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A new reassortment of influenza 
A (H7N9) virus causing human 
infection in Beijing, 2014
Yuhai Bi1,2,3, Jingyuan Liu4, Haofeng Xiong4, Yue Zhang5,6, Di Liu2,3,7, Yingxia Liu1, 
George F. Gao1,2,3 & Beibei Wang5,6

A 73-year-old man was confirmed to have an influenza A (H7N9) virus infection, and the causative agent 
A/Beijing/02/2014(H7N9) virus was isolated. Genetic and phylogenetic analyses revealed that the virus 
belonged to a novel genotype, which probably emerged and further reassorted with other H9 or H7 
viruses in poultry before transmitting to humans. This virus caused a severe infection with high levels 
of cytokines and neutralizing antibodies. Eventually, the patient was cured after serially combined 
treatments. Taken together, our findings indicated that this novel genotype of the human H7N9 virus 
did not evolve directly from the first Beijing isolate A/Beijing/01/2013(H7N9), suggesting that the 
H7N9 virus has not obtained the ability for human-to-human transmissibility and the virus only evolves 
in poultry and then infects human by direct contact. Hence, the major measures to prevent human 
H7N9 virus infection are still to control and standardize the live poultry trade. Early antiviral treatment 
with combination therapies, including mechanical ventilation, nutrition support and symptomatic 
treatment, are effective for H7N9 infection.

Since March 2013, novel influenza A (H7N9) viruses have emerged in China and spread quickly, causing 
severe respiratory disease in humans1,2. As of 20 January 2016, a total of 693 laboratory-confirmed cases had 
been reported, and there were 277 deaths (http://www.who.int/influenza/human_animal_interface/HAI_Risk_
Assessment/en/). Recent studies showed that the internal genes of the H7N9 virus have continued to undergo 
dynamic reassortments with the poultry H9N2 viruses3–6. According to the evolutionary distance and reassort-
ment style, the H7N9 viruses were classified into 27 genotypes within the first three months of the initial outbreak 
and into 48 more genotypes to date by our and another group respectively3,6. Among the genotypes, the G0 or 
W1 genotype (represented by A/Anhui/1/2013) acts as the dominant virus cluster in humans3,6. None of the G4, 
G5 and G6 viruses, which have 4, 5 and 6 phylogenetically different internal genes from G0, has been observed in 
humans based on surveillance data from 109 isolates3. The genotypic diversity would possibly possess varied viru-
lence and host adaptations in humans because extensive surveillance on patients with flu-like symptoms revealed 
H7N9 infections with only mild to moderate symptoms7. On 12 April 2013, the first human H7N9-infection case 
in Beijing with the A/Beijing/01-A/2013(H7N9) virus (abbreviated as BJ01 thereafter) was identified8,9. On 5 
February 2014, a new H7N9-infection case was confirmed in Beijing. The gene evolution of the H7N9 viruses in 
Beijing needs to be investigated for further prevention and control of the H7N9 infection.

Results
Case description and treatment. A 73-year-old man who worked as a live poultry seller and butcher 
in Beijing, China was diagnosed with an influenza A (H7N9) virus infection confirmed by detection of the 
H7N9 virus in the laboratory. The patient was an alcoholic with a past medical history of chronic bronchitis and 
coronary heart disease. The illness began with flu-like symptoms, including a high fever (38.3 °C), cough with 
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yellow-white phlegm and feeling fatigued on 30 January 2014. Because the detection of the influenza A virus 
universal antigen was negative on the throat-swab by means of the immune colloidal gold technique and the radi-
ologic findings revealed bronchitis, the patient was treated with anti-infective therapy by an intravenous injection 
of moxifloxacin. However, that treatment did not take effect, and the symptoms gradually worsened.

