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Abstract

Limited data exist comparing the performance of computerized neurocognitive tests (CNTs) for 

assessing sport-related concussion. We evaluated the reliability and validity of three CNTs—

ANAM, Axon Sports/Cogstate Sport, and ImPACT—in a common sample. High school and 

collegiate athletes completed two CNTs each at baseline. Concussed (n = 165) and matched non-

injured control (n = 166) subjects repeated testing within 24 hr and at 8, 15, and 45 days post-

injury. Roughly a quarter of each CNT's indices had stability coefficients (M = 198 day interval) 

over .70. Group differences in performance were mostly moderate to large at 24 hr and small by 

day 8. The sensitivity of reliable change indices (RCIs) was best at 24 hr (67.8%, 60.3%, and 

47.6% with one or more significant RCIs for ImPACT, Axon, and ANAM, respectively) but 

diminished to near the false positive rates thereafter. Across time, the CNTs' sensitivities were 

highest in those athletes who became asymptomatic within 1 day before neurocognitive testing but 

was similar to the tests' false positive rates when including athletes who became asymptomatic 

several days earlier. Test–retest reliability was similar among these three CNTs and below optimal 

standards for clinical use on many subtests. Analyses of group effect sizes, discrimination, and 

sensitivity and specificity suggested that the CNTs may add incrementally (beyond symptom 

scores) to the identification of clinical impairment within 24 hr of injury or within a short time 

period after symptom resolution but do not add significant value over symptom assessment later. 

The rapid clinical recovery course from concussion and modest stability probably jointly 

contribute to limited signal detection capabilities of neurocognitive tests outside a brief post-injury 

window.
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Introduction

Neuropsychological testing is recognized as an important component in the assessment of 

athletes with sport-related concussion (SRC; Echemendia et al., 2013; McCrory et al., 2013; 

Moser et al., 2007). Over the last 10–15 years, computerized neurocognitive testing (CNT) 

has become especially popular in the sports medicine community (Covassin, Elbin, & 

Stiller-Ostrowski, 2009; Meehan, d'Hemecourt, Collins, Taylor, & Comstock, 2012; Resch, 

McCrea, & Cullum, 2013). CNTs have several purported advantages over traditional paper-

and-pencil neuropsychological tests, including the ability to (1) baseline test multiple 

athletes simultaneously, (2) administer and interpret tests in the absence of 

neuropsychologists, (3) maximally standardize components of test administration, (4) 

readily use alternate test forms (via randomized presentation of stimuli), (5) quantify 

reaction time, and (6) take advantage of centralized data repositories (Collie, Darby, & 

Maruff, 2001; Rahman-Filipiak & Woodward, 2014).

Although these features have undoubtedly contributed to the rapid adoption of CNTs into 

routine sports medicine practice, this trend has not occurred without controversy. The major 

concerns raised revolve around baseline testing practices (e.g., testing athletes in group 

settings that contribute to poor estimation of premorbid abilities; Lichtenstein, Moser, & 

Schatz, 2014; Moser, Schatz, Neidzwski, & Ott, 2011), the limited assessment and 

psychometrics training of some professionals who administer and interpret the tests (Moser, 

Schatz, & Lichtenstein, 2015), and the fact that much of the research has been conducted by 

the test developers themselves (Cernich, Reeves, Sun, & Bleiberg, 2007). Most problematic 

is that the reliability and validity of neurocognitive testing for concussion assessment has not 

been adequately demonstrated. A 2005 review of neuropsychological testing for sport-

related concussion concluded that no neuropsychological tests (paper-and-pencil or 

computerized) met the minimum criteria needed to establish their utility in SRC assessment 

due to the very limited base of published research establishing the psychometric properties 

and performance of any test under conditions that are clinically relevant for concussion 

management (Randolph, McCrea, & Barr, 2005). While the number of published studies on 

CNTs has significantly increased since that time (for a review see Resch, McCrea, et al., 

2013), there is little published work directly comparing the performance of the currently 

available CNTs, which precludes informed decision-making about which CNT to use.

This gap in the literature was the impetus for Project Head to Head, an independent, 

prospective study aimed at comparing the reliability, validity, and clinical utility of several 

popular CNTs for the assessment of sport-related and civilian concussion (or mild traumatic 

brain injury, mTBI). The study enrolled athletes in its sport-related concussion (SRC) arm 

from 2012 to 2014. Here, we present findings on the test–retest reliability, sensitivity, and 

specificity of the three CNTs (ANAM, Axon, ImPACT) used in the study's athlete sample.
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Test–Retest Reliability of ANAM, Axon, and ImPACT

Reported test–retest reliability coefficients for ANAM, Axon (or CogSport), and ImPACT 

from prior studies are somewhat difficult to compare, owing to differences in samples, test–

retest intervals, and choice of stability coefficient (i.e., Pearson or intraclass correlation, 

ICC).1 Several samples have been rather small for correlational analysis, some test–retest 

intervals used have been too short to be of clinical relevance (e.g., 1 week), and no studies 

have directly compared the reliability of these three CNTs within the same athlete sample.

Reports of the stability of performance on each CNT have varied widely by study. Across 

three studies of ANAM, only 9 of 19 (47%) of reported reliability coefficients met minimal 

standards for clinical use (.60 or more; Cernich et al., 2007; Register-Mihalik et al., 2013; 

Segalowitz et al., 2007). Reports of Axon's stability have varied from finding only 2 of 5 

Pearson coefficients to be over .60 (MacDonald & Duerson, 2015) to reporting strong 

stability (range, .83–.94) for all 4 indices (Louey et al., 2014); see also (Collie et al., 2003; 

Eckner, Kutcher, & Richardson, 2011; Straume-Naesheim, Andersen, & Bahr, 2005).2 A 

larger number of studies have been published on the reliability of ImPACT in high school 

(Elbin, Schatz, & Covassin, 2011; Iverson, Lovell, & Collins, 2003; Register-Mihalik, 

Kontos, et al., 2012), collegiate (Iverson et al., 2003; Nakayama, Covassin, Schatz, Nogle, & 

Kovan, 2014; Register-Mihalik, Kontos, et al., 2012; Resch, Driscoll, et al., 2013; Schatz, 

2010), and professional (Bruce, Echemendia, Meeuwisse, Comper, & Sisco, 2014) athletes 

as well as non-athlete students (Broglio, Ferrara, Macciocchi, Baumgartner, & Elliott, 2007; 

Schatz & Sandel, 2013). Reliability coefficients for ImPACT have been uniformly poor in 

some samples (e.g., ICCs .23–.39 in 73 college students tested 45 days apart; Broglio, 

Ferrara, et al., 2007) and consistently stronger (over .60) in others (Iverson et al., 2003; 

Schatz & Ferris, 2013).

