations in vascular functions associated with numerous pathophysiological states 

including cancer, inflammation, aging, neurological diseases, diabetes, atherosclerosis and 

hypertension while opening up avenues for therapeutic intervention.
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Key Points

• Membrane-anchored proteases are directly linked to the cell surface via Type I 

or Type II single pass transmembrane domains, or via a 

glycophosphatidylinositol (GPI)-anchor, with their protease catalytic domains 

exposed to the extracellular environment.

• Protease function and substrate repertoire can be regulated through localization 

in distinct areas of the membrane.

• A better understanding of the role of membrane-anchored proteases in vascular 

biology may provide novel therapeutic targets for the treatment of numerous 

cardiovascular and angiogenesis related diseases

Antalis et al. Page 14

Curr Opin Hematol. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Domain structures of the membrane-anchored serine proteases and metalloproteases 
associated with endothelial and vascular biology
The serine-type proteases are comprised of the membrane-anchored serine proteases, the 

proprotein convertases and the prolyl oligopeptidases. The metalloproteases consist of the 

membrane-type MMPs (MT-MMPs), the ADAMs (a disintegrin and metalloproteinase) and 

the angiotensin-converting enzymes (ACE). The catalytic domains, which function to 

hydrolyze the peptide bonds in protein substrates, are all located extracellularly. The 

catalytic domains of the membrane-anchored serine proteases are either chymotrypsin-like 

(S1 family), bacterial subtilisin-like (S8 family) or related to the prolyl oligopeptidases (S9 

family). They all share the conserved catalytic triad amino acid residues His, Asp and Ser, 

albeit in different configurations. There are a total of 17 human type II transmembrane serine 

proteases, synthesized with a unique stem region adjacent to the plasma membrane, 

containing diverse protein-protein interaction domains such as scavenger receptor cysteine-

rich (SRCR), CUB, SEA and Frizzled domains [46]. There are two human GPI-anchored 

serine proteases, testisin and prostasin. The proprotein convertases are all Type I 

transmembrane serine proteases containing a cysteine rich region and conserved P-domains 

which are essential for folding and activation. The prolyl oligopeptidases are synthesized as 

type II transmembrane homodimeric glycoproteins. The membrane-anchored 

metalloproteases differ from the membrane-anchored serine proteases in that they utilize a 

zinc ion to create a nucleophile for protease catalytic activity. The 6 MT-MMPs expressed in 

humans are either Type I (MT1-, MT2-, MT3- and MT5-MMP) or GPI-anchored (MT4- and 

MT6-MMP). All of the MT-MMPs share a similar hinge region and hemopexin domain, and 

are synthesized with an amino-terminal signal sequence and pro-domain which is cleaved by 

proprotein convertases during transport from the ER/Golgi to the surface, allowing the MT-

MMPs to be expressed on the cell surface as active proteases [47]. The ADAM 

metalloproteinases share a complex domain structure containing the pro-domain followed by 

the metalloprotease catalytic domain, a disintegrin-like domain enabling cell-cell 
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interactions via integrins, a cysteine-rich domain and an epidermal growth factor-like 

domain [48]. The ACE family of metalloproteases includes both ACE and ACE2 

transmembrane proteases, which consist of an amino-terminal signal domain followed by a 

large extracellular domain that consists of either two independent (ACE) or one (ACE2) 

catalytic domains containing zinc binding motifs. The cytoplasmic extensions vary in length 

for these membrane-anchored proteases and are involved in membrane trafficking, and 

localization, with some participating in cell signaling.
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