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SUMMARY

The rapidly growing volume of data being produced by next-generation sequencing initiatives is 

enabling more in-depth analyses of conservation than previously possible. Deep sequencing is 

uncovering disease loci and regions under selective constraint, despite the fact that intuitive 

biophysical reasons for such constraint are sometimes absent. Allostery may often provide the 

missing explanatory link. We use models of protein conformational change to identify allosteric 

residues by finding essential surface pockets and information-flow bottlenecks, and we develop a 

software tool that enables users to perform this analysis on their own proteins of interest. Though 

fundamentally 3D-structural in nature, our analysis is computationally fast, thereby allowing us to 

run it across the PDB and to evaluate general properties of predicted allosteric residues. We find 

that these tend to be conserved over diverse evolutionary time scales. Finally, we highlight 

examples of allosteric residues that help explain poorly understood disease-associated variants.
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INTRODUCTION

The ability to sequence large numbers of human genomes is providing a much deeper view 

into protein evolution than previously possible. When trying to understand the evolutionary 

pressures on a given protein, structural biologists now have at their disposal an 

unprecedented breadth of data regarding patterns of conservation, both across species and 

among humans. As such, there are greater opportunities to take an integrated view of the 

context in which a protein and its residues function. This view necessarily includes structural 

constraints such as residue packing, protein-protein interactions, and stability. However, 

deep sequencing is unearthing a class of conserved residues on which no obvious structural 

constraints appear to be acting. The missing link in understanding these regions may be 

provided by studying the protein’s dynamic behavior through the lens of the distinct 

functional and conformational states within an ensemble.

The underlying energetic landscape responsible for the relative distributions of alternative 

conformations is dynamic in nature: allosteric signals or other external changes may 

reconfigure and reshape the landscape, thereby shifting the relative populations of states 

within an ensemble (Tsai et al., 1999). Landscape theory thus provides the conceptual 

underpinnings necessary to describe how proteins change behavior and shape under 

changing conditions. A primary driving force behind the evolution of these landscapes is the 

need to efficiently regulate activity in response to changing cellular contexts, thereby making 

allostery and conformational change essential components of protein evolution.

Given the importance of allosteric regulation, as well as its role in imparting efficient 

functionality, several methods have been devised for the identification of likely allosteric 

residues. Conservation itself has been used, either in the context of conserved residues 

(Panjkovich and Daura, 2012), networks of co-evolving residues (Halabi et al., 2009; Lee et 

al., 2008; Lockless et al., 1999; Reynolds et al., 2011; Shulman et al., 2004; Süel et al., 

2003), or local conservation in structure (Panjkovich and Daura, 2010). In related studies, 
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both conservation and geometric-based searches for allosteric sites have been successfully 

applied to several systems (Capra et al., 2009).

The concept of “protein quakes” has been introduced to explain local conformational 

changes that are essential for global conformation transitions of functional importance 

(Ansari et al., 1985; Miyashita et al., 2003). These local changes cause strain within the 

protein that is relieved by subsequent relaxations (which are also termed functionally 

important motions), which terminate when the protein reaches the second equilibrium state. 

Such local perturbations often end with large conformational changes at the focal points of 

allosteric regulation, and these motions may be identified in a number of ways, including 

modified normal modes analysis (Miyashita et al., 2003) or time-resolved X-ray scattering 

(Arnlund et al., 2014).

In addition to conservation and geometry, protein dynamics have also been used to predict 

allosteric residues. Normal modes analysis has been used to examine the extent to which 

bound ligands interfere with low-frequency motions, thereby identifying potentially 

important residues at the surface (Ming and Wall, 2005; Mitternacht and Berezovsky, 2011a; 

Panjkovich and Daura, 2012). Normal modes have also been used by the Bahar group to 

identify important subunits that act in a coherent manner for specific proteins (Chennubhotla 

and Bahar, 2006; Yang and Bahar, 2005). Rodgers et al. (2013) have applied normal modes 

to identify key residues in CRP/FNR transcription factors.

With the objective of identifying allosteric residues within the interior, molecular dynamics 

(MD) simulations and network analyses have been used to identify residues that may 

function as internal allosteric bottlenecks (Csermely et al., 2013; Gasper et al., 2012; 

Rousseau and Schymkowitz, 2005; Sethi et al., 2009; Vanwart et al., 2012). Ghosh and 

Vishveshwara (2008) have taken a novel approach of combining MD and network principles 

to characterize allosterically important communication between domains in methionyl tRNA 

synthetase. In conjunction with nuclear magnetic resonance (NMR), Rivalta et al. (2012) 

have used MD and network analysis to identify important regions in imidazole glycerol 

phosphate synthase.

