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Introduction

When investigators report the results of observational studies or randomized controlled trials 

(RCTs), they often adjust for covariates using multivariable regression models, or stratify 

analyses. The intervention effect estimate is often expressed as an adjusted odds ratio 

(ORadj). In an RCT where confounding bias is absent, many investigators would interpret 

differences in stratum-specific ORs to mean that the actual causal effect of the intervention 

is dependent on the presence or absence of the covariate (causal effect modification). 

However, even in the absence of both bias and causal effect modification, it is a 

mathematical certainty that the OR in each stratum of a variable will differ if the stratifying 

variable increases the risk of the outcome independent of intervention!

How significant is this problem? Analyses stratified by sex are often recommended by 

authors [1] and granting agencies (http://grants.nih.gov/grants/guide/pa-files/

PA-13-018.html). In a recent review examining subgroup analyses in RCTs with 

dichotomous outcomes, 52% (120/229) conducted subgroup analyses[2]. Of these, 86/120 

(72%) studies reported subgroup analyses using the OR or hazard ratio. If logistic or Cox 

regression is the analysis conducted, and the outcome is common (e.g. some cardiovascular 

diseases), this under-recognized fact may lead investigators and clinicians to inappropriate 

conclusions such as suggesting treatment effectiveness is different in diabetics vs. non-

diabetics, male vs. female, etc. The same issues also affect conclusions about confounding 

when the crude (unadjusted) OR is different from the multiple logistic regression ORadj. The 

purpose of this article is to explain why this occurs through simple extensions of commonly 

known principles.
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Background

Although more precise statistical language is sometimes used, for simplicity, in this paper 1) 

“adjustment” refers to including a variable in a regression analysis unless otherwise 

specified, and 2) causal effect modification means that the biological effect of the 

intervention is either stronger or weaker in the presence of the covariate (causal effect 

modifier) [3, 4]. We will use a restricted definition of causal effect modification, where it 

only exists if the effects across strata are different on both the additive and multiplicative 

scales. For example, we consider that there is no causal effect modification if a variable’s 

mechanism of action is such that mortality increases by an absolute 10% regardless of 

baseline risk (i.e. from 10% to 20%, 30% to 40%, 40% to 50%; RD is constant across strata) 

even though the RR across strata are different. Similarly, there is no causal effect 

modification if the variable’s mechanism of action is such that mortality increases 1.5-fold 

regardless of baseline risk (i.e. from 10% to 15%, 20% to 30%, 30% to 45%; RR constant 

across strata) even though the RD across strata are different.

Several authors have previously illustrated that the crude estimate of the OR from logistic 

regression (and hazard ratio from Cox regression), is not equal to the adjusted estimate even 

in the absence of confounding [5–7], but they have always used examples where the risk 

ratios in each stratum were also different. However, the problem of misinterpretation of 

effect modification using OR has not been widely under concern. In this report, we focus on 

causal effect modification and illustrate an example in the absence of both bias and 

differences in stratum-specific risk ratios. We further explain that one way to view the results 

of others [5–7] is simply as a more complex example of our illustration. Finally, we provide 

three examples from the literature (1 RCT and 2 observational studies) where the authors 

interpreted the interaction term from an odds ratio derived by logistic regression as causal 

effect modification, without providing the information necessary to determine if the 

observed differences were truly due to causal effect modification, or simply an example 

where the stratum-specific OR are different for mathematical reasons alone (i.e. no causal 

effect modification), or a combination of the two.

Example

To illustrate the effect, let us consider a serious illness where the 1-year untreated mortality 

in the population is 52%. Let us consider a randomized controlled trial (RCT) of 1,000 

patients comparing Drug A vs. placebo (Table 1). The proportion of diabetic patients (and 

severity of diabetes) in each group is identical at 30% so there is no confounding by 

diabetes, or baseline differences between intervention groups. We will use a multiplicative 

causal mechanism and say that Drug A reduces mortality by 50% regardless of baseline risk, 

with the specific example showing a mortality reduction from 52% to 26%. Further, the 50% 

reduction is true for both non-diabetics and diabetics.

At the top of Table 1, we see the RR for the overall group is indeed 0.5, and the OR is 0.32. 

The difference between the RR and OR is simply illustrating the well-known fact that the 

OR represents an overestimation of the risk as expressed by the RR when the disease is 

Shrier and Pang Page 2

J Clin Epidemiol. Author manuscript; available in PMC 2016 May 26.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



common [8–11], which is the context of the current example (untreated mortality equals 

52%). This overestimation is illustrated in Figure 1.

In the bottom of Table 1, the results are presented for diabetics and non-diabetics separately. 