Given that correlation coefficients are inherently sensitive to sample-specific factors (e.g., 

degree of heterogeneity), it is all the more important to obtain these estimates from 

comparable samples and to use equivalent test–retest intervals before conclusions can be 

drawn about the relative stability of indices from different CNTs. The one study that 

evaluated the reliability of these three CNTs (along with CNS-Vital Signs) in a military 

sample tested approximately 30 days apart reported that, although select subtests from each 

CNT demonstrated adequate reliability, overall the coefficients appeared lower than is 

desired for clinical decision-making (Cole et al., 2013).

1It is worth mentioning that there has been debate about whether Pearson or ICCs are more appropriate for the estimation of test-retest 
reliability. Those who advocate for the use of ICCs tend to cite the statistic's ability to take into account systematic error (e.g., practice 
effects; Weir, 2005). Further complicating this debate is that numerous formulas for the ICC exist, some of which do not take into 
account systematic error. This underscores the importance that researchers specify the formula they are using when reporting ICCs. In 
contrast, proponents of Pearson correlations have pointed out that, given the classic definition of reliability (i.e., the proportion of true 
score variance over total variance), practice effects could reflect changes in true score variance and therefore should not be accounted 
for in the denominator of a reliability coefficient (Rousson, Gasser, & Seifert, 2002). The aim of this manuscript is not to contribute to 
this debate but rather to acknowledge it while summarizing findings from different methods.
2In general, reliability coefficients for Axon appear stronger for reaction time versus accuracy-based metrics, probably due to range 
restriction in accuracy measures. Because of its limited psychometric properties, the working memory accuracy measure (reported on 
in some of these cited studies) has since been dropped as a core clinical measure by Axon.
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Group-Level Sensitivity to Concussion

Publications presenting concussed versus control group effect sizes for CNT measures are 

also similarly difficult to compare due to variability in samples, post-injury time points, and 

statistical methods across studies. Consistent with findings on the neurocognitive sequelae of 

concussion for other measures, the literature has revealed moderate to large neurocognitive 

impairments within 1–3 days post-injury on ImPACT whether concussed athletes are 

compared to their own baselines (Iverson, Brooks, Collins, & Lovell, 2006; Iverson et al., 

2003; McClincy, Lovell, Pardini, Collins, & Spore, 2006) or to non-injured controls (Schatz, 

Pardini, Lovell, Collins, & Podell, 2006; Schatz & Sandel, 2013), with effect sizes 

diminishing 1 week or more post-injury. The ANAM battery has limited published data on 

athletes but has demonstrated statistically significant impairments within 10 days of injury in 

a small high school sample (Sim, Terryberry-Spohr, & Wilson, 2008) and, in another 

sample, significant impairments on two (of six) indices 1–2 days post-injury with resolution 

by 3–7 days (Bleiberg et al., 2004). Axon has also demonstrated large concussed versus 
control group effects (d = −.94 to −2.95) in symptomatic Australian Rules Football and 

Rugby players tested 26–42 hr post-injury (Louey et al., 2014).

Sensitivity and Specificity of Reliable Change Indices

Because athletes at greatest risk of concussion are readily identified (by virtue of 

participating in contact and collision sports), many sports medicine professionals baseline 

test teams of athletes pre-season so that they can apply reliable change indices (RCIs) 

produced by each CNT to estimate whether concussed athletes have returned to their 

premorbid levels of functioning (Covassin, Elbin, Stiller-Ostrowski, & Kontos, 2009; 

Meehan et al., 2012). RCIs were first proposed to estimate whether individual patients 

benefitted from psychotherapy interventions (Jacobson & Truax, 1991) and are computed by 

dividing the change in some measure between two time points (e.g., neurocognitive 

performance from baseline to post-concussion) by the standard error of the difference. This 

results in a score that can be compared to standard Z score cutoffs to determine whether an 

individual's change score is statistically unusual after accounting for chance variation. Thus, 

RCIs provide a theoretical advantage over the application of normative cutoffs in that they 

facilitate clinical decisions by formally accounting for individuals' pre-injury abilities, 

measurement error, and in some cases expected practice effects (Chelune, Naugle, Lüders, 

Sedlak, & Awad, 1993).

However, the sensitivity and specificity of the RCIs provided by the available CNTs have not 

been adequately documented for all available CNT programs, and no studies have focused 

analyses of the RCIs' sensitivity in the sub-population of concussed athletes for which 

neurocognitive testing could add value to concussion assessments: those who have become 

asymptomatic and would be otherwise cleared for participation unless clinical testing 

(neurocognitive or other) indicated lingering impairment that would alter the clinician's 

decision on the athlete's readiness to return to play. Because current guidelines preclude 

returning athletes to play until symptom-free (i.e., free of symptoms initiated or exacerbated 

by the concussive injury), the inclusion of symptomatic athletes in most estimates of 

sensitivity may overestimate the degree to which neurocognitive test results would alter 

clinical decision making. Given the time, expense, and expertise needed to properly 
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administer and interpret neurocognitive tests, their added value to concussion assessment 

relies on demonstrating that they reliably and validly identify impairments beyond freely and 

quickly administered symptom measures.

Previous reports of the sensitivity and specificity of CNTs are difficult to compare for a 

variety of reasons. For example, several studies have reported on concussed athletes only 

(disregarding specificity) or emphasized the sensitivity and specificity of individual indices 

within a CNT rather than presenting findings across the set of available scales within each 

battery. Given that clinicians are faced with interpreting the outcomes of multiple RCIs 

simultaneously, documenting the joint base rates of impairment in both concussed and non-

concussed athletes is essential to determining the validity of the measures. Furthermore, 

reports that have aggregated neurocognitive and symptom measures do not directly address 

the added value of neurocognitive measures over symptom scores. Finally, since the 

confidence levels applied to the RCIs to determine significance vary by test manufacturer 

[90% confidence intervals (CIs) for ANAM and Axon; 80% CIs for ImPACT], the expected 

specificities (and by extension, sensitivities) are not equal across all measures.