Despite having provided valuable insights, many of these approaches have been limited in 

terms of scale (the numbers of proteins which may feasibly be investigated), computational 

demands, or the class of residues to which the method is tailored (surface or interior). Here, 

we use models of protein conformational change to identify both surface and interior 

residues that may act as essential allosteric hotspots in a computationally tractable manner, 

thereby enabling high-throughput analysis. This framework directly incorporates 

information regarding 3D protein structure and dynamics, and can be applied on a PDB-

wide scale to proteins that exhibit conformational change. Throughout the PDB (Berman et 

al., 2000), the residues identified tend to be conserved both across species and among 

humans, and they may help to elucidate many of the otherwise poorly understood regions in 

proteins. In a similar vein, several of our identified sites correspond to human disease loci 

for which no clear mechanism for pathogenesis had previously been proposed. Finally, we 

make the software associated with this framework, termed STRESS (STRucturally identified 
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ESSential residues), publicly available through a tool to enable users to submit their own 

structures for analysis.

RESULTS

Identifying Potential Allosteric Residues

Allosteric residues at the surface generally play a regulatory role that is fundamentally 

distinct from that of allosteric residues within the protein interior. While surface residues 

often constitute the sources or sinks of allosteric signals, interior residues act to transmit 

such signals. We use models of protein conformational change to identify both classes of 

residues (Figure 1). Throughout, we term these potential allosteric residues at the surface 

and interior “surface-critical” and “interior-critical” residues, respectively.

To gauge the effectiveness of our approach, we identified and analyzed critical residues 

within a set of 12 well-studied canonical systems (see Figure S1, as well as Table S1 for 

rationale regarding the set selection). We then apply this protocol on a large scale across 

hundreds of proteins for which crystal structures of alternative conformations are available.

Identifying Surface-Critical Residues—Allosteric ligands often act by binding to 

surface pockets/ cavities and modulating protein conformational dynamics. The surface-

critical residues, some of which may act as latent ligand-binding sites and active sites, are 

first identified by finding cavities using Monte Carlo (MC) simulations to probe the surface 

with a flexible ligand (Figure 1A, top left). The degree to which cavity occlusion by the 

ligand disrupts large-scale conformational change is used to assign a score to each cavity: 

sites at which ligand occlusion strongly interferes with conformational change earn high 

scores (Figure 1A, top right), whereas shallow pockets (Figure 1A, bottom left) or sites at 

which large-scale motions are largely unaffected (Figure 1A, bottom right) earn lower 

scores. Further details are provided in Supplemental Experimental Procedures section 3.1-a.

This approach is a modified version of the binding leverage framework introduced by 

Mitternacht and Berezovsky (2011a). The main modifications implemented here include the 

use of heavy atoms in the protein during the MC search, in addition to an automated means 

of thresholding the list of ranked scores. These modifications were implemented to provide a 

more selective set of sites; without them, a very large fraction of the protein surface would 

be occupied by critical sites (Figure S2A). Within our dataset of proteins exhibiting 

alternative conformations, we find that this modified approach results in an average of 

approximately two distinct sites per domain (Figure S2A; see Figure S2B for the distribution 

for distinct sites within entire complexes).

Within the canonical set of 12 proteins, we positively identify an average of 55.6% of the 

sites known to be directly involved in ligand or substrate binding (see Table 1, Figure S1; 

Supplemental Experimental Procedures section 3.1-a-iv). Some of the sites identified do not 

directly overlap with known binding regions, but we often find that these “false positives” 

nevertheless exhibit some degree of overlap with binding sites (Table S2). In addition, those 

surface-critical sites that do not match known binding sites may nevertheless correspond to 
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latent allosteric regions: even if no known biological function is assigned to such regions, 

their occlusion may nevertheless disrupt hitherto unfound large-scale motions.

Dynamical Network Analysis to Identify Interior-Critical Residues—The binding 

leverage framework described above is intended to capture hotspot regions at the protein 

surface, but the MC search employed is a priori excluded from the protein interior. Allosteric 

residues often act within the protein interior by functioning as essential information-flow 

“bottlenecks” within the communication pathways between distant regions.

To identify such bottleneck residues, we first model the protein as a network, wherein 

residues represent nodes and edges represent contacts between residues (in much the same 

way that the protein is modeled as a network in constructing anisotropic network models, 

see below). In this regard, the problem of identifying interior-critical residues is reduced to a 

problem of identifying nodes that participate in network bottlenecks (see Figure 1B and 

Supplemental Experimental Procedures section 3.1-b for details). In brief, the network edges 

are first weighted by the degree of strength in the correlated motions of contacting residues: 

a strong correlation in the motion between contacting residues implies that knowing how one 

residue moves better enables one to predict the motion of the other, thereby suggesting a 

strong information flow between the two residues. The weights are used to assign “effective 

distances” between connecting nodes, with strong correlations resulting in shorter effective 

node-node distances.

Using the motion-weighted network, “communities” of nodes are identified using the 

Girvan-Newman formalism (Girvan et al., 2002). This formalism entails calculating the 

betweenness of each edge, where the betweenness of a given edge is defined as the number 

of shortest paths between all pairs of residues that pass through that edge. Each path length 

is the sum of that path’s effective node-node distances assigned in the weighting scheme 

above. Each community identified is a group of nodes such that each node within the 

community is highly inter-connected (in terms of betweenness), but loosely connected to 

other nodes outside the community. Communities are thus densely inter-connected regions 

within proteins. The community partitions and the resultant critical residues for the 

canonical set are given in Figure 2.