Once again, the RR is 0.5 for each group as previously stated – there is no confounding or 

causal effect modification. However, when we examine the results for OR, we see that the 

OR for diabetics is 0.17 (95%CI: 0.10 to 0.29), and the OR for non-diabetics is 0.38 

(95%CI: 0.26 to 0.53). Finally, when intervention, diabetes and the interaction term 

intervention*diabetes are all entered into a logistic regression model with death as the 

outcome, the interaction term in the example has a p-value of 0.01. A naïve interpretation of 

the OR estimates in Table 1 (without knowing the RR because it is not usually reported in 

logistic regression analyses) is that there is strong evidence for a biological interaction 

between Drug A and diabetes (or that diabetes is a marker for another causal effect 

modifier). However, there is neither confounding nor causal effect modification in our 

hypothetical data, and the RR results across the strata in Table 1 are consistent with absence 

of causal effect modification, in that the decreased risk with treatment on the multiplicative 

scale is independent of the baseline risk.

Explanation of the Stratum Specific OR Effect

Although other authors have provided more elaborate explanations and examples of similar 

effects [5, 6, 12–14], one perspective is simply to view our example as an extension of the 

fact that the OR and RR are two different effect measures, and the OR is known to 

overestimate the RR when the disease is common. In Figure 1, the slope of the relationship 

between OR and RR increases as the prevalence of the outcome in controls increases. 

Therefore, when the RR is constant across different strata of a covariate (as in our simulated 

data), the OR will overestimate the RR by different magnitude if the prevalence of the 

control risk within each of the stratum is different. In other words, the stratum-specific OR 

must be different even though there is no confounding or causal effect modification. 

Although the magnitude of the differences between conditional and marginal OR has 

recently been characterized across a wide range of conditions [15], the magnitude of the 

differences in stratum-specific OR is revealed in Figure 1. These differences will increase as 

the proportion of controls with the outcome increases, and as the RR increases. Further, 

increasing the causal effect of the stratifying variable on the outcome would also lead to an 

increased difference between stratum-specific results. These relationships are illustrated in 

Figure 2. Practically speaking, if the rare disease assumption holds within each stratum (e.g. 

<10% of participants have the outcome), the effect would be minimal except at very high 

RR. Therefore, if the OR is used as the effect measure, as is common with logistic 

regression, these assumptions need to be verified for appropriate interpretation. Of note, the 

effect we report only occurs with regression-adjusted OR and stratum-specific OR, but does 

not occur if one uses population-standardized OR (or population standardized RR/RD) [5].

Although the current example described results from an RCT and explored causal effect 

modification, the same principle holds true for confounding within observational studies, or 

for analyses examining chance baseline imbalances of prognostic factors in RCTs. In the 

example in Table 1, by definition, the strength of the potential confounder (diabetes)-
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treatment assignment is nil. Had we changed the strength of this association to any non-zero 

value, diabetes would have been considered a confounder. However, there would still have 

been differences in the prevalence of the outcome across the different strata. In this context, 

differences between the crude OR and the stratum-specific OR are more complex because 

they depend on the balance between changing prevalence, bias, and causal effect 

modification. For example, others have illustrated that the effect can appear in the reverse: in 

the presence of causal effect modification without bias, the stratum-specific OR may appear 

the same as each other, but different from the crude OR (which might be misinterpreted as 

bias rather than causal effect modification because the stratum-specific OR are the same) 

[13, 15]. Finally, the same principle applies to rate ratios and hazard ratios [5, 16]. 

Intuitively, this must be true because the OR estimated using an incidence-density sampling 

approach approximates the rate ratio.

Specific Examples from the Literature

In a RCT investigating the effect of lottery-based incentives on warfarin adherence [17], the 

proportion of participants who ended up with the primary or secondary outcome was 

approximately 20–40% depending on the subgroup and analysis. In the subgroup with INR 

below target range (under anticoagulated), the probability of non-adherence was 

approximately 0.26 in the lottery group and 0.4 in the control group, and the OR for non-

adherence using lottery-based incentives is 0.53. In the subgroup where INR was within the 

target range, the probability of non-adherence was approximately 0.18 in the lottery group 

and 0.19 in the control groups, and the OR for non-adherence using lottery-based incentives 

was 0.94. Nevertheless, if we calculate the RR using these probabilities, the RR would be 

0.26/0.4=0.65 in the subgroup with INR below target range, whereas the RR would be 

0.18/0.19=0.95 in the subgroup with INR within the target range. Therefore, effect 

modification suggested by the differences in the subgroup OR (0.53 and 0.94) is greater than 

the effect modification suggested by the differences in the subgroup RR (0.65 and 0.95), 

even though both use a multiplicative scale. As the prevalence of the outcome is different 

across strata, the divergence between the two reported ORs must be different than the 

difference between the two unreported stratum-specific risk ratios, and the p-value for 

interaction on the OR scale does not represent the p-value for interaction on the RR scale.

