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Abstract

Cardiac Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) MRI provides a unique 

opportunity to image an ongoing ischemia at rest. However, it requires post-processing to evaluate 

the extent of ischemia. To address this, here we propose an unsupervised ischemia detection (UID) 

method which relies on the inherent spatio-temporal correlation between oxygenation and wall 

motion to formalize a joint learning and detection problem based on dictionary decomposition. 

Considering input data of a single subject, it treats ischemia as an anomaly and iteratively learns 

dictionaries to represent only normal observations (corresponding to myocardial territories remote 

to ischemia). Anomaly detection is based on a modified version of One-class Support Vector 

Machines (OCSVM) to regulate directly the margins by incorporating the dictionary-based 

representation errors. A measure of ischemic extent (IE) is estimated, reflecting the relative 

portion of the myocardium affected by ischemia. For visualization purposes an ischemia likelihood 

map is created by estimating posterior probabilities from the OCSVM outputs, thus obtaining how 

likely the classification is correct. UID is evaluated on synthetic data and in a 2D CP–BOLD data 

set from a canine experimental model emulating acute coronary syndromes. Comparing early 

ischemic territories identified with UID against infarct territories (after several hours of ischemia), 

we find that IE, as measured by UID, is highly correlated (Pearson’s r = 0.84) w.r.t. infarct size. 

When advances in automated registration and segmentation of CP–BOLD images and full 

coverage 3D acquisitions become available, we hope that this method can enable pixel-level 

assessment of ischemia with this truly non-invasive imaging technique.
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I. Introduction

CARDIAC Phase-resolved Blood-Oxygen-Level Dependent (CP–BOLD) Magnetic 

Resonance Imaging (MRI) is a state-of-the-art technique for directly examining changes in 

myocardial oxygenation without any contrast media [1], [2]. In a single acquisition it obtains 

both BOLD contrast and myocardial function that can be seen as a movie (effectively a cine 

BOLD acquisition). Recently, it was shown that CP–BOLD can be used even at rest [3], 

without any contraindicated provocative stress (exercise or pharmacological agents) [4], 

offering a truly non-invasive “needle-free” approach to ischemia evaluation. This approach 

relies on examining differential myocardial signal intensity variations (when seen as a 

function of cardiac phase) among territories affected by ischemia and “remote territories” 

(i.e. not affected by the disease) [3]. However, since signal intensity changes are subtle 

(≈15%) and need information across cardiac phases, direct visualization is difficult and 

requires post-processing. Here, we propose a method to detect ischemia by identifying 

remote and ischemic patterns of oxygenation and wall motion synergistically using a 

dictionary-based decomposition. Ischemia quantification and visualization are obtained in a 

completely unsupervised fashion without any prior knowledge on disease status using as 

sole input the CP-BOLD data of the subject.

As Fig. 1 illustrates the BOLD signal intensity is maximum in systole and minimum in 

diastole in healthy conditions, but territories of the myocardium, affected by arterial 

occlusion, do not exhibit this behavior. Exploiting this phenomenon, Tsaftaris et al. [3] used 

myocardial radial segments from late systolic and diastolic frames to define S/D: the ratio of 

average segmental intensity at systole over diastole. It was hypothesized and shown that 

S/D>1 in baseline scenarios or remote to ischemia, and S/D<1 in affected myocardial 

territories. However, S/D uses only two images of the cine acquisition and provides a coarse 

segmental analysis.

On the other hand, there are significant benefits to obtaining visualization maps and 

quantification at a finer segmental level (ideally that of a single pixel): enabling differential 

diagnosis into epicardial or endocardial ischemia and other transmural effects, and 

improving the spatial characterization of the area at risk [5]. Unfortunately, with the S/D 

approach when averages are taken in smaller segments, noise increases and more often than 

not the S/D>1 hypothesis may not hold. To this end, we envision that it would be 

advantageous to use all images from the CP–BOLD image sequence for a better 

identification of ischemic regions. Recent experiments on properly generated synthetic data 

[6] have shown that an independent component analysis (ICA) approach adopted from fMRI 

[7] outperformed S/D. However, ICA cannot accommodate time shifts present in BOLD 

time series, which are likely due to physiological differences between different myocardial 

territories [8]. This shifting in time characteristic CP–BOLD effect, was suspected by 
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Tsaftaris et al. [3] and was statistically shown by Rusu et al. [6], using a circulant dictionary 

model.

In this paper, we use the temporal features of CP–BOLD to establish an unsupervised 

method for identifying time series affected by ischemia as anomalous w.r.t. remote, which 

are considered as normal. Our only underlying assumption is that remote time series are 

more populous w.r.t. those that could be affected, an assumption reasonable for evaluating 

acute ischemia in single vessel disease. We propose an unsupervised ischemia detection 

(UID) algorithm by combining time series of the BOLD signal (i.e., radial segmental 

intensity) and also myocardial function as radial wall thickness (typically used to assess wall 

motion anomalies from cine MRI). A general multi-component dictionary-driven anomaly 

detection (DDAD) algorithm, which combines sparse decomposition and a One-class 

Support Vector Machines classifier (OCSVM) [9] forms the core of UID. In an iterative 

fashion it finds a normal pattern (with the dictionaries) and classifies anomalous 

observations incorporating within the OCSVM optimization problem the errors related to the 

dictionary-based approximation. To detect ischemia with DDAD, observations as time series 

of both intensity and function are represented by two separate dictionaries, which are 

learned to characterize normal time series (i.e., those likely to belong to remote territories), 

and are linked in the joint classification step with OCSVM. Finally, to aid interpretation we 

provide visualization maps of ischemia likelihood, computing posterior probabilities by 

approximating the OCSVM outputs with a sigmoid function. The quantitative outcome of 

UID is a notion of ischemia extent (IE) [10], which measures the relative portion of the 

myocardium affected by ischemia. We evaluate UID using synthetic data and in 2D CP–

BOLD data from a canine experimental model emulating acute coronary syndromes, and 

validate IE, as measured by UID, w.r.t. infarct size.

The contributions of this paper are both technical and physiological. DDAD is the first 

method that combines dictionaries and an unsupervised classifier as OCSVM for anomaly 

detection. Other sparsity enforcing methods (e.g., [11]) base the decision on regularization 

parameters contained in the dictionary learning formulation itself, which, in practice, turn 

into hard thresholds applied on the sparse representation coefficients. Moreover, they assume 

fixed dictionaries [11], whereas here DDAD learns the dictionary in the presence of outliers, 

which are progressively detected (with OCSVM) without thresholds and excluded from the 

learning process. Furthermore, this paper also uses for the first time myocardial function (as 

additional time series) to jointly identify BOLD and functional effects, taking advantage of 

complementary information between the two [3]. This paper exploits this directly at the raw 

data level, elevating further the diagnostic power of CP–BOLD imaging as one of the new 

“multicriteria” cardiac ischemia testing methods. Interestingly, we find that wall thickness as 

a function of cardiac phase also shifts –a finding unique in the cardiovascular literature. This 

work is also the first to obtain visual maps of ischemia likelihood, based on inference 

methods. Our only input is the CP–BOLD data of a single subject and myocardial 

delineations. As algorithms for precise registration and segmentation of CP–BOLD images 

advance, we hope to rapidly accelerate the deployment of this method for the pixel-level 

assessment of ischemia with this truly non-invasive imaging technique.