Those residues that are involved in the highest-betweenness edges between pairs of 

interacting communities are identified as the interior-critical residues. These residues are 

essential for information flow between communities, as their removal would result in 

substantially longer paths between the residues of one community to those of another.

Software Tool: STRESS—We have made the implementations for finding surface- and 

interior-critical residues available through a new software tool, STRESS, which may be 

accessed at stress.molmovdb.org (Figure 3A). Users may submit a PDB file or a PDB ID 

corresponding to a structure to be analyzed, and the output provided constitutes the set of 

identified critical residues.

Running times are minimized by using a scalable server architecture that runs on the 

Amazon cloud (Figure 3). A light front-end server handles incoming user requests, and more 
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powerful back-end servers, which perform the calculations, are automatically and 

dynamically scalable, thereby ensuring that they can handle varying levels of demand both 

efficiently and economically. In addition, the algorithmic implementation of our software is 

highly efficient, thereby obviating long wait times. Relative to a naive global MC search 

implementation, local searches supported with hashing and additional algorithmic 

optimizations for computational efficiency reduce running times considerably (Figures 3B 

and 3C). A typical protein of ~500 residues takes only about 30 min on a 2.6-GHz CPU.

High-Throughput Identification of Alternative Conformations

We use a generalized approach to systematically identify instances of alternative 

conformations throughout the PDB. We first perform multiple structure alignments (MSAs) 

across sequence-identical structures that are pre-filtered to ensure structural quality. We then 

use the resultant pairwise root-mean-square deviation (RMSD) values to infer distinct 

conformational states (Figure S3; see also Supplemental Experimental Procedures section 

3.2).

The distributions of the resultant numbers of conformations for domains and chains are 

given in Figures S3D and S3E, respectively, and an overview is given in Figure S3F. We note 

that the alternative conformations identified arise in an extremely diverse set of biological 

contexts, including conformational transitions that accompany ligand binding, protein-

protein or protein-nucleic acid interactions, post-translational modifications, changes in 

oxidation or oligomerization states, and so forth. The dataset of alternative conformations 

identified is provided as a resource in Data S1 (see also Figure S3G).

Evaluating Conservation of Critical Residues using Various Metrics and Sources of Data

The large dataset of dynamic proteins culled throughout the PDB, coupled with the high 

algorithmic efficiency of our critical residue search implementation, provide a means of 

identifying and evaluating general properties of a large pool of critical residues. In particular, 

we use a variety of conservation metrics and data sources to measure the inter- and intra-

species conservation of the residues within this pool. As discussed below, we find that both 

surface-critical (Figures 4A–4D) and interior-critical (Figures 4E–4H) residues are 

consistently more conserved than non-critical residues. We emphasize that the signatures of 

conservation identified not only provide a means of rationalizing many of the otherwise 

poorly understood regions of proteins, but also reinforce the functional importance of the 

residues predicted to be allosteric.

Conservation across Species—When evaluating conservation across species, we find 

that both surface- and interior-critical residues tend to be significantly more conserved than 

non-critical residues with the same degree of burial (Figures 4B and 4F, respectively; note 

that negative conservation scores designate stronger conservation—see Supplemental 

Experimental Procedures section 3.3-a).

Leveraging Next-Generation Sequencing to Measure Conservation among 
Humans—In addition to measuring inter-species conservation, we have also used fully 

sequenced human genomes and exomes to investigate conservation among human 
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populations, as many constraints may be species specific and active in more recent 

evolutionary history. Commonly used metrics for quantifying intra-species conservation 

include minor allele frequency (MAF) and derived allele frequency (DAF). Low MAF or 

DAF values are interpreted as signatures of deleteriousness, as purifying selection is prone 

to reduce the frequencies of harmful variants (see Supplemental Experimental Procedures 

section 3.3-b).

Non-synonymous single-nucleotide variants (SNVs) from the 1,000 Genomes dataset 

(McVean et al., 2012) that intersect surface-critical residues tend to occur at lower DAF 

values than do SNVs that intersect non-critical residues (Figure 4C). Although this 

difference is not observed to be significant, the significance improves when examining the 

shift in DAF distributions, as evaluated with a KS test (p = 0.159, Figure S4A), and we point 

out only a limited number of proteins (32) for which these 1,000 Genomes SNVs intersect 

with surface-critical sites. Furthermore, the long tail extending to lower DAF values for 

surface-critical residues may suggest that only a subset of the residues in our prioritized 

binding sites is essential. In contrast to surface-critical residues, however, interior-critical 

residues intersect 1,000 Genomes SNVs with significantly lower DAF values than do non-

critical residues (Figure 4G; see also Figure S4B).

When analyzing human polymorphism data, a variety of statistical measures relating SNVs 

to selective constraint may be calculated, and the results obtained (along with their 

associated significance levels) are highly dependent on sample size. 1,000 Genomes datasets 

are attractive partially because of their status as a well-established “blue-chip” set of variants 

in human populations. However, given the relatively limited number of proteins that intersect 

with 1,000 Genomes SNVs, we also analyzed the larger dataset provided by the Exome 

Aggregation Consortium (ExAC) (Exome Aggregation Consortium et al., 2015). Although 

this dataset has been released much more recently (and is consequently not yet as well 

established as 1,000 Genomes), ExAC provides sequence data from more than 60,000 

individuals, and samples are sequenced at much higher coverage, thereby ensuring better 

data quality. This larger dataset enables us to more easily examine trends in the data as they 

relate to critical and non-critical residues.

