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Abstract
While highly active anti-retroviral therapy has greatly improved the lives of
HIV-infected individuals, current treatments are unable to completely eradicate
the virus. This is due to the presence of HIV latently infected cells which harbor
transcriptionally silent HIV. Latent HIV does not replicate or produce viral
proteins, thereby preventing efficient targeting by anti-retroviral drugs.
Strategies to target the HIV latent reservoir include viral reactivation, enhancing
host defense mechanisms, keeping latent HIV silent, and using gene therapy
techniques to knock out or reactivate latent HIV. While research into each of
these areas has yielded promising results, currently no one mechanism
eradicates latent HIV. Instead, combinations of these approaches should be
considered for a potential HIV functional cure.
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Introduction
In the twenty years since the implementation of highly active  
anti-retroviral therapy (HAART), the overall face of HIV as a 
global health issue has changed1. HAART—composed of a cocktail 
of anti-retroviral drugs which target proteins expressed at different 
steps in the HIV replication cycle—can affect only cells that harbor 
actively replicating virus. HIV+ individuals are able to live fairly 
normal lives on maintenance HAART, with minimal side effects. 
Nevertheless, the effects of HIV infection continue to be evident in 
these suppressed individuals, who continue to suffer from a number 
of metabolic, immunologic, and neurologic co-morbidities2. Thus, 
despite reducing plasma viremia below detection limits, the virus 
is not eliminated. There is evidence that low levels of replication 
occur in suppressed individuals, primarily in tissue reservoirs; 
however, this is not reflected in systemic plasma viremia in these 
individuals3,4. HAART requires life-long administration. Following 
even brief treatment interruption, HIV rebounds rapidly from 
its reservoirs5–7. Goals of the present research are to eliminate,  
suppress permanently, or render cells inhospitable to the hidden 
HIV in infected individuals.

Research efforts to understand and target HIV reservoirs have 
focused on four main categories outlined in this review (Figure 1): 
first, reactivation of latent HIV by capitalizing on the ability of 
host cellular activation signals and transcription factors (TFs) to 
‘shock’ the virus out of hiding; second, killing of reactivated HIV 
by strengthening the immune system, which has been crippled 

by the infection; third, keeping latent reservoirs permanently 
suppressed; and, finally, targeting HIV and CD4+ T cells, which 
are the primary host cells for the virus, via new gene therapy 
approaches.

Shock
Chronic infection by HIV is characterized by severe depletion of 
CD4+ T cells and continuing inflammation, which contribute to 
HIV-associated co-morbidities2. Continued exposure to inflamma-
tory cytokines exhausts the immune system. It also elevates the 
expression of the receptors programmed death 1 (PD-1)8 and cyto-
toxic T-lymphocyte–associated antigen 4 (CTLA-4)9 on T cells.  
Blockade of these molecules is used as a treatment for solid  
tumors10 and could reinvigorate exhausted T cells in HIV+  
patients11. These individuals also produce elevated levels of 
inhibitory cytokines interleukin (IL)-10 and transforming growth 
factor–beta (TGF-β)12,13. Indeed, blocking IL-10 results in  
increased T cell activity in a hepatitis C infection model14,15.

Growth factor therapy, including treatment with IL-2, -7, or -15, is 
being explored as a means to stimulate T cell recovery. IL-2 and 
IL-7 are important T cell growth and proliferation factors. Infu-
sion with IL-2 and IL-7 results in enhanced T cell production and 
memory T cell proliferation16–18. IL-15 enhances cytotoxic CD8+ 
T lymphocyte (CTL) and natural killer (NK) cell activity in vitro. 
Indeed, the IL-15 super-agonist ALT-803 is currently in preclinical 
trials19.

Figure 1. Four main approaches that target the latent reservoir of HIV. Four research areas, which reactivate HIV (1. shock), eliminate HIV 
(2. kill), silence HIV (3. silence), or alter the immune system to resist HIV (4. gene therapy) should contribute to the functional or complete cure 
of HIV in infected individuals. Within each area are individual components of that therapy. They can be applied individually or in combinations, 
which should decrease their doses and deleterious effects. Most likely, there will be additional approaches in the future.
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Latent HIV is primarily found in resting CD4+ T cells in the 
periphery. Resting cells have low levels of cellular TFs, which 
are also required for HIV replication, including NF-κB, P-TEFb, 
and CDK1120,21. Among the first examined latency reversing 
agents (LRAs) were histone deacetylase inhibitors (HDACis) and 
BET bromodomain inhibitors (BETis), which induce chromatin 
stress and induce the release of positive transcription elongation  
factor b (P-TEFb) from its repressive complex22. HDACis—such 
as panobinostat23, romidepsin24, SAHA25, and valproic acid26—and  
BETis—such as JQ127—all reactivate HIV in cell line models 
of latency. However, they do not work in human primary resting 
infected T cells28,29 because they contain very low levels of nec-
essary TFs20,21. Thus, clinical trials with SAHA resulted in only a 
modest and transient reactivation of HIV30, making it an impracti-
cal mono-therapy for HIV reactivation.