On 5 February 2014, the patient appeared with hyperpyrexia (maximum temperature 40.0 °C), coughing with 
bloody sputum and dyspnoea with a low oxygen saturation (88.8%). The H7N9 viral RNA was positive in the oro-
pharynx swab confirmed by the real-time RT-PCR method according to the protocol of the Chinese CDC10. The 
patient was transferred into the intensive care unit (ICU) of Beijing Ditan Hospital, Capital Medical University. 
The case was diagnosed as a laboratory-confirmed case of influenza A (H7N9) infection with severe pneumonia 
combined with the complications of acute respiratory failure, septic shock, stress ulcer and acute renal failure. 
Antiviral treatment (oseltamivir) with combination of antibiotics (Sulperazon), a gastric acid secretion inhibitor 
(omeprazole), mechanical ventilation, continuous renal replacement, supportive nutrition therapy and sympto-
matic treatment were given. On 12 February 2014, the H7N9 viral nucleic acid was negative when detecting the 
tracheal aspirate specimens by real-time RT-PCR. On 12 March 2014, the infection symptoms and the respiratory 
function improved, and the circulation situation tended to be stable. After approximately four months of treat-
ment, the patient recovered and was discharged from hospital on 6 June 2014 (Table 1).

Virology analyses. A H7N9 virus, A/Beijing/02/2014(H7N9) (abbreviated as BJ02 thereafter), was isolated 
and identified after one passage propagation in eggs. To further study the gene evolution of the H7N9 virus, the 
whole genome was amplified and sequenced. Genetic alignments showed that the HA, NA, PB1, PA, NP and NS 
genes possessed the highest genetic similarities (99.33–99.74%) with other H7N9 virus genes. However, the PB2 
and M genes possessed the highest nucleotide similarities (99.39% and 98.73%, respectively) with H9N2 isolates 
(Table 2). Furthermore, the genetic homology between BJ02 and BJ01 displayed some diversity because there 
are 96.27% and 97.66% nucleotide similarities, respectively, of the PB2 and M genes (Table 2). These nucleotide 
identities suggested that BJ02 might not be evolved directly from BJ01.

The phylogenetic analyses showed that the HA and NA gene sequences of BJ02 clustered with previously iden-
tified human-infecting H7N9 viruses (Fig. 1A,B). The phylogenies of the PB2 and M genes documented that BJ02 
and BJ01 fell into different clades, and this finding implied that different evolutionary pathways might behind 
these two viruses (Fig. 1C,D). According to the genotypic assignment in the previous study3, the PB2, PB1, PA, 

Sex
Age, 
(y)

Underlying 
medical 

disorders

Days from disease onset to Clinical 
Outcome 

(days from 
disease onset)Admission

Virus 
confirmation Fever Cough Hypoxemia Pneumonia ARDS

Initiation of 
Oseltamivir

Mechanical 
ventilation

Disappearance 
of virus

Male 73

Chronic 
bronchitis, 
Coronary 

heart 
disease

6 6 0 0 6 6 6 6 6 13 discharged 
(127)

Table 1.  Demographics and clinical information of the H7N9 virus-infected patient. The symptoms started 
on 30 January 2014, and that day was set as the disease-onset day.

Strains Genotype

A/Beijing/02/2014 (Genotype G2.9)

Nucleotide identity (%) of the ORF sequence

PB2 PB1 PA HA NP NA M NS

A/Beijing/01-A/2013 G1.5 96.27 99.69 99.49 99.23 99.43 99.67 97.66 99.52

A/chicken/Jiangsu/SC537/2013 G2.9 98.68 99.78 99.54 99.23 99.67 99.50 99.39 99.76