Using MAF as a conservation metric, we performed a similar analysis using this data. MAF 

distributions for surface- and non-critical residues in the same set of proteins are given in 

Figure 4D. Although the mean value of the MAF distribution for surface-critical residues is 

slightly higher than that of non-critical residues, the median for surface-critical residues is 

substantially lower than that for non-critical residues, demonstrating that the majority of 

proteins are such that MAF values are lower in surface-critical than in non-critical residues. 

In addition, the overall shifts of these distributions also point to a trend of lower MAF values 

in surface-critical residues (Figure S4C, KS test p = 9.49 × 10−2).

Interior-critical residues exhibit significantly lower MAF values than do non-critical residues 

in the same set of proteins. MAF distributions for interior- and non-critical residues are 

given in Figure 4H (see also Figure S4D).
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In addition to analyzing overall allele frequency distributions, we also evaluate the fraction 
of rare alleles as a metric for measuring selective pressure. This fraction is defined as the 

ratio of the number of rare (i.e., low-DAF or low-MAF) non-synonymous SNVs to the 

number of all non-synonymous SNVs in a given protein annotation (such as all surface-

critical residues of the protein, for example; see Supplemental Experimental Procedures 

section 3.3-b). A higher fraction is interpreted as a proxy for greater conservation (Khurana 

et al., 2013; Sethi et al., 2015). Using variable DAF (MAF) cutoffs to define rarity for 1,000 

Genomes (ExAC) SNVs, both surface- and interior-critical residues are shown to harbor a 

higher fraction of rare alleles than do non-critical residues, further suggesting a greater 

degree of evolutionary constraint on critical residues (Figure 5).

Comparisons between Different Models of Protein Motions—The identification of 

surface- and interior-critical residues entails using sets of vectors (on each protein residue) to 

describe conformational change. Notably, our framework enables one to determine these 

vectors in multiple ways. Conformational changes may be modeled using vectors connecting 

residues in crystal structures from alternative conformations. We term this approach ACT, 

for “absolute conformational transitions” (see Supplemental Experimental Procedures 

section 3.2-c). The crystal structures of such paired conformations may be obtained using 

the framework discussed above. The protein motions may also be inferred from anisotropic 

network models (ANMs) (Atilgan et al., 2001). ANMs entail modeling interacting residues 

as nodes linked by flexible springs, in a manner similar to elastic network models 

(Fuglebakk et al., 2015; Tirion, 1996) or normal modes analysis (Figure 1B). ANMs are not 

only simple and straightforward to apply on a database scale, but unlike using alternative 

crystal structures, the motion vectors inferred may be generated using a single structure.

We find that modeling conformational change using vectors from either ACTs or ANMs 

gives the same general trends in terms of the disparities in conservation between critical and 

non-critical residues. Our framework is thus general with respect to how the motion vectors 

are obtained (see Figure 6 and Supplemental Experimental Procedures section 3.2-c for 

further details).

Critical Residues in the Context of Human Disease Variants—Directly related to 

conservation is confidence with which an SNV is believed to be disease associated. SIFT 

(Ng and Henikoff, 2001) and PolyPhen (Adzhubei et al., 2010) are two tools for predicting 

SNV deleteriousness. ExAC SNVs that intersect critical residues exhibit significantly higher 

PolyPhen scores relative to non-critical residues, suggesting the potentially higher disease 

susceptibility at critical residues (Figure S5). Significant disparities were not observed in 

SIFT scores (Figure S6).

Using HGMD (Stenson et al., 2014) and ClinVar (Landrum et al., 2014), we identify 

proteins with critical residues that coincide with disease-associated SNVs (Data S2). Several 

critical residues coincide with known disease loci for which the mechanism of pathogenicity 

is otherwise unclear (Data S3). The fibroblast growth factor receptor (FGFR) is a case in 

point (Figure 7A). SNVs in FGFR have been linked to craniofacial defects. Dotted lines in 

Figure 7B highlight poorly understood disease SNVs that coincide with critical residues. In 

addition, we identify Y328 as a surface-critical residue, which coincides with a disease-
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associated SNV from HGMD, despite the lack of confident predictions of deleteriousness by 

several widely used tools for predicting disease-associated SNVs, including PolyPhen 

(Adzhubei et al., 2010), SIFT (Ng and Henikoff, 2001), and SNPs&GO (Calabrese et al., 

2009). Together, these results suggest that the incorporation of surface- and interior-critical 

residues introduces a valuable layer of annotation to the protein sequence, and may help to 

explain otherwise poorly understood disease-associated SNVs.