Since HDACis and BETis do not increase levels of required TFs, 
some activation of CD4+ T cells is required. Indeed, protein 
kinase C (PKC) agonists, such as prostratin31 and bryostatin32, and 
the MAPK agonist procyanidin33,34 can reactivate HIV in cell line 
models and primary CD4+ T cells. However, prostratin is toxic 
at therapeutic levels, leading to muscle pain, respiratory distress, 
and hypertension. Bryostatin, derived from a marine animal, 
Bugula neritina, not only has similar side effects but is also cost 
prohibitive to manufacture. Because of these limitations, a number 
of synthetic analogues of prostratin and bryostatin with reduced 
toxicity in vitro are being developed35–37. Ingenols, which are puri-
fied from Euphorbia plants, represent additional PKC agonists of 
interest. Native and chemically modified ingenols reactivate HIV 
in cell lines and primary T cells38–40. These PKC agonists also 
increase cellular levels of necessary TFs38. Thus, select MAPK 
and PKC agonists represent attractive candidates to reactivate 
latent HIV.

Combining several of these approaches has the greatest potential to 
purge the viral reservoir. Indeed, lower doses of a T cell activator 
and an LRA (HDACi or BETi) can be administered for increased 
potency and reduced pro-inflammatory responses41–43. Further 
understanding of HIV integration, transcription, and reactivation, 
as well as host cell behaviors, will inform optimal combinations of 
activators and LRAs.

Kill
Strategies to remove HIV by enhancing the killing by CTL and NK 
cells44 or via broadly neutralizing antibodies (bNAbs) represent the 
second major field of research in HIV eradication. It is also impor-
tant to investigate kill strategies in the context of the aforemen-
tioned shock therapies because many of the treatments proposed to 
reactivate latent HIV also dampen CTL function45, which is already 
impaired in HIV+ individuals11.

Using modified cytomegalovirus (CMV), a live vaccine expressing 
several simian immunodeficiency virus (SIV) antigens, was found 
to protect rhesus macaques against viral challenge46–48. Vaccinated 
animals initially appeared to be infected; however, they gained pro-
tection against SIV and showed enhanced effector T cell function 
against viral antigens.

Another approach involves bNAbs49. Following infection, anti-HIV 
antibodies are abundant in HIV+ patients; however, owing to the 
ability of the virus to mutate, the majority of them fail to eliminate 
the virus. bNAbs are the exception, in that they recognize many 
clades of HIV as well as escape mutants of the virus. In several 
studies, they not only neutralized virions released from activated 
CD4+ T cells from patients50 but also reduced the viral rebound fol-
lowing HIV reactivation in a humanized mouse model51. However,  
even the most potent bNAbs are each only effective against a  
narrow subset of HIV clinical isolates, suggesting that effective 
bNAb approaches may require a combination of several bNAbs52. 
A second antibody approach utilizes bispecific antibodies, wherein 
one arm of the Fab portion of the antibody recognizes HIV  
envelope and the second arm recognizes CD3, making the cell  
vulnerable to CTL-mediated killing.

Finally, in an effort to achieve more effective killing, chimeric  
antigen receptors (CARs), which increase T cell receptor avidity 
and activation, are being explored. They can be engineered to 
recognize specific viral proteins; CARs against CD19, which is a  
B cell receptor, led to an astounding 90% remission rate in acute 
leukemia53,54. However, one caveat to CARs is that these cells are 
long-lived and can have substantial off-target effects.

Silence
The success of HAART has demonstrated that keeping the virus 
suppressed results in markedly healthier individuals. Resting 
infected cells do not produce HIV. Thus, these strategies rely on 
reducing T cell activation, which should also reduce the HIV- 
associated inflammation found in chronically infected individuals2. 
JAK and STAT molecules are important signaling molecules asso-
ciated with many cytokine receptors. Ruxolitinib and tofacitinib, 
two JAK inhibitors that are approved for the treatment of rheuma-
toid arthritis and myelofibrosis, were tested against HIV, HIV2, 
and simian HIV (SHIV). They inhibited HIV reactivation55, and, 
furthermore, ruxolitinib attenuated encephalitis symptoms in 
infected humanized mice56. Cyclosporine A, an immunosup-
pressant used primarily to prevent transplant rejection57, inhibits 
T cell proliferation by blocking IL-2 signaling in T cells58. Infected 
patients treated with cyclosporine A had some T cell recovery59 
but limited suppression of HIV replication60,61.