Strainsa GenBank accession NO. Alignment length (bp) PB2 PB1 PA HA NP NA M NS

A/chicken/Wenzhou/642/2013(H9N2) KF260935 2280 99.39

A/Zhejiang/DTID-ZJU01/2013(H7N9) KC885961 2317 99.74

A/Fujian/1/2013(H7N9) KF061025 2218 99.46

A/environment/Hangzhou/34/2013(H7N9) KF001519 1683 99.41

A/Huizhou/01/2013(H7N9) KF667741 1398 99.64

A/Nanjing/6/2013(H7N9) KF007117

A/Shanghai/02/2013(H7N9) KF021598 1497 99.67

A/chicken/Zhejiang/DTID-ZJU01/2013(H7N9) KC899670

A/chicken/Hunan/1/2012(H9N2) KF714778 1027 98.73

A/Zhejiang/DTID-ZJU10/2013(H7N9) JN653676 890 99.33

Table 2.  Genetic similarities between the A/Beijing/02/2014 virus and other H7N9 or H9N2 viruses. aThe 
alignment was executed on the web site http://blast.ncbi.nlm.nih.gov/Blast.cgi and performed on April 20, 2014. 
Each genetic ORF sequence of the A/Beijing/02/2014(H7N9) virus was used with Blast to find highly similar 
sequences, and the strain that possesses the highest genetic similarity in the NCBI database was shown.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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NP, M and NS genes of BJ02 were assigned to clades 2, 1.1, 1.1, 1.1, 2 and 1, respectively, in the phylogenetic trees, 
and these results suggest that BJ02 should be designated as Genotype 2.9 (G2.9). BJ01 was designated as Genotype 
1.5 (G1.5) because its internal genes grouped into clades 1.4, 1.1, 1.1, 1.1, 1 and 1 (Figs 1C,D and 2). This case was 
the first human infection caused by the G2.9 virus. Notably, the G2.9 virus was previously isolated from poultry 
in the Jiangsu province in 2013 (A/chicken/Jiangsu/SC537/2013(H7N9), SC537). BJ02 and SC537 shared high 
genetic similarities (Table 2). However, the PB2 and M genes of BJ02 clustered together with other avian-source 
H9N2 viruses (Fig. 1C,D). All of these findings suggested that this novel genotype virus should emerge and evolve 
in poultry prior to transmission to humans.

Neutralizing antibody and cytokine evaluation. The level of serum neutralizing antibody (NAb) and 
cytokines in flu patients play pivotal roles in disease progression and recovery10–19. For this reason, the kinetic 

Figure 1. Phylogenetic analysis of HA, NA, PB2 and M genes of H7N9 influenza viruses. The phylogenies 
were inferred by the Maximum Composite Likelihood model of the Neighbor-Joining algorithm with the 
software MEGA5, and 1000 bootstrap replicates were applied. The branches for the H7N9 viruses are in red; 
H7Nx (A), HxN9 (B) and H9N2 (C,D) viruses are in blue; the red dots represent the Beijing isolates. The blue 
dots represent the representative isolates, A/Anhui/1/2013(H7N9) and A/chicken/Jiangsu/SC537/2013(H7N9).
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changes of NAb microneutralization (MN) titre and cytokines in the patient’s serum were detected. As shown 
in Fig. 3A, the seroconversion (> 1:40) of the MN titre in this case appeared on day 7 after the onset of flu-like 
symptoms. Then, the MN titre raised to a plateau with a significantly high level (1:480~1:510) during 15~18 d.a.o. 
(days after disease onset, d.a.o.). The MN titre of the H7N9 patient was higher than that of the contemporaneous 
H1N1 patient on 15 d.a.o. (Fig. 3B).

The evaluation of serum cytokines in the H7N9 patient revealed that the levels of IL-6, IL-12p40, MCP-1 and 
IP-10 were significantly increased on 7, 15 and 18 d.a.o. compared with the normal ranges, whereas the IFN-γ , 
IFN-α  and IL-17A levels did not notably increase (Fig. 3C). The levels of IL-6, IL-12p40, and IP-10 displayed an 
increase-decrease-increase tendency, and the highest levels were on 7 d.a.o., then decreased to the lowest points 
on 15 d.a.o., and subsequently showed increasing levels on 18 d.a.o. Additionally, most of the detected cytokines 
in the H7N9 case showed higher levels than in the contemporaneous severe H1N1 case on 15 d.a.o. (Fig. 3D), 

Figure 2. Phylogenetic analysis of PB1, PA, NP and NS genes of H7N9 influenza viruses. The phylogenies 
were inferred by the Maximum Composite Likelihood model of the Neighbor-Joining algorithm with the 
software MEGA5, and 1000 bootstrap replicates were applied. The branches for the H7N9 and H9N2 viruses 
are in red and blue, respectively. The red dots represent the Beijing isolates. The blue dots represent the 
representative isolates, A/Anhui/1/2013(H7N9) and A/chicken/Jiangsu/SC537/2013(H7N9).
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which suggested that the H7N9 virus might cause higher cytokine secretions than the H1N1 virus, although the 
case number in our study was limited.