DISCUSSION

The same principles of energy landscape theory that dictate protein folding are integral to 

how proteins explore different conformations once they adopt their fully folded states. These 

landscapes are shaped not only by the protein sequence itself but also by extrinsic 

conditions. Such external factors often regulate protein activity by introducing allosteric-

induced changes, which ultimately reflect changes in the shapes and population distributions 

of the energetic landscape. In this regard, allostery provides an ideal platform from which to 

study protein behavior in the context of their energetic landscapes. For investigation of 

allosteric regulation, and to simultaneously add an extra layer of annotation to conservation 

patterns, an integrated framework to identify potential allosteric residues is essential. We 

introduce a framework to select such residues, using knowledge of conformational change.

When applied to many proteins with distinct conformational changes in the PDB, we 

investigate the conservation of potential allosteric residues in both inter-species and intra-

human genomes contexts, and find that these residues tend to exhibit greater conservation in 

both cases. In addition, we identify several disease-associated variants for which plausible 

mechanisms had been unknown, but for which allosteric mechanisms provide a reasonable 

rationale.

Unlike the characterization of many other structural features, such as secondary structure 

assignment, residue burial, protein-protein interaction interfaces, disorder, and even stability, 

allostery inherently manifests through dynamic behavior. It is only by considering protein 

motions and changes in these motions that a fuller understanding of allosteric regulation can 

be realized. As such, MD and NMR are some of the most common means of studying 

allostery and dynamic behavior (Kornev and Taylor, 2015). However, these methods have 

limitations when studying large and diverse protein datasets. MD is computationally 

expensive and impractical when studying large numbers of proteins. NMR structure 

determination is extremely labor intensive and better suited to certain classes of structures or 

dynamics. In addition, NMR structures constitute a relatively small fraction of structures 

currently available.

Despite these limitations in MD and NMR, allosteric mechanisms and signaling pathways 

may be conserved across many different but related proteins within the same family, 

suggesting that such computationally intensive or labor-intensive approaches for all proteins 

may not be entirely essential. Flock et al. (2015) have carefully demonstrated that the 

allosteric mechanisms responsible for regulating G proteins through GPCRs tend to be 

conserved. Investigations into representative families have also been enlightening in other 

contexts. In one of the early studies employing network analysis, del Sol et al. (2006) 
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conducted a detailed study of several allosteric protein families (including GPCRs) to 

demonstrate that residues important for maintaining the integrity of short paths within 

residue contact networks are essential to enabling signal transmission between distant sites. 

Another notable result in the same work is that these key residues (which match 

experimental results) may become redistributed when the protein undergoes conformational 

change, thereby changing optimal communication routes as a means of conferring different 

regulatory properties.

There are several notable implications of our dynamics-based analysis across a database of 

proteins. Relative to sequence data, allostery and dynamic behavior are far more difficult to 

evaluate on a large scale. The framework described here enables one to evaluate dynamic 

behavior in a systemized and efficient way across many proteins while simultaneously 

capturing residues on both the surface and within the interior. That this pipeline can be 

applied in a high-throughput manner enables the investigation of system-wide phenomena, 

such as the roles of potential allosteric hotspots in protein-protein interaction networks.

It is only by analyzing a large dataset of proteins that one can investigate general trends in 

predicted allosteric residues. In addition, the implementation detailed here enables one to 

match structural features with the high-throughput data generated through deep sequencing 

initiatives, which are providing an unprecedented window into conservation patterns, many 

of which may be human specific.

We anticipate that, within the next decade, deep sequencing will enable structural biologists 

to study evolutionary conservation using sequenced human exomes just as routinely as 

cross-species alignments. Furthermore, intra-species metrics for conservation provide added 

value in that the confounding factors of cross-species comparisons are removed: different 

species evolve in various evolutionary contexts and at different rates, and it can be difficult 

to decouple these different effects from one another. Cross-species metrics of protein 

conservation entail comparisons between proteins that may be very different in structure and 

function. Sequence-variable regions across species may not be conserved, but nevertheless 

impart essential functionality. Intra-species comparisons, however, can often provide a more 

direct and sensitive evaluation of constraint.

In particular, selective constraints within human populations are particularly relevant to 

understanding human disease. Formalisms for analyzing large structural and sequence 

datasets will become increasingly important in the context of human health. We anticipate 

that the framework and formalisms detailed here, along with the accompanying web tool we 

have introduced, will help to further motivate future studies along these directions.

EXPERIMENTAL PROCEDURES

Identifying Potential Allosteric Residues

Identifying Surface-Critical Residues—We employ a modified version of the binding 

leverage method for identifying likely ligand-binding sites (Figure 1A), as described 

previously (Mitternacht and Berezovsky, 2011a). Further details are given below, as well as 

within Supplemental Experimental Procedures section 3.1-a.
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Monte Carlo Simulations to Identify Candidate Allosteric Sites on the Surface: 
Candidate sites on the surface are generated by MC simulations in which a flexible ligand 

(comprising of four “atoms” linked by bonds of fixed length 3.8 Å, but variable bond and 

dihedral angles) explores the protein’s surface. The number of MC simulations is set to ten 

times the number of residues in the structure, and the number of MC steps per simulation in 

our implementation is set to 10,000 times the size of the simulation box, as measured in 

angstroms. The size of this box is set to twice the maximum size of the PDB along any of 

the x, y, or z axes. Heavy atoms are used in the protein when evaluating a ligand’s affinity 

for each location.