The majority of published studies on this topic have focused on ImPACT, which is the most 

widely used CNT in athletic settings (Meehan et al., 2012). Perhaps in part due to the 

reasons cited above, the sensitivity and specificity of ImPACT's RCI criteria have varied 

across studies. The percentage of concussed athletes with one or more significantly declined 

RCIs on ImPACT has ranged from 62.5–83% at 1–2 days post-injury (Broglio, Macciocchi, 

& Ferrara, 2007; Iverson et al., 2003; Van Kampen, Lovell, Pardini, Collins, & Fu, 2006), 

with 90% of concussed athletes showing 2 or more significant RCIs in another sample 

(Iverson et al., 2006). Specificity values have also varied quite a bit by sample and, as 

expected, have improved as criteria for significant change were made more stringent 

(Iverson et al., 2003; Resch, Driscoll, et al., 2013). Reports of the RCIs used by ANAM and 

Axon are more limited in scope. One study of ANAM reported 0–11% sensitivity (90% CIs) 

on each subtest of the battery, with only 50% sensitivity (and 95% specificity) across a 

battery incorporating ANAM data with that of a symptom checklist and the Sensory 

Organization Test (Register-Mihalik, Guskiewicz, et al., 2012). A single study of Axon 

found 100% sensitivity to SRC (one or more significant RCIs with 90% CIs) but only 50.8% 

specificity (Louey et al., 2014).

Current Study

The aim of this study was to quantify and compare the reliability and validity of three CNTs

—ANAM, Axon, and ImPACT—in the context of sport-related concussion assessment. 

More specifically, we were interested in characterizing the psychometric properties and 

clinical performance of the CNTs under conditions in which they are used in routine sports 

medicine practice, including using relevant test–retest intervals as well as examining the 

RCIs produced by each CNT's standard software package. Consistent with prior research, 

we hypothesized that (1) test–retest reliability coefficients in the control sample would vary 

across indices within each CNT and would be larger for shorter versus longer test–retest 

intervals, (2) concussed versus control group effect sizes would be moderate to large within 

24 hr of injury on some indices from each CNT and would diminish in magnitude further 
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out from injury, (3) the sensitivity of each CNT's RCIs would be moderately strong within 

24 hr of injury and would substantially diminish at the day 8 assessment, and (4) given the 

multiple indices that are provided in each CNT's score report and associated issues with 

multiple comparisons, that the base rates of one or more impairments (per the RCI criteria) 

in non-injured control sample would be relatively high and would diminish with more 

stringent criteria for significant change (i.e., two or more significant RCIs within a CNT).

Method

Participants

Participants were contact and collision sport athletes from 9 high schools and 4 colleges in 

southeastern Wisconsin enrolled in Project Head to Head between August, 2012 and 

October, 2014 (see also LaRoche, Nelson, Connelly, Walter, & McCrea, 2015; Nelson, 

Pfaller, Rein, & McCrea, 2015). Among the 2,148 participants who consented to participate, 

166 were concussed during the study and were enrolled in post-injury testing. Ten of those 

athletes sustained a repeat concussion during their study participation. A sample of 166 non-

injured controls were selected to match injured athletes on school, sports team (and by 

extension gender), estimated premorbid verbal intellectual ability (Wechsler Test of Adult 

Reading; see baseline testing protocol), cumulative self-reported GPA, and age. Because of 

limited controls on some sports teams and the numerous matching criteria, 22 injured 

subjects were matched to a control from another institution. Athletes who had failed to 

produce any valid CNT at baseline (n = 1) were excluded from the analysis, yielding 165 

concussed athletes and 166 controls for analysis.

Adult athletes and parents of minor athletes completed informed consent, and minor 

participants completed assent before their first evaluation. Participants were compensated 

$30 for their time and effort in completing baseline assessments and received $50 for each 

post-injury assessment. All testing procedures were approved by the Institutional Review 

Board at the Medical College of Wisconsin.

Definition of Injury and Acute Injury Characteristics

The definition of concussion used in this study was based on that of the study sponsor, the 

U.S. Department of Defense: “mTBI is defined as an injury to the brain resulting from an 

external force and/or acceleration/deceleration mechanism from an event such as a blast, 

fall, direct impact, or motor vehicle accident which causes an alteration in mental status 

typically resulting in the temporally related onset of symptoms such as headache, nausea, 

vomiting, dizziness/balance problems, fatigue, insomnia/sleep disturbances, drowsiness, 

sensitivity to light/noise, blurred vision, difficulty remembering, and/or difficulty 

concentrating” (Helmick et al., 2006).

Baseline and Post-Injury Test Battery

The study protocol involved testing athletes at pre-season baseline examinations and 

retesting concussed athletes within 24 hr and at 8 (±1), 15 (±2), and 45 (±5) days post-

injury. Occasionally, examinations were scheduled outside the target window to avoid 

missing data. For the concussed sample, the M (SD) time from injury to the 24-hr 
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assessment was 19.09 (5.09) hr, with M (SD) number of days from injury to the day 8, day 

15, and day 45 assessments = 8.16 (.96), 15.37 (1.55), and 45.39 (3.67), respectively. For 

controls, testing was done as soon after identification as possible and then 7 (M [SD] = 7.10 

[.88]), 14 (14.28 [1.22]), and 44 (43.82 [4.15]) days after their initial evaluation. The 

baseline testing protocol consisted of, in order: Contact Information, Demographics/Health 

History (gathered by one-on-one interview), Wechsler Test of Adult Reading (WTAR; 

Wechsler, 2001), CNT #1, Standardized Assessment of Concussion (SAC; McCrea et al., 

1998), Sport Concussion Assessment Tool – 3rd edition (SCAT3) symptom checklist 

(McCrory et al., 2013), CNT #2, Green's Medical Symptom Validity Test (MSVT; Green, 

2003),3 Satisfaction With Life Scale (SWLS; Diener, Emmons, Larsen, & Griffin, 1985), 

Brief Symptom Inventory-18 (BSI-18; Derogatis, 2001), and the Balance Error Scoring 

System (BESS; Guskiewicz, Ross, & Marshall, 2001). Tests were individually proctored by 

a research assistant in quiet settings with computers positioned to minimize distractions. 

Baseline testing group sizes ranged from 1–20 athletes; post-injury testing was conducted 

one-on-one. Each athlete was read a standardized script at the beginning of the baseline 

testing session and before each of the CNTs about the importance of valid baseline tests. 

Follow-up protocols began with an interview of recovery information and then followed the 

same procedure as listed above starting with CNT#1. Baseline testing sessions lasted 

approximately 90 min and post-injury testing sessions lasted approximately 60 min.