In an observational study on activity (independent variable) and obesity (outcome), Steeves 

et al [18] categorized subjects in the NHANES data as having high or low occupational 

activity (equivalent to diabetes in our example). Each subject was also categorized as having 

non-occupational activity equal to none, insufficient and sufficient (equivalent to treatment 

in our example). Using logistic regression and odds ratios, they report an interaction between 

occupational and non-occupational activity on the outcome obesity. However, the authors 

adjusted for some variables in the logistic regression results but did not present the 

prevalence adjusted for the same set of variables (required to calculate the effect we 

describe). Therefore, we cannot determine the magnitude of the effect, and their results 

should not be interpreted as evidence for causal effect modification.

Finally, Dye et al [19], examined the NHANES data to see if there was an interaction 

between race and smoking on the outcome of perceived need for filling or replacing teeth 
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(one outcome among many). In this study, the prevalence of the outcome varied by smoking 

and by race. The odds ratio results from a logistic regression were reported as “smoking 

status did produce a significant interaction with race/ethnicity…”. Without an analysis of the 

prevalence of the outcome within the levels of the intervention (i.e. smoking status) for the 

levels of the control group (e.g. reference category for ethnicity), such an interpretation is 

inappropriate.

In conclusion, logistic regression is an important tool and reporting adjusted OR (or Cox 

regression and rate ratios) is appropriate in many contexts. However, investigators and 

readers should be wary of claims of effect modification or biological interaction when the 

covariate is known to be an independent cause of the outcome, and the disease is common.
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Appendix

Let us consider a hypothetical study with binary outcome Y, treatment A, a binary covariate 

X. Denote the prevalence of outcome in control within the stratum X=1 as: P01 = P(Y = 1|A 
= 0, L = 1), and the prevalence of outcome in control within the stratum X=0 as : P00 = P(Y 
= 1|A = 0, L = 0). Let us assume that there is not effect modification in multiplicative scale. 

Therefore, the risks of outcome in treatment groups are increased or decreased by the 

common RR for both strata. It follows that:

We can then calculate the stratum-specific OR. For X=1:

where RR × P01 ≠ 1, Similarly, for X=0:

where RR × P00 ≠ 1. The stratum-specific OR can be then expressed as a function of the 

common RR and the prevalence in controls (denoted by P):

If we consider the common RR fixed, the first derivative of the function is given by:
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When the fixed common RR>1, the first derivative is always positive, therefore the function 

is monotonically increasing. We have OR1 > OR0 if P01 > P00. When the fixed common 

RR<1, the first derivative is always negative, therefore the function is monotonically 

decreasing. We have OR1 < OR0 if P01 > P00. When the fixed common RR=1, we have OR1 

= OR0 and there is no effect modification by either RR or OR.
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Figure 1. 
The relationship between odds ratio (OR) and relative risk (RR) using log scales (adapted 

from [8, 9, 11]). The relationship is curvilinear for each RR, with the slope increasing as the 

prevalence in controls increases, and as RR increases.

Shrier and Pang Page 8

J Clin Epidemiol. Author manuscript; available in PMC 2016 May 26.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Figure 2. 
Graphs illustrating how stratum specific odds ratios (OR) will differ even when there is no 

bias or causal effect modification. In both panels, the OR for the intervention when the 

covariate is absent (y-axis) is plotted against the OR for the intervention when the covariate 

is present (x-axis). Any deviation from the line of identity on the graph means that the OR in 

the two different strata are different. In A, the effect of the covariate is held constant and 

doubles the risk of the outcome. Each set of symbols represent a particular relative risk (RR) 

for the intervention, but at increasing baseline risks from 0.01 (rightmost point) to 0.41 

(leftmost point). The difference between the stratum-specific OR increases as the baseline 

risk increases, and as the RR increases, but is negligible at very low baseline risks. In B, the 

baseline risk under control conditions in the absence of the covariate is held constant at 35%. 

Each set of symbols represents a particular strength for the covariate effect (e.g. upright 

triangles Covariate RR=2 mean the covariate doubles the risk of the outcome), with each 

symbol representing the OR at intervention RR ranging from 0.2 (lowest point) to 0.91 

(highest point). The difference between stratum-specific OR increases as the strength of the 

covariate increases (from left to right). Because the baseline probability is held constant at 

35%, the maximum covariate RR shown is 2.5 (e.g. covariate RR=3 would give an 

impossible probability of 1.05).
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