The parameters (for a square well potential function) used to evaluate the energy of the 

system at each step is as follows (here, Dlig-prot designates the distance between a ligand 

atom and a protein atom, in angstroms):

Widths Depths and Heights

∞ > Dlig-prot ≥ 4.5: energy = 0

4.5 > Dlig-prot ≥ 3.5: energy = −0.35 (attractive)

3.5 > Dlig-prot ≥ 3.0: energy = +10 (repulsive)

3.0 > Dlig-prot ≥ 0.0: energy = +10,000 (strongly repulsive: effectively prohibited)

What form does the MC ensemble take, and how exactly is this MC ensemble turned into a 

list of candidate sites? Prior to thresholding the list of ranked sites (see Supplemental 

Experimental Procedures section 3.1-a-iii), we generally follow the same formalism detailed 

in Mitternacht and Berezovsky (2011a). We first detail the output provided by a single MC 

simulation. This MC simulation involves a ligand probing the protein surface through a large 

number of steps in which the ligand explores translational, rotational, and angular degrees of 

freedom. The potential function usually “pushes” the ligand to favorably occupy a pocket on 

the protein surface after all steps of the MC simulation are completed. The ligand is thus in 

contact with a number of residues (typically 10–20) at the end of the simulation. As with the 

approach taken by Mitternacht and Berezovsky, this list of residues is ordered by local 

closeness (LC). LC is a geometric quantity that provides a measure of the degree of a 

residue in the residue-residue contact network; see Mitternacht and Berezovsky (2011b) for 

further discussion of LC. The ten residues with greatest LC are taken as the final “site” 

occupied by the ligand at the end of this MC simulation (the remaining residues are not 

considered to be part of the site). Thus, the output of this single MC simulation is a list of 

ten residues on the protein surface such that these residues form a geometrically favorable 

site for the ligand.

Now consider a very large number (typically 5,000–10,000, depending on the protein’s size) 

of the MC simulations detailed above. These ~10,000 MC simulations result in many sites, 

where each of these sites is the list of residues in contact with the ligand by the end of the 

MC simulation. This long list of sites generally contains many sites with a strong degree of 

overlap. Thus, to remove redundancy, pairs of sites with extremely high overlap are merged. 

The residues of a given merged site are then listed by their LC, and no more than ten 
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residues for a site are used. This entire process results in a list of sites on which binding 

leverage calculations can be performed.

Binding Leverage Calculations: When the ten lowest-frequency normal modes are 

produced for each structure, the binding leverage score for a given site is calculated as

The outer sum is taken over the ten modes, and the pair of inner sums are taken over all pairs 

of residues (i,j) such that the line connecting the pair lies within 3.0 Å of any atom within 

the simulated ligand. The value Δdij(m) for each residue pair (i,j) represents the change in the 

distance between residues i and j when this distance is calculated using mode m. Further 

details are given in Supplemental Experimental Procedures section 3.1-a-ii.

Identifying Interior-Critical Residues—A protein structure is represented as a network 

of interacting residues, and the edges between residues are weighted using inferred motions. 

Network modules are then identified, and residues that are important for inter-module 

communication are identified as being interior-critical. Detailed information is given below 

and in Supplemental Experimental Procedures section 3.1-b.

Network Formalism and Weighting Scheme: An edge between residues i and j is drawn if 

any heavy atom within residue i is within 4.5 Å of any heavy atom of residue j, and we 

exclude the trivial cases of pairs of residues that are adjacent in sequence, which are not 

considered to be in contact within the network.

An “effective distance” Dij for an edge between interacting residues i and j is set to Dij = 

−log(|Cij|), where Cij designates the correlated motions between residue i and j,

where

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular normal mode. The brackets in the term 〈ri·rj〉 indicate that we are taking the mean 

value for the dot product ri·rj over the ten lowest-frequency non-trivial modes.

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 

Clarke et al. Page 12

Structure. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2002) with these effective distances, a residue is deemed to be an interior-critical residue if it 

is involved in the highest-betweenness edge connecting two distinct communities.

High-Throughput Identification of Alternative Conformations

We start by removing structures with resolution values poorer than 2.8, as well as any PDB 

files with Rfree values poorer than 0.28. STAMP (Russell and Barton, 1992) and MultiSeq 

(Roberts et al., 2006) were used to generate the MSAs. For each MSA, the final output is a 

symmetric matrix representing all pairwise RMSD values, which are then used as input to 

the K-means module (see below).

Using a modified version of the K-means clustering algorithm, termed K-means clustering 

with the gap statistic (Tibshirani et al., 2001), pairwise RMSD values are used to identify the 

biologically distinct conformations represented by an ensemble.

As a first step toward clustering the structure ensemble of N structures, we use 

multidimensional scaling (MDS) to convert an N-by-N matrix of pairwise RMSD values into 

a set of N distinct points. These matrices are then provided as input for K-means with the 

gap statistic; we point the reader to the work by Tibshirani et al. (2001) for details. Further 

details are also provided in Supplemental Experimental Procedures section 3.2.