Each athlete took two of three CNTs: Automatic Neuropsychological Assessment Metrics 

(ANAM v. 4.3; Vista Life Sciences), Axon Sports (Axon/Cogstate Sport; Cogstate Ltd.), and 

Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT, Online version; 

ImPACT Applications Inc.). These were selected by the study Principal Investigator and 

study advisors to match the most widely used CNTs in sports medicine at the time of study 

design. The decision to administer two CNTs to each participant was made to balance the 

benefits of increased statistical power using a within-subjects, head-to-head design while 

minimizing the potential for cognitive fatigue associated with performing multiple 

neurocognitive tests in a single session. CNT pairing groups were assigned to each school 

with the aim of balancing the demographic distribution across CNTs. Because controls were 

selected from the same sports teams as the injured subjects they were selected to match, each 

concussed-control pair took the same two CNTs at each assessment (less 11 pairs who were 

selected from different institutions that had only one of two CNTs in common). The overall 

distribution of CNT pairings across the sample evaluated in this manuscript was: 27.2% 

ANAM-Axon, 40.8% ANAM-ImPACT, and 32.0% Axon-ImPACT. For each subject, order 

of administration was selected at random by a computer algorithm at the first assessment and 

repeated for that individual at all follow-up examinations.

3As has been thoroughly examined in another report on the larger baseline sample from this study (Nelson et al., 2015), MSVT failure 
was rare and demonstrated poor agreement with the validity output of any CNT. Thus, given our goal to examine the performance of 
these CNTs in their typical clinical context (in which only the CNT validity criteria are available, and because the MSVT does not 
appear to measure the same construct as related to performance validity as the CNTs measure, and, we did not exclude subjects from 
the primary analyses due to failure to pass the MSVT at baseline (n = 3 in this sample). However, see the Supplemental Materials for 
evidence that the major study findings were not affected by these subjects (Supplementary Tables S1–S2).
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Computerized Neurocognitive Tests

ANAM—The version of ANAM used in this study included eight subtests: Simple Reaction 

Time, Code Substitution-Learning, Procedural Reaction Time, Mathematical Processing, 

Matching to Sample, Code Substitution-Delayed, Simple Reaction Time 2, and Go/No-Go. 

The score summary produced for the study also included a Composite Score previously 

derived to aggregate the throughput scores from each subtest (Vincent et al., 2012). ANAM 

forms used for baseline and post-injury assessments were, in order, forms 1, 2, 3, 4, and 5.

Axon—The Axon Sports (Cogstate Sport) CNT is comprised of four tasks: Processing 

Speed (simple reaction time), Attention (choice reaction time), Learning (LN; visual 

recognition memory) and Working Memory (one-back). Axon baseline and post-injury test 

protocols are equivalent with stimulus order randomized for every administration.

ImPACT—ImPACT is comprised of six tasks, Word Memory, Design Memory, X's and O's, 

Symbol Match, Color Match, and Three Letters, which yield the following neurocognitive 

composite scores: Verbal Memory, Visual Memory, Visual Motor Speed, Reaction Time, and 

Impulse Control. The Impulse Control Composite was not included in the analyses because 

it appears to be intended for the assessment of performance validity. ImPACT alternate 

forms used for baseline and post-injury assessments were, in order, the Baseline and Post-

Injury forms 1, 2, 3, and 4.

Data Analysis

Sample considerations and measures—The majority of the concussed sample (n = 

133) and the entire control sample enrolled in the study at pre-season baseline testing; an 

additional 33 concussed athletes enrolled post-injury. As concussed athletes with and 

without baseline data were statistically equivalent on markers of injury severity (differences 

on acute injury characteristics and 24-hr symptoms and neurocognitive performance; all 

unadjusted ps > .10), all available subjects were included in the analyses. Repeat injuries (n 
= 10) during the study were not included.

Analyses involving symptom data used the SCAT3 symptom checklist, a 22-item checklist 

of common post-concussive symptoms in which athletes rate the degree to which they are 

experiencing each item on a 0–6 (none to severe) scale. Symptom severity scores represent 

the sum of the item-level scores (range, 0–132), with higher scores reflecting more severe 

symptoms. Analysis of the CNT data used throughput scores for all ANAM subtests except 

Go/No-Go, for which d-prime was used, scaled scores for all Axon subtests (M = 100; SD = 

10), and composite scores for all ImPACT subtests. Although some CNTs have embedded 

symptom checklists, these were excluded from analyses to focus on neurocognitive testing. 

Preliminary analyses indicated that all measures were reasonably normally distributed 

(skewness < ±1). Subjects were excluded from analyses of a CNT if they did not produce a 

valid baseline for that test.

Test–retest reliability—Reliability for each CNT subscale was quantified for the non-

injured control sample using both Pearson correlations (r) and Intraclass Correlations (ICC; 

2-way mixed, absolute agreement). Test–retest intervals were selected from varying 
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combinations of the available time points to yield a range of retest intervals and to include 

retest intervals with clinical relevance to sports medicine practice. This yielded the following 

test–retest intervals: 7 days (24-hr vs. day 8 assessment), 14 days (24-hr vs. day 15), 30 days 

(day 15 vs. day 45), 44 days (24-hr vs. day 45), and 198 days (M time interval between pre-

season baseline and first repeat examination).

Group-level sensitivity—Group (concussed, control) × Time (baseline, 24 hr, day 8, day 

15, day 45) repeated measures analyses of variance (ANOVAs) were computed for each 

CNT index. Follow-up ANOVAs examined the main effect of Group at each time point 

within each measure. Adjustment for multiple comparisons was performed using the false 

discovery rate method (Benjamini & Hochberg, 1995). This approach is a sequential 

Bonferroni-type procedure that, unlike traditional Bonferroni correction (which controls the 

familywise error rate), is aimed at controlling the expected proportion of incorrectly rejected 

null hypotheses (“false discoveries”) and, consequently, better preserves statistical power 

while also providing a reasonable degree of control of type I errors (Benjamini & Hochberg, 

1995; Benjamini & Yekutieli, 2001). Cohen's d was computed from the groups' descriptive 

statistics to provide a comparable metric of effect size across the measures. Because 

concussion histories differed between groups, steps were taken to ensure that this variable 

did not moderate the reported group differences. In particular, correlations between number 

of prior concussions and each CNT measure (at each time point) found only 4 comparisons 

(<5% of unadjusted p-values) to be statistically significant. Adding concussion history as a 

covariate in the ANOVA models described above did not in any case change the significance 

status of the comparison and had no marked influence on the effect sizes reported. Thus the 

data presented below reflect those of the models computed without the inclusion of 

concussion history as a covariate. Next, to illustrate how the effect sizes reported translate 

into utility for individual decision making, receiver operating characteristic (ROC) curves 

were produced for each index and the area under the curve (AUC) reported.