Bevilacqua et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This work is inspired by the approach of Rusu and Tsaftaris [12], where a circulant 

dictionary model is used for ischemia detection. However, in this paper, decisions are based 

on OCSVM and not on thresholds, functional information is also used, and outcomes are 

validated with extensive experiments.

UID’s steps are visually outlined in Fig. 2. After preprocessing (Step A), both intensity and 

functional time series are extracted from a single image sequence and are given to DDAD 

for classification (Step B). DDAD identifies anomalous and normal observations, which are 

used to define an ischemia extent (IE). Finally, Step C performs probabilistic inference, 

which is used for visualization purposes.

In the following, we present first in Section II data and preprocessing. We present DDAD 

separately in Section III for clarity, and in Section IV we detail how we apply DDAD to UID 

(Step B) together with Step C. Before drawing conclusions, Section V presents results on 

synthetic and real data. Shorthands used in this paper are summarized in Table I.

II. Data and pre-processing

A. Experimental data

We use CP–BOLD MRI data obtained from 11 controlled canine experiments modeling 

early acute ischemia and reperfusion injury [3], where a controllable hydraulic occluder is 

affixed to the Left Anterior Descending (LAD) artery and inflated to cause ischemia. While 

anesthetized and mechanically ventilated, canines were imaged using a clinical 1.5T MRI 

system twice at rest: before occluder activation (baseline) and during > 90% LAD occlusion.

The protocol, detailed in [3], included breath-held acquisitions at mid-ventricle position with 

a flow compensated CP–BOLD sequence [2] at baseline and at 20mins post-occlusion. Scan 

parameters were: field of view, 240×145 mm2; spatial resolution, 1.2×1.2×8 mm3; readout 

bandwidth, 930 Hz per pixel; flip angle, 70°; TR/echo time (TE), 6.2/3.1 ms; and temporal 

resolution 37.2 ms). Late Gadolinium Enhancement (LGE) imaging data were also acquired 

in 8 of the 11 canines after 3 hours of occlusion and during reperfusion (the occluder being 

released) to identify myocardial regions succumbed to ischemic tissue damage, using a 

sequence employing a PSIR reconstruction with TurboFLASH readout [13]. Scan 

parameters were: spatial resolution, 1.3×1.3×8 mm3; TE/TR, 3.9/8.2 ms; TI, 200 to 220 ms; 

flip angle, 25°; and readout bandwidth, 140 Hz/pixel.

B. Data pre-processing and time series extraction

The goal of UID is to estimate the presence of myocardial ischemia, given as input a single 

CP–BOLD sequence of images at rest. As mentioned previously, we extract both intensity 

and “functional time series”, the latter reflecting variations of myocardial wall thickness 

over time. They are exploited in a common framework.

To accurately isolate the myocardium we rely on expert myocardial delineations and extract 

time series corresponding to average BOLD signal intensity and myocardial function. 

Cardiac motion is corrected via registration or via rotation on the basis of a known cardiac 

landmark. The myocardium is partitioned into K radial segments, and we extract time series 
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of length N across the cardiac cycle (N is the number of images in the sequence), each of it 

referring to a particular radial segment. This process is repeated for BOLD intensity and 

function, forming two matrices, YI ∈ ℝN×K and YF ∈ ℝN×K, respectively, where time series 

are arranged column-wise. Each time series is further processed by removing the average 

value and normalizing it w.r.t. its ℓ2-norm. YI and YF form the input data to the adapted 

DDAD.

In detail, to obtain intensity time series the segmentation masks are used to elastically 

register the myocardium relying only on binary shape. (The BOLD effect can introduce 

errors to intensity driven registration.) More precisely, let  and  be the sets 

of the segmentation masks and the sequence of images, respectively, and let ℳ1 be chosen 

as the reference mask. When processing the n-th image of the sequence, ℐn, then, ℳn is 

registered to ℳ1, and the transformation found T is applied to ℐn to obtain the registered 

image ℐ̂n = T(ℐn). (Note that the transformation fields forming T are zero outside the 

myocardium, i.e. only the myocardium “moves”.) We use the well-known Demons 

algorithm [14], with σ = 4, and simple linear interpolation. At the end, we obtain a new 

sequence of registered images, where the myocardium appears globally registered. Fig. 3 

shows that after registration time series follow closer a unique pattern.

To obtain functional time series per each segment, we need to first correct for cardiac motion 

to achieve good intra-phase cardiac segment correspondence. Since registration (as the 

above) will render wall thickness constant across the cardiac phase, a different strategy is 

adopted here. Rotation correction is performed on the basis of the insertion points of the 

ventricle (the RV groove), annotated by the expert. Papillary muscles are excluded (via 

fitting a ellipsoidal model on the convex hull of the endocardial boundary) and the final 

myocardial mask is then radially partitioned. For each segment and per each image, average 

wall thickness (WT) is calculated as the average radial distance between the endo- and 

epicardial boundaries of the related segmentation masks. The collection for all images in the 

image sequence of the related WT measures forms per-segment functional time series. The 

examples in Fig. 4 show that under baseline conditions functional time series do follow a 

common pattern. As expected, the presence of disease differentially affects myocardial 

function: time series related to segments remote to ischemia appear to follow a “normal” 

pattern, whereas others considerably deviate from it.

We should note that while here we used myocardial thickness, alternate functional indicators 

can be used, such as segmental (regional) circumferential strain [15]–[17] and others as 

reviewed in [18]. Also, strain measures obtained from various definitions of strain tensors 

are better suited for pixel-level analysis and should be preferred over segmental variants 

discussed here (see also Section VI).

III. Dictionary-Driven Anomaly Detection (DDAD)

The proposed dictionary-driven anomaly detection (DDAD) algorithm aims at finding 

anomalies occurring in a multi-signal scenario. We suppose to have available M different yet 

equally-sized data sets of time series referring to the same test case, . Each data set 
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Yj ∈ ℝN×K, corresponds to a type of signal (in the case of UID M = 2, as we have intensity 

and functional information), N is the length of each signal and K their number. (For 

simplicity we assume that signals have equal length N, but this is not necessary.) Hence our 

approach is based on two assumptions. (i) Most of the time series (the “normal” ones) 

conform with a dictionary-based decomposition model (Yj ≈ DjXj), whereas a fraction of 

them (the “anomalous” time series) significantly deviates from this model. (ii) Anomalies 

occur contextually in the different data sets, i.e. if  is an anomaly in Yj,  is an anomaly 

in Yk. We can then define a single vector of labels (statuses), l ∈ ℝK, which determines if a 

specific instance is an anomaly (l(i) = −1) or not (l(i) = 1).