Models of Conformational Change via Displacement Vectors from Alternative 
Conformations

Inferring Protein Conformational Change using Displacement Vectors from 
Alternative Conformations: Given a particular protein, how are these ACT vectors defined 

to find critical residues? We discuss a hypothetical example consisting of a multiple 

structure alignment of eight sequence-identical structures. Starting with the protein’s 

alignment using all eight structures, we determine the optimal number of clusters 

represented by the alignment (see above). Suppose that these eight structures may be 

grouped into two distinct clusters. A representative structure is taken from each of these two 

clusters (structure A and structure B). We use structure A and structure B to infer 

information about the protein’s global conformational shifts by assigning a displacement 

vector to each residue, where the displacement vector is simply defined by the two 

corresponding residues in the different structures within the structure alignment.

When using ACT vectors, the binding leverage score for a given site is simply calculated as

When identifying interior-critical residues, there is only one ACT vector for each residue. 

Thus, the weight parameters are calculated as
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where

Here, ri denotes the vector that defines the change in position for residue i when going from 

one representative conformation to the other.

Evaluating Conservation of Critical Residues using Various Metrics and Sources of Data

Conservation across Species—All cross-species conservation scores represent the 

ConSurf scores, as downloaded from the ConSurf server (Ashkenazy et al., 2010; Celniker 

et al., 2013; Glaser et al., 2003; Landau et al., 2005). Low (i.e., negative) ConSurf scores 

represent a stronger degree of conservation. Cross-species conservation scores were 

analyzed in those PDBs for which full ConSurf files are available through the ConSurf 

server.

Each point within the cross-species conservation plots (e.g., Figures 4B, 4F, and 6) 

represents data from one structure: the value of the point for any given structure represents 

the mean conservation score for all residues within one of two classes: the set of N critical 

residues within a protein structure (surface or interior) or a randomly selected set of N non-

critical residues (with the same “degree,” see below) within the same structure. The 

randomly selected noncritical set of residues was chosen in a way such that, for each critical 

residue with degree k (k being the number of non-adjacent residues with which the critical 

residue is in contact, see below), a randomly selected non-critical residue with the same 

degree k was included in the set. The distributions of non-critical residues shown are very 

much representative of the distributions observed when rebuilding the random set many 

times.

The degree (i.e., k) of residue j is defined as the number of residues which interact with 

residue j, where residues adjacent to residue j in sequence are not considered, and an 

interaction is defined whenever any heavy atom in an interacting residue is within 4.5 Å of 

any heavy atom in the residue j.

Measures of Conservation among Humans from Next-Generation Sequencing
—Only non-synonymous SNVs are analyzed in this study. All 1,000 Genomes SNVs 

represent data from the phase 3 release of The 1,000 Genomes Project (McVean et al., 

2012). ExAC SNVs were downloaded from the Broad Institute in May 2015 from the ExAC 

Browser (Beta).

When analyzing both 1,000 Genomes and ExAC data, we consider only those structures in 

which at least one critical and one non-critical residue intersect a non-synonymous SNV. 

Each individual point within the intra-human conservation plots (e.g., Figures 4C, 4D, 4G, 

and 4H) represents data from one structure: the value of the point for any given structure 

represents the mean score (DAF or MAF, for 1,000 Genomes or ExAC SNVs, respectively) 

for all critical (red bars) or non-critical (blue bars) residues to intersect SNVs.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Allostery often provides a biophysical rationale for signatures of conservation

• Models of protein conformational change are used to predict key allosteric 

residues

• These predicted allosteric residues are conserved across species and amongst 

humans

• A web tool makes this analysis publicly available to the scientific community
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Figure 1. Schematic Overviews of Methods for Finding Surface- and Interior-Critical Residues
(A) A simulated ligand probes the protein surface in a series of Monte Carlo simulations 

(top left). The cavities identified may be such that occlusion by the ligand strongly interferes 

with conformational change (top right; such a site is likely to be identified as surface-

critical, in red), or they may have little effect on conformational change, as in the case of 

shallow pockets (bottom left) or pockets in which large-scale motions do not drastically 

affect pocket volume (bottom right).

(B) Interior-critical residues are identified by weighting residue-residue contacts (edges) on 

the basis of correlated motions, and then identifying communities within the weighted 

network. Residues involved in the highest-betweenness interactions between communities 

(in red) are selected as interior-critical residues.
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Figure 2. Community Partitioning for Canonical Systems
Different network communities are colored differently, and communities were identified 

using the dynamical network-based analysis with the GN formalism discussed in the main 

text and in Supplemental Experimental Procedures section 3.1-b. Residues shown as spheres 

are interior-critical residues, and are colored based on community membership, and black 

lines connecting pairs of critical residues represent the highest-betweenness edges between 

the corresponding communities. See also Table S3.

Clarke et al. Page 20

Structure. Author manuscript; available in PMC 2017 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. STRESS Web Server Front Page, Running Times, and Server Architecture
(A) The server enables users to either provide PDB IDs or to upload their own PDB files for 

proteins of interest. Users may opt to identify surface-critical residues, interior-critical 

residues, or both. A thin front-end server handles incoming user requests, and more powerful 

back-end servers perform the heavier algorithmic calculations. The back-end servers are 

dynamically scalable, making them capable of handling wide fluctuations in user demand. 