Performance of reliable change indices—Finally, a set of analyses were conducted to 

document the sensitivity and specificity of the standard neurocognitive RCI output for each 

CNT. The RCIs produced by each CNT software package were selected over sample-derived 

RCIs to document the performance of the indices routinely used in clinical practice. 

However, it should be noted that because the manufacturer's standard RCIs reflect different 

confidence levels (90% CIs for ANAM and Axon; 80% CIs for ImPACT) and produce 

differing numbers of RCIs (seven for ANAM and four for Axon and ImPACT), the expected 

false positive rates are not equivalent and should be interpreted in that context. The version 

of ANAM used in the study did not provide an RCI for the Go/No-go subtest.

Sensitivity values were computed both for individual subtests/subscales as well as summated 

across the RCIs for each CNT. To retain a large n at each time point and maintain 

consistency with most published literature on these measures, we first computed sensitivity 

values for the entire concussed sample. However, we also separately computed the 

sensitivity of each test in asymptomatic concussed athletes, with each athlete classified as 

symptom-free at each assessment point if they reported feeling recovered of any 

postconcussive symptoms in our recovery interview.4 Note that very few subjects reported 
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recovery within 24 hr of injury (ns for ANAM, Axon, and ImPACT at 24 hr = 7, 8, and 13, 

respectively, vs. day 8 ns = 56, 37, and 61). Second, because athletes identified through the 

first approach (particularly for day 8 and beyond) were tested at variable time points with 

regard to the number of days since they became asymptomatic, we aggregated all concussed 

subjects (across all time points) who were tested within 1 day of becoming asymptomatic 

(based on their self-reported symptom duration in a recovery interview) to estimate the 

degree to which the CNTs would alter clinical decision making at this important time point. 

This yielded ns of “recently” asymptomatic athletes for ANAM, Axon, and ImPACT of 18, 

19, and 32, respectively.

Results

Sample Characteristics and Course of Symptom Recovery

Table 1 displays the sample characteristics and degree of matching between the concussed 

and control groups. A total of 162 (97.6%) of the control subjects had been selected as a 

matched control for one of concussed athletes in the final study sample. The groups were 

closely matched on age, sex, race, sport, estimated verbal intellectual ability (WTAR score), 

socioeconomic status, history of neurodevelopmental disorder, grade point average, height, 

and weight. As described under Data Analysis, the difference in concussion history between 

groups did not moderate the effects reported below. Among our injured sample, 6.1% 

exhibited observed loss of consciousness, 10.4% posttraumatic amnesia, and 9.8% 

retrograde amnesia, consistent with the acute injury characteristics in our other published 

work on SRC (e.g., McCrea et al., 2003).

Symptom severity scores for the concussed versus control groups were equivalent at baseline 

and elevated at 24 hr and day 8 (baseline M [SD] = 6.52 [10.23] vs. 5.88 [7.36], p = .534 [d 
= −.07]; 24 hr M [SD] = 24.80 [18.26] vs. 4.48 [5.03], p < .001 [d = −1.52]; day 8 M [SD] = 

7.44 [14.32] vs. 3.19 [5.09], p < .001 [d = −.40]). Symptom scores were equivalent by the 

day 15 assessment (p = .287; d = −.12). The percentage of concussed athletes who reported 

on interview that they had achieved symptom recovery was 10.6% within 24 hr of injury and 

64.6%, 85.2%, and 98.6% at the day 8, 15, and 45 assessments, respectively.

Analysis of Test Order

Because each athlete took two CNTs, analyses were undertaken to ensure that the primary 

analyses reported were not influenced by test order. To summarize these findings 

(documented more completely in Supplementary Tables S3–S4, which are available online), 

we found very little evidence for any effects of test order on the reliability and validity of 

any of the three CNTs. In regards to test–retest reliability, there was not a consistent 

advantage for tests administered first or second: the median difference in reliability for each 

subtest for Order 1–Order 2 was .05 (for both Pearson rs and ICCs) and 9 of 17 indices 

showed higher Pearson reliability coefficients (10 of 17 for ICCs) for Order 1 versus 2. 

4Classification of symptom status was also conducted by evaluating whether athletes had returned to their reported levels of baseline 
symptoms on the SCAT3. Analyses of the CNTs' sensitivity in symptom-free athletes using this approach produced results that were 
highly consistent with the interview-based approach (M difference between sensitivity using the interview vs. SCAT3-based 
classification of symptom recovery was 0.1% across CNTs and time points).
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Analyses of overall test performance also revealed no evidence of meaningful effects of test 

order on performance (no concussion Group × Order interactions, very few main effects of 

test order that were not in a consistent direction, and no consistent influence of order on the 

magnitude of concussed vs. control group differences).

Test–Retest Reliability of CNT Indices

Table 2 displays the test–retest reliability for each CNT subtest for a range of test–retest 

intervals (7, 14, 30, 45, and 198 days) using both Pearson rs and ICCs. Coefficients were 

similar between CNTs, with roughly half of the reliability coefficients for each CNT (198-

day interval) over .6 (5 of 9 for ANAM and 2 of 4 for both Axon and ImPACT) and roughly 

a quarter were over .7 (2 for ANAM and 1 for Axon and ImPACT). Counter to expectation, 

there was not a consistent advantage of a shorter retest interval, M Pearson r for the 7-day/

198-day intervals: ANAM .65/.57, Axon .60/.59, and ImPACT .61/.59.5

Group Performance and Effect Sizes of CNT Measures at Baseline and Follow-Up 
Assessments

Supplementary Tables S5–S7 display the descriptive statistics and statistical significance of 

Group × Time and Group ANOVAs for ANAM, Axon, and ImPACT. Table 3 displays the 

concussion by control group effect sizes (Cohen's d) for each CNT index at each assessment 

(with ds all scaled such that negative values indicate worse performance in the concussed 

group). Effect sizes of SCAT3 symptom ratings are provided in Table 3 for comparison to 

neurocognitive measures and to clarify the subjective recovery of this sample.