The inhibitor didehydro-cortistatin A (dCA) acts via a suppressive 
mechanism that primarily targets HIV transcription. dCA binds 
to the basic domain in the HIV regulatory protein Tat, inhibits its 
interactions with the RNA response element TAR, and prevents its 
activation of HIV transcription62. dCA inhibits HIV reactivation in 
cell lines, primary cells, and peripheral blood mononuclear cells 
(PBMCs) from HAART-suppressed patients62. Furthermore, dCA 
may also contribute to continued HIV suppression by inhibiting 
inflammatory cytokine expression63.

Gene therapy
Recently, a number of groups have taken advantage of cutting edge 
gene therapy approaches to HIV cure. However, as with any gene 
therapy approach, the barriers include delivery, specificity, off-target 
effects, costs, and ethical concerns.
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The single case of successful HIV cure was achieved by the recon-
stitution of the patient’s immune system with donor bone marrow 
containing a natural mutation in the CCR5 HIV co-receptor64. 
This patient was treated for acute leukemia with several courses of 
total lymphoid irradiation followed by two separate bone marrow 
transplantations. Attempts to replicate this therapy used the Zn++ 
finger nuclease65 and more recently CRISPR/Cas9 targeting of 
CCR5 to induce the delta 32 mutation in patients’ own hemat-
opoietic cells66,67, which were then returned to the host. Since 
only mature cells were used, the effects of these manipulated cells 
were not permanent65. Recent work using CRISPR/Cas9 to target 
the second HIV co-receptor, CXCR4, has also yielded promising 
results68,69.

While HIV and SIV are highly related viruses, HIV cannot infect 
non-human primates, as their restriction factors block HIV infec-
tion more effectively than their human counterparts70. Therefore, 
altering human restriction factors to behave like their simian coun-
terparts represents an attractive strategy. One such factor is TRIM5. 
Of special interest is TRIM5 from owl monkeys, which is linked in 
frame to cyclophilin A, and this fusion protein blocks HIV71. Using 
lentiviral vectors to deliver Trim-Cyp has blocked HIV effectively 
in cell lines and primary T cells72. Additionally, it has been used 
successfully in a triple combination anti-HIV lentiviral vector 
approach in an infected humanized mouse model73.

Recently, CRISPR/Cas9 technology has emerged as the most ver-
satile and effective gene therapy approach. Using a DNA targeting 
strategy utilized by bacterial CRISPR, any number of specific guide 
RNAs can be loaded into the Cas9 protein to target specific areas of 
DNA for knock out or knock in of genes74. Similarly, this technol-
ogy has been used to knock out and reactivate latent HIV. Targeting 
various regions of the HIV LTR inactivated the virus in infected 
cell lines75 and prevented their reinfection76. However, viral target 
sequences can mutate, and HIV LTR-specific guide RNA can fail 
to recognize and target the mutant sequences, preventing long-term 
eradication by this method77. To reactivate HIV, a defective Cas9 
protein (dCas9) is used, which is fused to four copies of the herpes 
simplex VP16 activation domain (VP64) or a synergistic activation 
mediator (SAM) complex. Again, guide RNAs bring these dCas9 

activators to the initiated transcription machinery. This targeting 
results in potent reactivation in latently infected cell lines78–80.

Summary
Although HIV infection in the era of HAART has become a 
manageable chronic infection, problems with adherence to drug 
regiment, co-morbidities, and the emergence of drug resistance 
emphasize the need for continued research into HIV cure. Since 
the barrier to cure is the HIV reservoir, targeting this persistent 
virus is critical. The approaches detailed in this review represent a 
spectrum of the current research: however, eliminating the remain-
ing 106 to 108 latently infected cells81 will require a combination 
of approaches. Mechanisms, such as HIV reactivation, will reveal 
hidden virus. However, the severely crippled immune system and 
further decreased CTL function indicate that it must be paired 
with the boosting of anti-viral host defenses. Likewise, keeping 
latent HIV in a suppressed state could keep HIV+ patients rela-
tively healthy but less able to resist other infections and/or cancer. 
Using gene therapy to create a parallel immune system, where cells 
resist HIV infection, could complement all other approaches but is 
not scalable or affordable in resource-poor countries. While none 
of these approaches represent the eradication of HIV, combining 
several treatment modalities could bring us closer to a functional 
cure, where prolonged HAART-free and disease-free intervals 
would be achieved in infected patients.
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