Discussion
The present data documented that the novel genotype G2.9 of the H7N9 virus (BJ02) could infect and cause 
severe disease in humans. In addition to the G1.5 virus (BJ01), there are at least two genotypes of H7N9 virus 
existing in Beijing. To date, only one G1.5 and one G2.9 virus from humans have been isolated; and the other 
G2.9 strain (SC537) was first isolated from chickens. Although high homology is shared between BJ02 and SC537 
(Table 2), the PB2 and M genes of the BJ02 virus clustered with other avian-source H9N2 or H7N9 viruses 
(Fig. 1C,D). These data indicate that BJ02 likely evolved from a novel genotype found in chickens (SC537) that 
then reassorted with other H9 or H7 virus in birds before being transmitted to humans. This finding suggested 
that the reassortment with other subtype viruses in avians is still the major evolutionary path of the H7N9 virus; 
then, sensitive people would be infected after exposure to the mutated viruses. Hence, diverse H7N9 genotypes 
or reassortants were consecutively isolated in humans. To standardize or close the live poultry trade would be the 
most efficient way to prevent and control the human-avian influenza virus infection disease.

To date, a total of 29 genotypes of H7N9 viruses, including BJ01 (G1.5) and BJ02 (G2.9), have been identi-
fied according to our classification and nomenclature system3. However, there are only 11 genotype viruses iso-
lated and identified in humans3. This finding suggested that diverse genotype viruses should possess heterogenic 
host-specific preference and pathogenicity for humans. The BJ01 virus only caused the patient to have a mild to 
moderate respiratory syndrome2, whereas the BJ02 virus tended to cause a severe disease. The underlying mech-
anisms need to be further clarified.

In addition, the oseltamivir resistance mutation (R292K) in the NA protein of BJ02 could not be found after 
3 days of oseltamivir usage; however, the mutation emerged in the A/Shanghai/1/2013(H7N9) strain just after 
one day treatment with oseltamivir10,20. This finding further suggested that diverse biologic characteristics might 
appear in different H7N9 viruses.

Figure 3. The kinetic changes of neutralization antibodies and cytokines in the patient induced by A/
Beijing/02/2014(H7N9). The sera of the H7N9 patient were collected on 7, 15 and 18 d.a.o. and were used to 
detect the changing MN titres (A) and cytokines (C). The serum of a pandemic-H1N1 patient was collected on 
15 d.a.o. as a control and was compared to the results of the H7N9 patient (B,D).
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In general, viral and host factors contribute to disease severity and outcomes. A previous multivariate analysis 
revealed that the presence of coexisting medical conditions (such as chronic heart disease and chronic obstruc-
tive pulmonary disease) were the only independent risk factors for severe illness with H7N9 infection1. Recent 
studies found that the presence of host genetic factors might be closely related to H7N9 influenza disease suscep-
tibility and/or severity21,22. The IFN-induced transmembrane protein-3 (IFITM3) C/C genotype was reported to 
be associated with severe clinical outcomes, as reflected by a higher viral load, more rapid progression to ARDS, 
higher cytokine/chemokine levels, and an increased mortality rate after H7N9 infection22. Recently, increasing 
data showed that elevated concentrations of inflammatory cytokines/chemokines (especially IL-6, IL-8, MIP-1β ,  
IP-10, MIF, SCF, MCP-1, and HGF) in the infected lung and plasma (hypercytokinaemia) are highly positively 
linked to disease severity in H7N9 infected patients23–26. Cytokine production is closely related to the severity of 
host lesions due to influenza virus infection27–29. Proper cytokine expression is necessary for disease recovery, 
defending against virus infection, and recruiting inflammatory cells to the sites of infection through a delicate bal-
ance between pro- and anti-inflammatory mediators30. However, cytokine over-expression breaks the immuno-
logic balance, which causes systemic inflammation, acute organ dysfunction and even death11,31,32. H7N9-infected 
patients present the manifestations of acute respiratory disease syndrome (ARDS) and hypercytokinaemia10,12, 
which also were observed in the present case. In the present study, the H7N9 patient displayed the highest levels 
of IP-10, IL-6, IL-12p40 and MCP-1 secretion in the serum obtained during the acute phase of the disease (7 
d.a.o.). Notably, the elevation of the chemokine IP-10 was the most robust among all of the detected cytokines 
and chemokines. Because IP-10 is a critical player in the induction of lung injury, its upregulation in H7N9 infec-
tion might be positively linked to disease severity, and this molecule could be a sensitive outcome predictor24. 
Although the case number was limited in our study to compare the serum cytokine levels between H7N9 and 
H1N1 infected patients, a similar profile of mediator secretion patterns in H7N9 and H1N1 infected patients 
has been seen by other groups with more influenza A patients1,24. Hence, the higher level of cytokine secretion 
might explain the more severe syndromes caused by H7N9 virus infection than by the contemporaneous H1N1 
virus. It should be mentioned that there are also some different changes between our study and other studies in 
the cytokines for the H7N9 infections12,33–36. This finding might be related to the individual differences of host 
immune responses and the virus pathogenic characteristics, which should be further determined with more sam-
ple cases in the future.