DDAD consists of two iterative steps: first,  are provided as input to the dictionary 

learning (DL) algorithm(s), which aim at finding for each Yj a dictionary-based model to 

characterize the normal behavior. The same assumption about the presence of a linear model 

that characterizes the normal time series is used by Adler et al. [11]. Unlike the latter, where 

the dictionary is assumed known, here we perform DL in the presence of outliers (which are 

meant to be discovered and excluded progressively), i.e. the models are trained directly on 

the given data sets. As a second step, a modified OCSVM classifier identifies the anomalies, 

by jointly considering all signals. We adapt OCSVM to take into account representation 

errors obtained with the DL step, i.e., deviations from the normal model. The two steps are 

repeated in an iterative fashion, so that the learning of the dictionary-based models 

increasingly benefits from a refined classification step, and vice versa. As a consequence, at 

each iteration, refined normal patterns (i.e. the M dictionaries) are found, and OCSVM, in 

turn, can rely on an increasingly better characterization of the “normal” class. The complete 

DDAD procedure can be found in Algorithm 1. The inputs of the algorithm are M data sets 

, each one referring to a different type of signal, and M dictionary models 

 to characterize the desired DL problems. Each step is detailed below.

Algorithm 1

Proposed Dictionary-driven Anomaly Detection (DDAD) algorithm.

1: procedure DDAD(Y1, …, YM, ℳ1, …, ℳM)

2:   Label initialization:

l(i) = 1 ∀i = 1, …K

3:   Separate dictionary learning problems:

Learn  D1, X1  from Yl ≡ 1 according to 𝒟ℳ1…Learn  DM, XM  from Yl ≡ 1 according to 𝒟ℳM

4:   Jointly consider all different types of time series:

Z = Y1; …; YM
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Ẑ = D1X1; …; DMXM

5:   Compute distances in the Kernel space:

di = 2 C − ϕ(zi)
𝖳ϕ(ẑi) ∀i = 1, …K

6:   Solve the modified OCSVM:

min 
ω, ρ

‖ω‖2
2 − ρ s . t . ω𝖳ϕ(zi) ≥ ρ − λdi

7:   Update the labels:

l(i) = sgn(ω𝖳ϕ(zi) − ρ) ∀i = 1, …K

8:   If num. max iterations not reached go to Step 3.

9:   return l     ▷ Output labels

10: end procedure

A. Pattern discovery via Multi-component Dictionaries

Sparse representations have been shown to be useful for the development of data-driven 

models to represent 1-D signals and images [19] with several good properties, e.g., 

capability of handling high-dimensional vectors [20] and robustness to noise [21]. Moreover, 

sparse representations, when enriched with special constraints on the objects to learn 

(dictionary atoms or sparse coefficients), can provide useful interpretations of the given data 

[22]. Dictionaries and sparse representations have been used successfully in medical 

imaging, and particularly in MRI, for example to reconstruct image data (e.g., [23]), to 

model brain networks (e.g., [24]), or to obtain higher resolution (e.g., [25]) or different 

contrast (e.g., [26]).

In a general way, we can see dictionary learning (DL) as a flexible framework to train a 

multi-component dictionary (i.e., composed by several sub-dictionaries, each one possibly 

characterized by a special structure), with several additional constraints (soft and hard) to 

provide further expressiveness:

(1)

where Y is the data matrix, {D1, …, Dt} are t sub-dictionaries composing the dictionary D 
({X1, …, Xt} being the respective sparse representation matrices). {Φi} represents a set of 

possible “soft” constraints that are summed up to the cost function as a penalization and can 

be possibly applied to any of the t matrices Xi. As for the “hard” constraints, we can 
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consider both equality constraints (gj(Xi) = cj) and inequality constraints (hj(Xi) ≤ dj), the 

latter possibly including conditions on the norm of the sparse vectors.

The formulation in (1) gives a very general framework for dictionary learning. A dictionary 

model ( ℳ) is given after defining the structure of the dictionary D (type and size of each 

sub-dictionary Di), as well as all the possible soft and hard constraints. In the scenario 

considered for DDAD of multiple signal sources, such that M data sets of time series 

 are available, we generally assume that each dictionary-based model is trained 

independently. In other words, for the j-th data set, we define a dictionary model ℳj that 

leads to a particular expression of (1), to learn the related dictionary Dj.

B. Modified One-class Support Vector Machines (OCSVM)

At each iteration, once all the dictionary-based models for characterizing the normal cases 

for all M types of time series are trained, a joint classification step is performed. To this end, 

we propose to use an OCSVM classifier [9], [27], [28]. OCSVM is an SVM-like classifier, 

which aims at finding the boundaries to separate data points related to a single dominant 

class from the rest of the data points, considered as outliers. In a multi-signal scenario, we 

perform the classification jointly, i.e. matrices related to all signal types are vertically 

concatenated to form a unique data matrix Z = [Y1; … ; YM] (each joint observation is a 

column of the matrix Z).

In the original formulation of OCSVM [9], the goal is to find the hyperplane achieving the 

maximal separation between the points and the origin in an appropriate high-dimensional 

kernel space. The hyperplane is characterized by the vector ω, which is perpendicular to the 

decision boundary, and ρ, which represents a bias. ω and ρ are found by solving:

(2)

where ν is a regularization parameter and {ξi} are the so-called slack variables, which play 

as soft margins in allowing some data points, the outliers, to lie on the other side of the 

decision boundary (a data point zi may lie on the side of the origin, i.e., ω𝖳ϕ(zi) − ρ < 0, but 

thanks to an appropriate positive ξi it can still respect the constraint in (2)). An interesting 

property of OCSVM is that it can be used in an unsupervised setting as an anomaly 

detection algorithm: in fact, once a model for the normal class (i.e., a decision boundary) is 

learned on a data set, it can be tested on the same data set to detect anomalies by evaluating 

the sign of the function g(zi) = ω𝖳ϕ(zi) − ρ (the slack variables are in this case neglected).

As others have previously done [29], [30], we propose a new mechanism in how the slack 

variables are implemented. As the dictionary learning (DL) step is meant to find a model to 

characterize the normal time series, we want to use this information to “guide” the OCSVM 

classifier, such that data points with a larger reconstruction error in the DL step are 
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considered to most likely be anomalies. Given a data point zi (the concatenation of M 
corresponding time series), its dictionary-based reconstruction is then given by:

(3)

The distance between zi and ẑi, evaluated in the high-dimensional kernel space, can then be 

used as an indicator on how much the data point zi deviates from the normal pattern. The 

expression of this distance is derived as follows:

(4)

In the last step in (4), note that the inner product ϕ(zi)𝖳ϕ(zi) equals (ϕ(zi), ϕ(zi)), which 

equals a constant C for most of the commonly adopted kernels.

We propose to use distances {di} in the OCSVM objective to regulate accordingly the 

margin of each data point. The original problem (2) is then changed into:

(5)

where λ is a regularization parameter that weights each distance to provide the actual 

margin. Eq. (5) can be transferred into its dual formulation and solved with the usual method 

of Lagrange multipliers. Note that the original OCSVM formulation does not explicitly 

enforce any structural invariance. Using the proposed distances {di} (4) in this modified 

formulation does have benefits of introducing structural invariance to the classifier. As we 

will discuss below, in the case of UID, we can use these distances to directly promote shift-

invariance.

IV. Unsupervised ischemia detection (UID) with DDAD

UID falls into the category of problems addressed in Section III, since we have M = 2 

signals (BOLD and functional information) that provide different (but correlated) time 

series. Moreover, since we address a single vessel disease (LAD typically supplies <50% of 

the left ventricle (LV)), we can consider the remote territories larger in number and hence 

treat ischemia detection as an anomaly identification problem.