Amazon’s Simple Queue Service is used to coordinate between user requests at the front-

end and the back-end compute nodes: when the front-end server receives a request, it adds 

the job to the queue, and back-end servers pull that job from the queue when ready. Source 

code is available through Github (https://github.com/gersteinlab/STRESS).

(B) Running times are shown for systems of various sizes. Shown in red are the running 

times without optimizing for speed, and green shows running times with algorithmic 

optimization.

(C) The same data represented as a log-log plot. The slopes of these two approaches 

demonstrate that our algorithm reduces the computational complexity by an order of 

magnitude. Our speed-optimized algorithm scales at O(n1.3), where n is the number of 

residues.
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Figure 4. Multiple Metrics and Datasets Reveal that Critical Residues Tend to Be Conserved
(A–H) Surface- and interior-critical residues (red) in phosphofructokinase (PDB: 3PFK) are 

given in (A) and (E), respectively. Distributions of cross-species conservation scores, 1,000 

Genomes SNV DAF averages, and ExAC SNV MAF averages for surface- and non-critical 

residue sets are given in (B), (C), and (D), respectively. The same distributions 

corresponding to interior- and non-critical residue sets are given in (F), (G), and (H), 

respectively. In (B), mean inter-species conservation scores for surface-critical sets are 

−0.131, whereas non-critical residue sets with the same degree of burial have a mean score 

of +0.059 (p < 2.2 × 10−16). In (F), mean inter-species conservation scores for interior-

critical sets are −0.179, whereas non-critical residue sets with the same degree of burial have 

a mean score of −0.102 (p = 3.67 × 10−11). In (C), means for surface- and non-critical sets 

are 9.10 × 10−4 and 8.34 × 10−4, respectively (p = 0.309); corresponding means in (D) are 

4.09 × 10−04 and 2.26 × 10−04, respectively (p = 1.49 × 10−3). In (G), means for interior- and 

non-critical sets are 2.82 × 10−4 and 3.12 × 10−3, respectively (p = 1.80 × 10−05); 

corresponding means in (H) are 3.08 × 10−05 and 3.27 × 10−04, respectively (p = 7.98 × 

10−09). N = 421, 32, 84, 517, 31, and 90 structures for (B), (C), (D), (F), (G), and (H), 

respectively. p Values are based on Wilcoxon rank-sum tests. The whiskers extend to the 

most extreme data point which is no more than 1.5 times the interquartile range from the 

box. See Supplemental Experimental Procedures for further details. See also Figures S2 and 

S4.
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Figure 5. Critical Residues Are Shown to Be More Conserved, as Measured by the Fraction of 
Rare Alleles
Protein regions with high fractions of rare variants are believed to be more sensitive to 

sequence variants than other regions, thereby explaining why such variants occur 

infrequently in the population.

(A and C) Distributions for rare (low-DAF) non-synonymous SNVs (taken from the 1,000 

Genomes dataset) in which the critical residues are defined to be the surface-critical (A) and 

interior-critical (C) residues.

(B and D) Distributions for rare (low MAF) non-synonymous SNVs (taken from the ExAC 

dataset) in which the critical residues are defined to be the surface-critical (B) and interior-

critical (D) residues. For varying thresholds to define rarity, there are more structures in 

which the fraction of rare variants is higher in critical residues than in non-critical residues. 

Cases in which the fraction is equal in both categories are not shown. We consider all 

structures such that at least one critical and at least one non-critical residue intersect a non-

synonymous SNV.

(A), (B), (C), and (D) represent data from 31, 90, 32, and 84 structures, respectively.
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Figure 6. Modeling Protein Conformational Change Through a Direct Use of Crystal Structures 
from Alternative Conformations using Absolute Conformational Transitions
(A) Distributions (155 structures) of the mean conservation scores on surface-critical (red) 

and non-critical residues with the same degree of burial (blue).

(B) Distributions (159 structures) of the mean conservation scores for interior-critical (red) 

and non-critical residues with the same degree of burial (blue). Mean values are given in 

parentheses. Results for single-chain proteins are shown, and p values were calculated using 

a Wilcoxon rank-sum test. See also Figure S3.

The whiskers extend to the most extreme data point which is no more than 1.5 times the 

interquartile range from the box.
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Figure 7. Potential Allosteric Residues Add a Layer of Annotation to Structures in the Context of 
Disease-Associated SNVs
(A) Structure of the fibroblast growth factor receptor (FGFR) in VMD Surf rendering, with 

HGMD SNVs shown in orange, bound to FGF2, in ribbon rendering (PDB: 1IIL).

(B) Linear representation of structural annotation for FGFR. Dotted lines highlight loci 

which correspond to HGMD sites that coincide with critical residues, but for which other 

annotations fail to coincide. Deeply buried residues are defined to be those that exhibit a 

relative solvent-exposed surface area of 5% or less, and binding-site residues are defined as 

those for which at least one heavy atom falls within 4.5 Å of any heavy atom in the binding 

partner (heparin-binding growth factor 2). The loci of post-translational modification sites 

were taken from UniProt (UniProt: P21802). See also Figures S5 and S6.
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