Although this was a severe H7N9-infected case with cytokine storm-like appearances and multiple organ 
failure, the patient was eventually cured after combination therapy with antivirals, mechanical ventilation, sup-
portive nutrition and symptomatic treatment. In our study, the 73-year-old patient was not prescribed oseltamivir 
until day 6 d.a.o. because the H7N9 virus was not identified at the onset of his illness. According to the clinical 
finding reports of the H7N9-infected patients in 2013, the median time of the initiated antiviral therapy was  
7 days after the onset of illness1. Although it is difficult to identify, diagnose and initiate antiviral therapy within 
3 d.a.o., neuraminidase inhibitors should be employed as soon as possible (ideally, within 48 hours following 
symptom onset) to maximise the therapeutic benefits and reduce the incidence of severe illness. To achieve this 
purpose, we need to further optimize the diagnostic tools for influenza-infection detection.

A previous study showed that the early and rapid induction of NAb was correlated significantly with better 
clinical outcomes14,37. As shown in our study, the seroconversion of NAb in this H7N9 case appeared on day 
7 d.a.o., and the MN titres increased rapidly until reaching a plateau at 15~18 d.a.o. with a significantly high 
level (1:480~1:510). Hence, the quickly increased NAb level probably contributed to the virus clearance and the 
patient’s recovery.

The H7N9 influenza virus is spreading, evolving and becoming widespread among chickens in China6. 
Fortunately, the virus has not completely obtained the ability for human-like receptor binding and 
human-to-human transmission. Moreover, the H7N9 virus still mainly originates and evolves in avian species; 
therefore, it is possible to intercept the interspecies transmission by controlling or standardizing live poultry 
trade. Additionally, we should persistent in monitoring the gene evolution of the H7N9 virus isolated from 
humans and avian species and should optimise diagnostic tools, develop antiviral drugs and spread effective 
combination therapies for H7N9 infections.

Materials and Methods
Clinical samples and ethical approval. A suspected case of H7N9 influenza virus infection was con-
firmed by a real-time RT-PCR assay in the Beijing Centers for Disease Control and Prevention (CDC). The epi-
demiologic and clinical data were collected. A confirmed case was defined as evidence of pneumonia with H7N9 
viral RNA or isolation of H7N9 virus from respiratory specimens. Informed consent was obtained from all par-
ticipating individuals. This experimental protocol was approved by the local Ethics Committee of Beijing Ditan 
Hospital, Capital Medical University. The methods were carried out in accordance with the approved guidelines.

Virology analyses. An oropharynx swab, collected on day 8 after the onset of flu-like symptoms, was used 
for virus isolation. The virus was propagated in 10-day-old specific pathogen free (SPF) embryonated chicken 
eggs and MDCK cells for 48 to 72 hours at 35 °C, respectively. For genetic analysis, the complete gene segments 
were amplified using improved primers (Table S1) based on previous reports38,39 and were sequenced by an ABI 
3730XL automatic DNA analyser (Applied Biosystems, Foster City, CA, United States). Genetic identification 
and homology of the isolate were performed using the BLAST method in NCBI. A phylogenetic analysis was 
constructed using the maximum likelihood method with MEGA5 (http://www.megasoftware.net). The genotype 
analysis of the H7N9 virus was classified by the criteria previously described3.

Neutralizing antibody and cytokine evaluation. Sera from the H7N9 patient were consecutively col-
lected on 7, 15 and 18 d.a.o. for kinetic evaluations of the neutralizing antibodies and cytokine levels. A pandemic 

http://www.megasoftware.net
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H1N1 severe case, onset on 2 February 2014, was used as a control, and the serum was collected on 15 d.a.o. 
The neutralizing antibodies (NAbs) were detected by Microneutralization Assays with A/Anhui/1/2013 (H7N9) 
and A/California/04/2009 (H1N1) viruses in MDCK cells, according to the previously described method40. The 
levels of cytokines in the H7N9 patient’s serum were detected by the Bio-Plex Human Cytokine Panel (Bio-Rad 
Laboratories, Inc.) according to the instructions.
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