The main feature of DDAD is its flexibility in the choice of the dictionary models for the 

normal classes of each type of signal: any model can be “plugged” into the DDAD 

framework, since the classification step via OCSVM is independent of the particular model 

chosen. As we discussed in the Introduction, and it is visible in the examples (cf. Fig. 1 and 

Fig. 4, left columns), due to the expected characteristic CP-BOLD effect, we decide to adopt 

a shift-invariant model. We then use the following DL problem to find the pattern:

(6)

where C ∈ ℝN×P is a single circulant dictionary (of P atoms, shifts) and a unitary constraint 

on the ℓ0-norm of the sparse coefficient vectors is employed (i.e. each time series is seen as a 
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weighted shifted version of a unique circulant pattern). In addition to the sparsity constraint, 

we propose to add a nonnegative constraint: this aids the learning of a circulant kernel 

without sign ambiguity, in order to prevent the case where a time series, although maybe 

behaving very differently than the underlying remote pattern, can get a negative coefficient, 

yet large in absolute value. The problem in (6) is solved by modifying the C–DLA algorithm 

of Rusu et al. [31], to incorporate a non-negativity constraint on the sparse coefficients. 

While keeping the standard SVD-based initialization of C–DLA, the modified version 

alternates the construction of the circulant dictionary C (which involves the solution of 

⌈N/2⌉ complex least squares problems in the Fourier domain) with the Nonnegative 

Matching Pursuit (NMP) algorithm [32], a variant of the well-known Orthogonal Matching 

Pursuit (OMP) algorithm [33], to compute a nonnegative sparse coefficient matrix X. The 

DL procedure is the same for both intensity and functional time series, and is repeated to 

learn two independent remote patterns expressed by, respectively, the circulant dictionaries 

CI and CF. Using our modified step, i.e. plugging our distances {di} (4) into the OCSVM 

objective, makes the classifier invariant to shifts: the “normality” of each data point is in fact 

evaluated with relation to its dictionary-based, shift-corrected, reconstruction.

Let us now discuss this model (a choice which we also elaborate on in the results) w.r.t. 

previous dictionary-based approaches. Rusu et al. [6] proposed a multi-component DL 

problem, which, along the lines of Eq. (1), employs a circulant dictionary C and a general 

dictionary G learned via K–SVD [34]. A similar model was later used by the same authors 

[12] but also considering a soft spatial constraint Φ(X) with the aim of enforcing similarity 

between the sparse representations of time series referring to neighboring locations. 

However, both models were designed under different inputs. Their primary purpose was to 

learn statistical models of how CP-BOLD intensity varies in the myocardium and extract a 

common characteristic CP-BOLD pattern with the circulant dictionary, which forms a 

primary assumption of this work too. However, they did so using information from a 

population (all the resulting time series are aggregated into a unique data matrix Y). The 

general dictionary serves to better learn inter-patient variability. In our case, instead, since 

our input matrices only consist of time series from a single-subject acquisition, we do not 

need this extra dictionary component. Moreover, since the input data considered here are 

“mixed” (we have both remote and ischemic time series) and relatively small in number, we 

want to have a model for the remote time series as compact as possible, in order not to 

encapsulate within it also patterns related to ischemic areas.

Algorithm 2

Unsupervised Ischemia Detection (UID) using DDAD.

1:

procedure 

2:   Time series extraction with pre-processing:

YI, YF {ℐn}
n = 1
N , {ℳn}

n = 1
N

3:   Perform ischemia detection with DDAD:
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[l, g( · ), ε] = DDAD YI, YF, 𝒟ℳ, 𝒟ℳ

4:   Obtain ischemia likelihood values with PPA:

ilv = PPA(l, g( · ), ε)

5:   return l, ilv

6: end procedure

Following the formalism of DDAD, (6) represents the dictionary model ( ℳ) for both types 

of time series ( ℳI and ℳF). YI, YF, ℳI and ℳF are the inputs of a customized 

DDAD algorithm for ischemia detection. The output of the algorithm is a vector of labels l ∈ 

{−1, 1}K, denoting remote and ischemic territories. Given l, the obtained ischemia extent 

(IE) is defined as the number of ischemic labels (l(i) = −1) over the total number of time 

series (K):

(7)

Algorithm 2 summarizes the complete unsupervised ischemia detection procedure, which 

uses DDAD to perform the proper ischemia detection step ( ℳ is the model defined by (6)) 

and subsequently computes ischemia likelihood values by first estimating the posterior 

probability for each time series to belong to the normal class (the method to approximate the 

posterior probabilities is detailed in Section IV-A). Note that the three steps listed in 

Algorithm 2 reflect Fig. 2.

A. Inference via posterior probability approximation (PPA)

While the previous steps provide opportunities for a classification of where ischemia occurs 

and a quantification with IE, for practical purposes it is necessary to provide a measure of 

confidence for each particular status assignment. To obtain such a confidence, we propose to 

utilize the well-established method of Platt [35], which maps the output score of a Support 

Vector Machines (SVM) classifier prior to the sign operation (g(z) = ω𝖳ϕ(z)−ρ) to a 

posterior class probability by fitting a sigmoid function:

(8)

To estimate the parameters A and B, we adopt the implementation proposed by Lin et al. 
[36]. This approach requires some validation labels and SVM scores as priors, i.e. 

observations for which the labeling is considered reliable. We propose to select these 

observations among the joint time series zi that are represented as the best and the worst 

according to the dictionary-based decomposition model (i.e. they have the largest and 

smallest reconstruction error ε(i) = ‖zi−ẑi‖2), and thus can most likely be considered as 

anomalies and normal samples, respectively. For each joint time series we can finally obtain 
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an ischemia likelihood value as the complement of the estimated posterior probability, ilv(i) 
= 1 − Pr(l = 1|zi).

V. Experimental analysis

We test and validate UID on multiple data sets of both synthetic and real data. As for the 

latter, our testing data consists of S = 11 canine subjects imaged in controlled rest 

experiments, as described in Section II-A. For each subject we have available 2 CP–BOLD 

MRI image sequences: at baseline (prior to occlusion) and under ischemia (with critical 

LAD stenosis). First, in Section V-A we explore the presence of shifts in intensity and 

functional time series in baseline cases, and provide insights on the model choice for UID 

(Section IV). Then, we experimentally evaluate our proposed algorithm both on synthetic 

data (Section V-B), appropriately generated to simulate CP–BOLD patterns, and on real data 

(Section V-C). Finally, Section V-D discusses the performance of the algorithm under minor 

presence of anomalies.

In all experiments conducted, given the small size of the data sets considered, we chose for 

the OCSVM within DDAD a Gaussian kernel with σ = 1. For the regularization parameter in 

the OCSVM objective (Eq. (5)), we found via grid search on synthetic data experiments an 

optimal value of λ = 0.1. The maximum number of DDAD iterations is fixed to 10.