The groups were statistically equivalent on baseline performance for all CNT indices. The 

vast majority of indices (7/8 for ANAM, 4/4 for Axon, 4/4 for ImPACT) demonstrated 

statistically significant differences between groups at 24 hr and most effect sizes were 

moderate in size (ANAM ds = .19 to .89; Axon ds = .51 to .72; ImPACT ds = .70 to .80). 

Only 4 of 17 neurocognitive indices (ANAM Matching to Sample, Axon Attention and 

Learning, and ImPACT Verbal Memory) were significantly different between groups (ds = .

39 to .47) at day 8, and only the ANAM Matching to Sample was significant at day 15 (d = .

40).

Receiver Operating Characteristic Curves of CNT Subscales

Table 4 displays the AUC values from the ROC curve for the SCAT3 symptom severity 

score and each CNT index. Across the three CNTs, all AUC values within 24 hr of injury 

were in the poor (≤.69) to fair (.70–.73) range. AUCs at day 8 were all in the poor range. The 

SCAT3 symptom score demonstrated good (AUC = .87; 95% CI = .82–.91) discrimination 

within 24 hr, with discrimination falling to chance levels at day 8 (AUC = .53; 95% CI = .

47–.60).

5Additional analyses of age group (high school vs. college) were undertaken on reliability and validity. Stability coefficients were 
highly comparable for high school versus college athletes. For the baseline to first follow-up test-retest interval (M = 198 days), the 
median High School - College difference in stability for both Pearson and ICCs was .02; 9 of 17 coefficients favored the High School 
and 8 favored the Collegiate cohort. Furthermore, ANOVAs were performed of each CNT variable (at each time point) using age Level 
(high school, college) and concussion Group as independent variables. This revealed no significant interactions between Level and 
Group for any CNT measure at any time point, suggesting that the reported concussion effects of interest were not affected by age 
group.
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Joint Rates of Impairment Across All RCIs for Each CNT

Table 5 displays the percentage of all concussed (All), symptom-free concussed (Sx-), and 

control subjects who were classified as impaired on 1 or more (1+) and 2 or more (2+) RCIs. 

Symptom-free was classified according to athletes' self-report of recovery of any 

postconcussive symptoms during the recovery interview. As expected, the sensitivity of each 

CNT to concussion (All) was highest within 24 hr of injury (47.6% ANAM, 60.3% Axon, 

and 67.8% ImPACT with one or more significant RCIs) and lower for day 8 and beyond 

(25.7–35.4% for ANAM; 26.3–38.9% for Axon, and 39.7%–48.8% for ImPACT). The false 

positive rate (percentage of controls with 1+ impaired RCIs) across all time points ranged 

from 25.0–30.3% for ANAM, 20.8–26.7% for Axon, and 29.6–42.7% for ImPACT. At 24 hr, 

the sensitivity for symptom-free concussed athletes was similar to that of the entire 

concussed sample for ANAM (42.9%) and was somewhat lower for Axon (50.0%) and 

ImPACT (53.8%). Sensitivities in symptom-free athletes at 8 days and beyond were 

comparable to the false positive rates although, as we address below (see Table 6 and second 

to last section of the Results), this could have been due to the fact that many athletes tested 

at these later time points had been asymptomatic for several days. Finally, as expected, both 

sensitivity values and false positive rates decreased when examining only athletes with 2 or 

more significant RCIs (e.g., ANAM sensitivity/false positive rate at 24 hr: 31.0/6.3; Axon: 

34.2/4.4, and ImPACT 34.5/4.0).

Sensitivity and Specificity of RCIs by Subtest

Although the joint rates of impairment across each test's set of RCIs is most relevant to 

clinical decision making, it may also be useful to examine the performance of RCIs for 

individual subtests within each CNT to determine the subtests with the best (and worst) 

discrimination between concussed and control athletes. Supplementary Table S8 displays the 

percentage of all concussed (All), symptom-free concussed (Sx-), and control subjects who 

were classified as impaired on each RCI within each test battery.

Sensitivity to concussion (All) at 24 hr ranged from 6.0–23.8% for ANAM's seven subtests, 

6.8–48.6% for Axon's four subtests, and 24.4–39.5% for ImPACT's four clinical composite 

scales (M difference between the hit and false positive rate for ANAM, Axon, and ImPACT 

was 13.4%, 21.0%, and 23.2%, respectively). Sensitivity to concussion (All) diminished 

substantially at day 8 and beyond (M difference between the hit and false positive rate at day 

8 for ANAM, Axon, and ImPACT = 0.4%, 4.9%, and 2.4%, respectively). Sensitivity for 

most tests generally also diminished when considering only symptom-free athletes, with the 

M difference at 24 hr between the hit and false positive rate for ANAM, Axon, and ImPACT 

= 1.5%, 3.4%, and 5.2%, respectively (M sensitivity for asymptomatic athletes at day 8 was 

lower than the false positive rate for ANAM and ImPACT and only 1.1% higher than the 

false positive rate for Axon).

Sensitivity of RCIs in Recently Asymptomatic Athletes

As the study design involved fixed assessment time points, the prior analysis of athletes who 

were symptom-free at each assessment point may not have optimal ecological validity. This 

is because in many concussion management programs, sports medicine professionals are 

likely to test their athletes soon after they report becoming symptom-free, and many athletes 
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who were identified as asymptomatic at days 8, 15, and 45 had become asymptomatic 

several days before these assessment points. To the degree that neurocognitive impairment 

diminishes rapidly over the course of several days, aggregating athletes who became 

symptom free recently versus more remotely (as was the case in the day 8 and later time 

points for Table 5) could underestimate the frequency of neurocognitive impairment at the 

time when many athletes would be likely to first take a CNT. To determine whether this was 

the case, we defined a group of concussed athletes who, based on their self-reported 

symptom duration in a recovery interview, reported having become asymptomatic within 1 

day of any follow-up examination. Table 6 provides the sensitivity of each CNT to 

concussion for this subset of recently asymptomatic athletes (across 24-hr, day 8, and day 15 

assessments; no athletes fell into this category at the day 45 assessment). False positive rates 

observed in the non-injured controls at the 24-hr, day 8, and day 15 time points were 

weighted to match the proportion concussed data pulled from each assessment. Consistent 

with expectation, sensitivity values were generally higher using this approach, with the 

sensitivity (1 or more decline) of ANAM = 44.4%, Axon = 52.6%, and ImPACT = 56.3% 

(the false positive rates were 27.9%, 24.4%, and 37.2%, respectively, yielding M differences 

between hit and false positive rates = 16.5%, 28.2%, and 19.1%).