A. Model justification

By observing the BOLD intensity curves of a single subject under an ongoing ischemia (left 

column of Fig. 1), we can see that certain time series follow a regular pattern, while 

presenting slight mutual shifts. This is valid also for the so-called functional time series (left 

column of Fig. 4): as in the case of intensity, there is a supposedly unique “remote-to-

ischemia” pattern, whereas time series related to ischemic territories appear much more 

delayed. We can in fact hypothesize that disease yields notable delays and irregularities in 

the contraction patterns of the heart.

In Section IV we formulated the dictionary learning model (6), where such time series are 

decomposed w.r.t. a single circulant dictionary (CI for intensity time series and CF for 

functional time series), with a nonnegative constraint and sparsity strictly set to one.

1) Presence of shifts—The model for intensity and functional time series proposed in 

Eq. (6) is assumed to be valid both at baseline (for all time series) and under ischemia (in 

this case only for the so-called remote time series). To evaluate the presence of shifts, and 

identify a suitable number of circulant atoms (shifts) P, we consider the baseline data sets 

available and compute for each time series the relative representation error (εi = ‖yi − 

Cxi‖
2/‖yi‖

2), for different shift values. To learn the circulant dictionaries we adopt again C-

DLA [31]. The error values obtained as average on all the baseline time series are reported 

in Table II.

Table II shows that both types of time series (intensity and function) can be represented by 

the simple shift-invariant model proposed, and that shifts are present in both of them. In 

particular, both for intensity and shape time series, it turns out that considering P = 3 shifts 
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of the pattern already leads to the lowest representation error achievable by the model. Thus, 

hereinafter, in all the experiments conducted we consider P = 3 shifts (and consequently 

dictionaries of P = 3 atoms).

2) Dictionary composition—The model described in Section IV relies on a single 

dictionary component (circulant only) because we want to learn well the normal patterns in 

the data, but not the “anomalous” ones (ischemic). Here we experimentally demonstrate that 

indeed a multi-component dictionary (e.g., the two-component dictionary used by Rusu et 
al. [6]), by adding more degrees of freedom (general atoms), leads to learning also the 

ischemic data.

We identified remote (normal in our definition) and ischemic territories (segments) on the 

CP–BOLD data (under ischemia) on the basis of visually inspecting infarct location on LGE 

images. We learned for each data set a two-component dictionary composed by a circulant, 

with a fixed number of atoms, and a general one, with a number of atoms that varies: 0 (only 

the circulant part is present), 1 or 2, respectively, and computed the relative dictionary-based 

representation errors. Results, averaged on multiple subjects, are reported in Table III (for K 
= 24). The first row reflects the simple model, with only circulant dictionary, adopted in this 

study.

Observe the larger difference in representation error between remote and ischemic with the 

simple model, which shows that the simple model better separates the remote from ischemic 

case. On the other hand, as we add general atoms, the representation error decreases in both 

cases (remote and ischemic). However, the rate of decrease for ischemic is higher, and the 

difference in representation between the two cases becomes less and less evident. For 

intensity time series, ischemic patterns are actually better represented by this two-

component dictionary, which is undesirable.

B. Evaluation on synthetic data

To provide a quantitative evaluation of the proposed method, we first test it with synthetic 

data because by generating synthetic data we can control composition such as number of 

available time series and the percentage and location of anomalies (ground truth in other 

words is available). Data resembling the CP–BOLD time series patterns are appropriately 

generated according to the sparse generative model described below (for testing purposes we 

used a fixed time series length N = 28); a comparison with other possible approaches for 

unsupervised anomaly detection is then carried out, to evaluate the performance of our 

method in terms of detection accuracy.

1) Generating synthetic data—To simulate the scenario of a CP–BOLD data set in 

presence of ischemia, we synthetically generate K time series, of which composition is 

known by design: Kn are considered “normal” (ideally referring to remote territories) and Ka 

are “anomalous” (i.e., related to ischemia). We can then define a ground truth ischemic 
extent (IE) as the ratio Ka / K. The normal time series are generated by following the sparse 

generative model of Rusu et al. [6], using a simple circulant Cn ∈ ℝN×P allowing for P shifts 

of a single kernel (for the sake of generality we consider random variations resembling a 

CP–BOLD effect), and a unitary ℓ0-norm constraint is set for each coefficient vector. We 
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also considered additive Gaussian noise . The parameters of the variables 

involved are estimated by considering baseline time series, and the ratio between the 

variances of the signal and the noise reflects the signal-to-noise ratio observed on the real 

data.

To generate anomalous (i.e. ischemic) time series we rely again on [6], but, instead, a 

compact dictionary Da is learned from time series extracted from CP–BOLD image 

sequences under ischemia, corresponding to segments identified with the aid of LGE images 

to be well-within the area suspected of ischemia. The dictionary is then used as a basis to 

sparsely generate anomalies (as parameters, we chose a dictionary size for Da equal to 5 

atoms, and a sparsity s = 3). Fig. 5 shows two examples of synthetic data sets (K = 24) with 

mixed remote (normal) and ischemic (anomalous) time series, in a percentage reflecting an 

IE of, 25% and 37.5% respectively.

We use the models described to generate data sets for two types of time series (reflecting 

‘intensity’ and ‘function’ origins). The sparse models to synthetically generate two 

corresponding time series of two types are totally independent (shifts, coefficients, and noise 

vary), but both are generated to belong to the same class (anomaly vs. normal).

2) Performance in detection accuracy—Given the procedure described previously for 

generating realistic synthetic data of CP–BOLD time series, we can evaluate the 

performance of the proposed UID detailed in Section IV w.r.t. other approaches. In 

particular, we consider:

• One-class SVM (OCSVM) [9] performed directly on the original time series Y (we 

use a fixed parameter ν = 0.3);

• One-class SVM performed in the frequency domain (FD–OCSVM), i.e. on the 

magnitude of the vectors transformed via the Fourier transform (this should reduce 

shift effects and lead to a more shift-invariant classifier);

• Dictionary learning (DL) with a threshold directly applied on the sparse coefficients 

(DLwT) [12] (a circulant dictionary is computed via C–DLA and the decision on a 

single time series is made by thresholding, with τ = 0.5, the related sparse 

coefficient); and

• Independent component analysis (ICA) as described in [6] (thresholding the best 

spatial independent component found via ICA decomposition).

The above-listed methods are compared with the proposed method (with two time series to 

resemble cases where both intensity and function are used) but also a variant that uses only 

one time series (intensity).

Table IV reports accuracy, measured as correct assignments w.r.t. the known by design 

ground-truth composition. Accuracy values are obtained by averaging the outcomes of each 

method across M = 200 simulations (i.e. 200 different synthetic data sets are generated). The 

methods have been tested on several values of K and for IE percentages (25% and 37.5%) 

compatible with ischemia attributed to single vessel disease.
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One can readily observe that the proposed UID, when both types of time series are used, 

outperforms all other approaches, including the version of the proposed with only one. It has 

always the highest average and lower variation w.r.t. other unsupervised techniques. It is 

important to note that no assumptions are made in UID except that anomalies contextually 

occur in the two types of time series. Overall we see that using fixed thresholds (DLwT) 

under-performs, and projecting to a shift-invariant space has benefits (OCSVM performs 

worse than FD-OCSVM). While in FD-OCSVM a fixed basis is used (Fourier), learning the 

basis and adapting the anomaly detection process always has benefits, since ICA and UID 

outperform the other approaches. We should note that for ICA we identify the principal 

spatial component to threshold by examining the correlation of the time component with the 

ground-truth, so in that sense ICA numbers are elevated. When we use non-Gaussian 

measures to do that ICA numbers fall down to ≈ 60%.

In our tests, DDAD converges after 4.8 iterations (on average). For an intuitive 

understanding of DDAD’s convergence process, see Fig. 6, which shows how labels change 

across iterations. Starting with “all-normal” labels (top row), the algorithm stops when the 

same vector of labels is produced for two consecutive runs, matching here the ground-truth.

C. Visual and quantitative assessment on real data

On real data, UID takes as input only the CP–BOLD sequence of images (of N images, with 

N varying among subjects) of an imaged subject, with no additional information but its 

segmentation masks. Intensity and shape time series are extracted according to the pre-

processing step described in Section II-B, YI ∈ ℝN×K and YF ∈ ℝN×K, where K is the 

number of radial segments. We used K = 36, since it provided the best balance between 

learning performance (enough data to learn) and accuracy w.r.t. pre-processing errors. 

Finally, IE (Eq. (7)) and likelihood estimates are obtained.

To show the potential of iteratively refining the learned pattern on real data, as an example, 

Fig. 7 shows intensity and functional time series of a particular subject under ischemia, 

along with the circulant patterns learned at the first and the last iterations of UID. As we can 

observe, the patterns change to better represent the remote time series (this is more evident 

for functional time series in this case), as the anomalies are correctly detected and excluded 

from the learning process.

Using this iterative process UID produces a classification to remote (normal) and ischemia 

(anomalous) as Fig. 8 illustrates. Other approaches for myocardial ischemia detection, 

namely the S/D method [3] and the DLwT method [12], where we have a dictionary learning 

(DL) step followed by hard thresholding, along with the corresponding LGE image obtained 

after 3 hours of occlusion and during reperfusion are also shown. Observe the close 

correspondence with LGE, of the proposed (UID) when both intensity and function time 

series are used. S/D shows incoherent findings, whereas DLwT does not capture a large and 

continuous ischemic territory.

Beyond these visual examples, the superiority of UID is quantified also statistically when 

testing it across our subject population. For each subject with LGE data available we 

obtained IE (with UID and all other methods considered), collected IE values and correlated 
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them with infarct size. Infarct size was measured using standard practice [37], considering 

an infarcted region wherever signal intensity exceeds by 5 times the standard deviation of 

the mean of a reference region. As summarized in Table V, together with standard p-values 

and bootstrapped estimates (after 106 permutations), IE measured with the proposed method 

(UID) shows an exceptional, statistically significant, correlation of 0.84 with infarct size. 

Even when using only intensity the proposed method outperforms all others. Although its p-
value is close to the significance threshold (p-value = 0.05), the bootstrapped estimate is 

0.0394 and thus is statistical significant. All other methods under-perform, yielding non-

significant correlations. DLwT and ICA, although they did well in some of the synthetic 

experiments, here having a fixed threshold or not being able to deal with shifts, lead to 

poorer performance. Our method finds an optimal basis (dictionaries), exploits both function 

and BOLD signal intensity, and finds a suitable per subject ‘threshold’, all in an 

unsupervised fashion. S/D as we mentioned in the introduction, shows poorer performance 

since less averaging within a segment (due to a finer partitioning) leads to more noisy S/D 

estimates. UID, instead, thanks to sparsity is more resistant to noise [21].

UID can also estimate likelihood values for each time series (which are viewed as a 

probability of a time series to be originated from an ischemic territory) using the optional 

inference Step C of UID, as seen in the example of Fig. 9, along with the LGE image for this 

subject. Observe again the close correspondence between the derived visualization map and 

the LGE image, capturing a broad ischemic territory (and potential area at risk), which 

eventually led to the diffuse endocardial infarct. By averaging those likelihoods we can 

provide a 6-segment bulls-eye representation, following standard clinical practice [38]. With 

this plot, a clinician can readily ascertain that the culprit artery causing myocardial ischemia 

is LAD.

D. Performance under presence of minor anomalies

Our approach assumes that some anomalies are present. To address clinical scenarios where 

ischemia is not so apparent in the myocardium, we performed tests both on synthetic and 

real data. Specifically, for synthetic experiments, we used the same data generation models 

described in Section V-B, by setting IE = 5%. This value of ischemic extent can either reflect 

very minor ischemia or account for artifacts (e.g., flow artifacts) that can make normal 

patterns appear anomalous. As Table VI shows, our method adapts adequately to this case 

without any modifications, finding an IE consistent with the value set by design. Once again, 

jointly exploiting two types of time series leads to a significant increase of the performance. 

Note also that the DLwT method [12] has high accuracy, but tends to under-estimate the 

anomalies.

Furthermore, we ran our algorithm on a set of real data from 7 baseline canine studies 

(operated animals, but without occluder activation). After feeding these baseline data sets to 

our algorithm, we found an average IE of 7%, whereas the second best performing algorithm 

(i.e. detecting the lowest number of anomalous territories), FD-OCSVM, gave an average IE 

= 15%. Moreover, visual inspection of the ischemia maps (not shown for brevity) revealed 

that the identified anomalous segments are spatially diffuse, suggesting that the anomalies 

are not likely to be attributed to pathological findings.
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VI. Conclusion and Discussion

In this paper we presented UID, an algorithm for dictionary-driven anomaly detection, and 

its application to ischemia detection in CP–BOLD MRI at rest. The outcome of the 

algorithm, when applied to time series originating from CP–BOLD data of a single subject 

imaged at rest, is the unsupervised classification of the time series as remote or affected by 

ischemia, and a measure of ischemic extent, as the ratio of those affected divided by their 

total number. The method combines both signal intensity and myocardial function in a 

unifying framework. An optional inference step obtains a confidence as to classification 

certainty, and provides visualization maps of ischemia likelihood.

Using real data from controlled experiments under baseline conditions we found that a 

circulant dictionary model can suitably describe not only BOLD signal intensity but also 

wall thickness. We tested the algorithm and underlying circulant structures in a variety of 

settings. Using synthetic experiments we showed superior performance when all aspects 

considered are combined: (a) a shift-invariant model has benefits; (b) anomaly detection (via 

OCSVM) performed better than using fixed thresholds; and (c) combining two 

complementary time series (to emulate in our case BOLD intensity and myocardial function) 

proved beneficial than using only one. Of course, as we increase the number of time series 

available, accuracy improves, illustrating the potential of pixel-level analysis when 

segmentation and registration performance improves (please see discussion below). Our 

experiments on subjects under severe coronary occlusion showed significant visual 

agreement between infarct size (LGE) and visualization maps of ischemia extent. 

Quantitatively, ischemic extent (IE) obtained using our method is statistically significantly 

correlated (p < 0.05) with infarct size as estimated with LGE.

In this paper, we used ischemia detection in CP–BOLD as an application of DDAD. 