Positive and Negative Predictive Value of CNT RCIs

Finally, positive predictive value (PPV) and negative predictive value (NPV) was computed 

to illustrate the relationship between the sensitivity, specificity, and clinical utility of the 

CNTs' RCI profiles over time. Given that symptom reporting is the gold standard metric of 

clinical impairment for SRC, base rates reflect the percentage of concussed athletes 

reporting symptom impairment at each time point. Accordingly, in the interest of 

establishing the degree to which the CNT's correctly classify concussed athletes into 

symptomatic versus asymptomatic categories, sensitivity was extracted from symptomatic 

concussed athletes, and specificity from asymptomatic (“recovered”) concussed athletes for 

these computations (this did not allow for computation of PPV/NPV at day 45, given that 

only 2 athletes remained symptomatic at this time point). Although multiple approaches to 

selecting base rates could have been implemented, this approach was targeted to provide an 

illustration of the relationship between test psychometrics and clinical utility using a 

clinically relevant anchor of recovery. Table 7 depicts the resultant PPV/NPV values. Given 

the high base rate of symptom impairment at 24 hr, it is not surprising that PPV was 

uniformly high at this assessment point (>90% across all CNTs and thresholds for 

impairment). NPV, however, was low at this time point (<17% across all CNTs). At day 8, 

PPV was lower and only over 50% for one metric: ImPACT using a threshold for 

impairment requiring 1 or more significant RCIs. NPV at day 8 was relatively high (>68%) 

across all CNTs using this 1+ impairment criteria.

Discussion

In this large-scale, prospective study of the utility of three CNTs for the assessment of SRC, 

we found that ANAM, Axon, and ImPACT manifested variable and generally modest test–

retest reliability and moderate group-level sensitivity soon (<24 hr) after SRC. At 8 days 

post-injury and beyond, concussed versus control group effect sizes were generally small. 
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The test–retest reliability values reported are consistent with a recent review of this topic 

(Resch, McCrea, et al., 2013) and were generally lower than is considered needed to 

contribute meaningfully to clinical decisions. In particular, only approximately a quarter of 

indices from each CNT had stability coefficients over r = .70. Similarly, although concussed 

versus control group differences for each CNT were moderate to large within 24 hr of injury 

according to convention (M Cohen's d for ANAM, Axon, and ImPACT = −.60, −.57, and −.

76, respectively), these effect sizes translated to fair to poor discrimination between groups, 

even at this early post-injury time point (M AUC for ANAM, Axon, and ImPACT = .65, .66, 

and .71, respectively). In contrast, effect sizes for SCAT3 symptom checklist were large 

within 24 hr (d = 1.53) and manifested good discrimination between groups at this time 

point (AUC = .87).

Analyses of the sensitivity and specificity of the CNT's reliable change index output told a 

similar story, with sensitivities best within 24 hr of injury (47.6%, 60.3%, and 67.8% for 

ANAM, Axon, and ImPACT, respectively) and diminished substantially to at or near the 

false positive rate observed in non-injured controls for each measure by the day 8 

assessment and beyond. The overall sensitivity rate for ImPACT within 24 hr of injury 

(67.8% of all concussed athletes showed declines on one or more neurocognitive RCIs) was 

consistent with the lower bound of previously reported rates (Broglio, Macciocchi, et al., 

2007) and lower than some other published estimates (Iverson et al., 2006, 2003; Van 

Kampen et al., 2006). Although prior data on ANAM's performance in the context of SRC is 

limited, our overall sensitivity rate was consistent with that of one prior report (with false 

positive rates in our sample somewhat higher; Register-Mihalik, Guskiewicz, et al., 2012). 

Our sample yielded lower sensitivity but higher specificity than a previously published study 

of Axon (Louey et al., 2014).

Our findings of modest reliability and validity may be explained by several factors. First, the 

clinical manifestations of SRC are most prominent immediately after injury and demonstrate 

rapid recovery even within the first hours post-injury at a group level (McCrea et al., 2003). 

Indeed, our findings are consistent with prior meta-analyses of the magnitude of 

neurocognitive changes after SRC (Belanger & Vanderploeg, 2005; Broglio & Puetz, 2008) 

and with what is known about the rapid clinical recovery course after concussion (for a 

review, see Nelson, Janecek, & McCrea, 2013). An alternative viewpoint is that impairments 

persist further out from injury but that these CNTs simply lack the sensitivity to detect the 

abnormal signal. That the cognitive domains most affected by SRC (e.g., processing speed, 

attention) may be more sensitive than others (e.g., “hold” measures) to state factors (e.g., 

effort, motivation, fatigue) could limit the stability of measures of these constructs and, by 

extension, magnify difficulties detecting what become very subtle impairments within hours 

after injury. It is also possible that testing conditions (e.g., group size at baseline 

examinations) could have increased variability in performance at this time point and affected 

results pertaining to the baseline data, although limited recording of group size precluded 

formal analysis of this (Moser et al., 2011).

An important contribution of this paper was its emphasis on presenting joint base rates of 

impairment for both concussed and control athletes. Much prior work on the performance of 

these CNTs has emphasized the sensitivity of individual subtests or the sensitivity of sets of 
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indices for concussed athletes alone. However, given that clinicians using these multi-index 

batteries are faced with interpreting the results of sets of indices simultaneously, it is critical 

to know the joint base rates of impairment in healthy controls (i.e., false positives) to fairly 

judge the utility of the tests and to identify optimal decision rules for classifying individuals 

as impaired. Although the false positive rates of individual RCIs can be predicted from their 

confidence levels (e.g., 10% using an 80% CI; 5% using a 90% CI), as with any set of 

neuropsychological tests, the base rates of impairment across multiple tests may be much 

higher depending on the number of indices being jointly interpreted and their 

intercorrelations (Crawford, Garthwaite, & Gault, 2007; Nelson, in press; Schretlen, Testa, 

Winicki, Pearlson, & Gordon, 2008).

Consistent with this, the false positive rates in our sample (using 1 or more significant RCIs 

as the threshold for impairment) ranged (across time points) from 25.0–30.3% (M = 27.1%) 

for ANAM, 20.8–26.7% (M = 23.1%) for Axon, and 29.6–42.7% (M = 38.3%) for ImPACT. 

False positive rates were significantly reduced when considering controls with 2 or more 

significant RCIs (M false positive rates for ANAM, Axon, and ImPACT using this criterion 

= 10.1, 6.1, and 6.5%, respectively). These data can serve as important reference points for 

clinicians who are faced with determining the best impairment criteria given how they weigh 

different decision making errors.