However, this algorithm is general and can be used wherever we need to combine subspace 

decomposition with anomaly detection via OCSVM. With DDAD, when combing different 

dictionary learning algorithms with an appropriate choice of sparsity, several complex data 

manifolds (subspaces) can be considered and can be linked with OCSVM directly via the 

representation error. Depending on the number of dictionary atoms (in a general context) or 

union of circulants (in a structural shift-invariant context) multiple “normal” classes and 

behaviors can be accommodated. Our synthetic experiments showed that is better to rely on 

OCSVM rather than fixed thresholds, which may have a nonlinear effect on the performance 

instead of the linear one of a regularization-based approach as ours. Currently, we are also 

exploring applications of DDAD in shape discrimination and object segmentation in other 

domains.

This paper relies on segmental analysis and expert myocardial delineation to reduce the bias 

of any errors introduced by automated segmentation algorithms. Even with standard cine 

MRI, myocardial segmentation accuracy (measured with Dice Overlap criteria) is reported 

to be close to 80%, based on recent automated atlas-based state-of-the-art algorithms [39], 

[40]. With such accuracy, segmentation errors, of 20% e.g., can have undesirable effects to 

the fidelity of extracted BOLD signals. Since we focus on the detection part here, we opted 

to use expert delineations. Nonetheless, in clinical settings full automation is desirable and 
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we are investigating segmentation algorithms tailored for CP–BOLD [41], [42] to fill this 

need. Also, this paper does not use intensity-based registration to elastically register 

sequential images within the sequence. Again this is done to avoid any registration errors, 

since it is known that the BOLD effect adversely affects myocardial registration accuracy. 

As segmentation and registration accuracy for CP–BOLD increases, we hope to obtain 

ischemia extent maps and quantification at the pixel-level, which will also increase the 

number of available time series. As our synthetic experiments show, this will in fact benefit 

the algorithm.

Overall performance is also expected to increase moving from 2D to 3D, when full cardiac 

coverage cine BOLD sequences using free-breathing approaches [43] become available. We 

rely on radially-defined myocardial wall thickness to assess myocardial function, which is 

not translatable to the pixel-level. We will need to adopt either pixel-level definitions of 

Jacobian or strain measures (including radial and circumferential strain) from their 

appropriate tensors [15]–[17], [44], to obtain pixel-level time series of myocardial function. 

Currently, we do not enforce any spatial correlation among time series; however we can 

readily adopt the spatial constraint in our formulation, as done in [12]. At the single pixel-

level, adding such spatial constraints should help produce smoother (and contiguous) 

ischemia maps. Finally, our validation is limited solely due to inherent difficulties of relating 

ischemia (from CP–BOLD) with infarct (from LGE). It is well known that the ischemic 

territory (area at risk) could be larger than the infarcted territory, and that a one-to-one 

correspondence does not exist, since ischemia is a trigger (hence an early effect), while 

infarction is a consequence (i.e. occurs after prolonged ischemia). We are in the process of 

tandem PET-MRI experiments in a dedicated scanner, which ideally should provide co-

registered PET perfusion and BOLD MRI data offering additional validation. Our method 

has been tested in cases where single-vessel disease is present, i.e. unaffected (remote) 

territories are expected to be more populous. In the case of multi-vessel disease, 

modifications on the assumptions and the methodology might be necessary; however, 

current animal models cannot readily emulate such disease scenarios. Thus, we are also in 

the process of recruiting patient and volunteer populations to test the method on humans 

with a larger range of ischemia conditions. However, the presentation of both of these 

outcomes is the subject of a future manuscript.

In conclusion, we showed that the proposed approach can reliably detect ischemic territories 

with CP–BOLD MRI at rest. It learns and represents normal patterns of signal intensity and 

myocardial function from remote territories efficiently, taking advantage of a unique 

structurally sparse decomposition framework combined with anomaly detection performed 

via OCSVM to iteratively identify normal (remote) and anomalous (ischemic) behaviors. To 

aid visualization and diagnosis, a probabilistic inference step provides confidence for 

ischemia likelihood. When combined with advances in myocardial segmentation and 

registration tailored to the BOLD effect, our approach will help to accelerate the clinical 

translation of this truly non-invasive and repeatable method for pixel-level and transmural 

assessment of ischemia.

Bevilacqua et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgments

The authors would like to acknowledge Dr. Cristian Rusu from University of Vigo, Spain, for fruitful discussions. 
They also thank the anonymous reviewers for their constructive comments.

This work was supported in part by the US National Institutes of Health (2R01HL091989-05).

References

1. Dharmakumar R, Arumana J, Tang R, Harris K, Zhang Z, Li D. Assessment of regional myocardial 
oxygenation changes in the presence of coronary artery stenosis with balanced SSFP imaging at 
3.0T: Theory and experimental evaluation in canines. J. Magn. Reson. Imaging. 2008; 27(5):1037–
1045. [PubMed: 18425840] 

2. Zhou X, Tsaftaris SA, Liu Y, Tang R, Klein R, Zuehls-dorff S, Li D, Dharmakumar R. Artifact-
reduced two-dimensional cine steady state free precession for myocardial blood-oxygen-level-
dependent imaging. J. Magn. Reson. Imaging. 2010; 31(4):863–871. [PubMed: 20373430] 

3. Tsaftaris SA, Zhou X, Tang R, Li D, Dharmakumar R. Detecting myocardial ischemia at rest with 
Cardiac Phase-resolved Blood Oxygen Level-Dependent Cardiovascular Magnetic Resonance. Circ. 
Cardiovasc. Imaging. 2013; 6(2):311–319. [PubMed: 23258476] 

4. U. S. Food and Drug Administration. FDA warns of rare but serious risk of heart attack and death 
with cardiac nuclear stress test drugs Lexiscan (regadenoson) and Adenoscan (adenosine). Drug 
Safety Communications. 2013. [Online]. Available: http://www.fda.gov/Drugs/DrugSafety/
ucm375654.htm

5. Aletras AH, Tilak GS, Natanzon A, Hsu L-Y, Gonzalez FM, Hoyt RF, Arai AE. Retrospective 
Determination of the Area at Risk for Reperfused Acute Myocardial Infarction With T2-Weighted 
Cardiac Magnetic Resonance Imaging. Circulation. 2006; 113(15):1865–1870. [PubMed: 
16606793] 

6. Rusu C, Morisi R, Boschetto D, Dharmakumar R, Tsaftaris SA. Synthetic Generation of Myocardial 
Blood-oxygen-level-dependent MRI Time Series via Structural Sparse Decomposition Modeling. 
IEEE Trans. Med. Imag. 2014; 33(7):1422–1433.

7. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic 
resonance imaging. IEEE Trans. Med. Imag. 2004; 23(2):137–152.

8. Ootaki Y, Ootaki C, Kamohara K, Akiyama M, Zahr F, Kopcak J, Dessoffy MWR, Fukamachi K. 
Phasic coronary blood flow patterns in dogs vs. pigs: an acute ischemic heart study. Med. Sci. 
Monit. 2008; 14(10):193–197.

9. Schölkopf, B.; Shawe-Taylor, J.; Platt, JC.; Smola, AJ.; Williamson, RC. Estimating the Support of a 
High-Dimensional Distribution. Microsoft Research, Tech. Rep. 2000. 