The current study findings highlight the psychometric limitations of neurocognitive tests for 

SRC assessment at a group level, yet it has been suggested that such analyses obscure the 

contribution of neurocognitive testing for the minority of individuals who appear to show 

more prolonged clinical recovery (Iverson et al., 2006). In support of this idea, our data 

suggest that CNTs may be more sensitive than athletes' subjective symptom ratings for a 

short window of time post-symptom resolution and therefore could alter clinical return-to-

play decision making for some concussed athletes. However, because of the relatively high 

false positive rates in the CNTs, the added value of these neurocognitive measures appears 

rather modest even for individual-level analyses. A limitation of these analyses is that, 

because the primary aim of this study was to compare the properties and performance of 

these three CNTs in a common sample, we used fixed assessment time points that were not 

overtly tied to symptom recovery. This resulted in diminished ns available for supplementary 

analyses of symptom-free athletes at some time points and underscores the importance of 

replicating these results in other samples. Future studies using floating study designs that 

explicitly perform CNT testing after athletes become asymptomatic would be valuable to 

garner more power to evaluate the performance of these tests in this clinically-relevant 

subgroup of athletes.

Even if neurocognitive deficits persist after symptom resolution for some athletes, it is not 

known to what extent delaying their return-to-play due to these findings would modify their 

short-term risk of re-injury, underlying neural recovery, or longer-term prognosis. In fact, a 

recent randomized controlled trial found that extended strict rest (5 days) resulted in longer 

symptom recovery (and equivalent neurocognitive and balance recovery) as compared to a 

shorter period of rest (1–2 days) followed by a graduated return to normal activity (Thomas, 

Apps, Hoffmann, McCrea, & Hammeke, 2015). It is also not known to what extent clinical 

recovery intersects with that of underlying neural systems, as a growing neuroimaging 
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literature is finding neurophysiological deficits that persist after the point of clinical recovery 

(Broglio, Pontifex, O'Connor, & Hillman, 2009; Dettwiler et al., 2014; Prichep, McCrea, 

Barr, Powell, & Chabot, 2013; Zhu et al., 2015). It will be important for future research to 

elucidate the mechanisms underlying these effects, establish which athletes are at greatest 

risk for extended neurocognitive and neurophysiologic recovery, and establish to what 

degree changes in clinical decisions mediate individuals' immediate recovery and long-term 

outcomes.

Further complicating this research is that there is no universally agreed upon way to define 

concussion and, consequently, its diagnosis relies on athletes' subjective reporting of 

nonspecific signs and symptoms. This likely leads to research samples being comprised of 

individuals with heterogeneous injuries that could unknowingly diminish the effects of 

neurocognitive and other clinical measures. Emerging research is beginning to identify 

neurophysiologic markers of concussion with the hope of developing more objective 

definitions of injury (Mondello et al., 2014; Yuh, Hawryluk, & Manley, 2014). To the extent 

that the construct of concussion becomes better operationalized, our ability to study under 

what conditions neuropsychological testing contributes meaningful clinical information will 

improve. However, even with more objective ways to identify concussion, individual athletes 

will vary in their propensity to develop clinical symptoms of injury and in their recovery 

courses.

Overall, our findings suggest that the clinical utility of CNTs in the context of SRC 

management is maximal very soon (within 24 hr) after injury or after symptom resolution 

and quite limited at later time points (day 8 and beyond). These findings are consistent with 

current consensus within the broader community that, although neurocognitive tests can 
contribute to the overall clinical picture, they should not be considered in isolation or 

favored over multidimensional clinical assessment approaches. Future research that improve 

the objective diagnosis of concussion and that illuminates the interplay between the 

individual risk factors, patterns of clinical recovery, and interactions with underlying 

neurophysiological processes will inform best practice in the use of neurocognitive testing in 

concussion management programs.
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Refer to Web version on PubMed Central for supplementary material.
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Table 1
Sample characteristics

Concussed Control

N = 165 N = 166

M (SD) or % M (SD) or % P Value

Male (vs. female) 83.6% 83.1% .902

Age (years) 17.46 (1.99) 17.64 (1.80) .391

College (vs. high school) 60.0% 61.4% .788

Sport .999

 Football 65.5% 65.7%

 Soccer 23.0% 23.5%

 Field hockey 0.6% 0.6%

 Wrestling 2.4% 1.8%

 Lacrosse 4.2% 3.6%

 Rugby 1.8% 1.8%

 Ice hockey 2.4% 3.0%

Race .500

 White 85.8% 84.7%

 Black 12.3% 11.7%

 Asian 1.2% 0.6%

 Native Hawaiian/Pacific Islander 0.0% 1.2%

 Other/unknown 0.6% 1.8%

Height 70.11 (3.28) 70.42 (3.42) .404

Weight 188.94 (48.87) 180.69 (37.66) .089

Grade point average 3.24 (.54) 3.30 (.49) .331

WTAR standard score 100.87 (12.79) 101.05 (12.03) .894

Household SES 49.10 (10.70) 47.47 (9.80) .159

Number of prior concussions .95 (1.01) .48 (.79) <.001

ADHD 9.9% 4.9% .087

Learning disability 3.7% 3.1% .751

Note. WTAR = Wechsler Test of Adult Reading standard score; SES = Hollingshead socioeconomic status; ADHD = attention deficit-hyperactivity 
disorder.
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Table 6
Percentage of concussed athletes with self-reported symptom resolution within 1 day of 
testing classified as impaired Per RCI criteria as compared to non-injured controls

Concussed

Sx- within 1 day of assessment Control Net gain (hits – FP)

ANAM

 1+ decline 44.4 27.9 16.5

 2+ decline 22.2 11.0 11.2

Axon

 1+ decline 52.6 24.4 28.2

 2+ decline 5.3 6.0 −0.7

ImPACT

 1+ decline 56.3 37.2 19.1

 2+ decline 21.9 5.9 16.0

Note. FP = False positives. Asymptomatic concussed group aggregates all follow-up time points, selecting any subject who self-reported symptom 
resolution within 1 day of any follow-up exam. Control data represent a weighted average of the false positive rates observed at each time point, 
weighted to match the percentage of 24-hr, day 8, and day 15 time points used in the concussed athlete column. “1+ decline” (and “2+ decline”) 
indicate the percentage of subjects with 1 or more (and 2 or more) significant declines from baseline across each test's set of RCIs.
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