10. Tsaftaris SA, Tang R, Zhou X, Li D, Dharmakumar R. Ischemic extent as a biomarker for 
characterizing severity of coronary artery stenosis with blood oxygen-sensitive MRI. J. Magn. 
Reson. Imaging. 2012; 35(6):1338–1348. [PubMed: 22246681] 

11. Adler A, Elad M, Hel-Or Y, Rivlin E. Sparse Coding with Anomaly Detection. J. Signal Proc. Syst. 
2014 Jul.79(2):179–188.

12. Rusu C, Tsaftaris SA. Structured Dictionaries for Ischemia Estimation in Cardiac BOLD MRI at 
Rest. MICCAI. 2014:562–569. [PubMed: 25485424] 

13. Kellman P, Arai AE, McVeigh ER, Aletras AH. Phase-sensitive inversion recovery for detecting 
myocardial infarction using gadolinium-delayed hyperenhancement. Magn. Res. Med. 2002; 
47(2):372–383.

14. Thirion J-P. Image matching as a diffusion process: An analogy with Maxwell demons. Med. 
Image Anal. 1998 Sep.2(3):243260.

15. Moore CC, Lugo-Olivieri CH, McVeigh ER, Zerhouni EA. Three-dimensional systolic strain 
patterns in the normal human left ventricle: Characterization with tagged mr imaging. Radiology. 
214(2):453–466. [Online]. Available: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396279/. 
[PubMed: 10671594] 

Bevilacqua et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fda.gov/Drugs/DrugSafety/ucm375654.htm
http://www.fda.gov/Drugs/DrugSafety/ucm375654.htm
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2396279/


16. Mansi, T.; Peyrat, J-M.; Sermesant, M.; Delingette, H.; Blanc, J.; Boudjemline, Y.; Ayache, N. 
FIMH, ser. Lecture Notes in Computer Science. Vol. 5528. Springer; 2009. Physically-Constrained 
Diffeomorphic Demons for the Estimation of 3D Myocardium Strain from Cine-MRI; p. 201-210.

17. Veress AI, Gullberg GT, Weiss JA. Measurement of strain in the left ventricle during diastole with 
cine-mri and deformable image registration. Journal of Biomechanical Engineering. 127(7):1195–
1207. [Online]. Available: http://dx.doi.org/10.1115/1.2073677. [PubMed: 16502662] 

18. Wang H, Amini A. Cardiac motion and deformation recovery from mri: A review. IEEE 
Transactions on Medical Imaging. 2012 Feb; 31(2):487–503. [PubMed: 21997253] 

19. Bruckstein AM, Donoho DL, Elad M. From Sparse Solutions of Systems of Equations to Sparse 
Modeling of Signals and Images. SIAM Review. 2009; 51(1):34–81.

20. Xiang ZJ, Xu H, Ramadge PJ. Learning Sparse Representations of High Dimensional Data on 
Large Scale Dictionaries. Adv. Neural Inf. Process. Syst. 2011:900–908.

21. Jenatton, R.; Gribonval, R.; Bach, F. Tech. Rep. 2012. Local stability and robustness of sparse 
dictionary learning in the presence of noise. 

22. Baraniuk R, Cevher V, Duarte M, Hegde C. Model-based compressive sensing. IEEE Trans. Inf. 
Theory. 2010; 56(4):1982–2001.

23. Ravishankar S, Bresler Y. MR Image Reconstruction From Highly Undersampled k-Space Data by 
Dictionary Learning. IEEE Trans. Med. Imag. 2011 May; 30(5):1028–1041.

24. Eavani H, Filipovych R, Davatzikos C, Satterthwaite TD, Gur RE, Gur RC. Sparse Dictionary 
Learning of Resting State fMRI Networks. PRNI. 2012:73–76. [PubMed: 25178438] 

25. Zhang Y, Wu G, Yap P-T, Feng Q, Lian J, Chen W, Shen D. Hierarchical Patch-Based Sparse 
Representation: A New Approach for Resolution Enhancement of 4D-CT Lung Data. IEEE Trans. 
Med. Imag. 2012 Nov; 31(11):1993–2005.

26. Roy S, Carass A, Prince J. Magnetic Resonance Image Example-Based Contrast Synthesis. IEEE 
Trans. Med. Imag. 2013 Dec; 32(12):2348–2363.

27. Tax DM, Duin RP. Support vector data description. Mach. Learn. 2004; 54(1):45–66.

28. Ma J, Perkins S. Time-series novelty detection using one-class support vector machines. IJCNN. 
2003; 3:1741–1745.

29. Amer, M.; Goldstein, M.; Abdennadher, S. KDD Workshop on ODD. ACM Press; 2013. 
Enhancing One-class Support Vector Machines for Unsupervised Anomaly Detection; p. 8-15.

30. Liu W, Hua G, Smith JR. Unsupervised One-Class Learning for Automatic Outlier Removal. 
CVPR. 2014 Jun.:3826–3833.

31. Rusu C, Dumitrescu B, Tsaftaris SA. Explicit Shift-Invariant Dictionary Learning. IEEE Signal 
Process. Lett. 2014 Jan; 21(1):6–9.

32. Peharz R, Pernkopf F. Sparse nonnegative matrix factorization with 0-constraints. 
Neurocomputing. 2012; 80:38–46. [PubMed: 22505792] 

33. Pati Y, Rezaiifar R, Krishnaprasad P. Orthogonal Matching Pursuit: recursive function 
approximation with application to wavelet decomposition. Asilomar Conf. on Signals, Systems 
and Comput. 1993; 1:40–44.

34. Aharon M, Elad M, Bruckstein A. K–SVD: An Algorithm for Designing Overcomplete 
Dictionaries for Sparse Representation. IEEE Trans. Sig. Proc. 2006; 54(11):4311–4322.

35. Platt, JC. Advances in Large Margin Classifiers. MIT Press; 1999. Probabilistic Outputs for 
Support Vector Machines and Comparisons to Regularized Likelihood Methods. 

36. Lin H-T, Lin C-J, Weng RC. A Note on PlattâŁ™s Probabilistic Outputs for Support Vector 
Machines. Mach. Learn. 2007; 68(3):267–276.

37. Bondarenko O, Beek AM, Hofman MB, Kuhl HP, Twisk JW, van Dockum WG, Visser CA, van 
Rossum AC. Standardizing the definition of hyperenhancement in the quantitative assessment of 
infarct size and myocardial viability using delayed contrast-enhanced CMR. J Cardiovasc Magn 
Reson. 2005; 7(2):481–485. [PubMed: 15881532] 

38. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, 
Rumberger JA, Ryan T, Verani MS. Standardized myocardial segmentation and nomenclature for 
tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac 

Bevilacqua et al. Page 20

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.1115/1.2073677


Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. 
Circulation. 2002; 105(4):539–542. [PubMed: 11815441] 

39. Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S, Peters NS, Rueckert D. A 
Probabilistic Patch-Based Label Fusion Model for Multi-Atlas Segmentation With Registration 
Refinement: Application to Cardiac MR Images. IEEE Trans. Med. Imaging. 2013 Jul.32(7):1302–
1315. [PubMed: 23568495] 

40. Bai W, Shi W, Ledig C, Rueckert D. Multi-atlas segmentation with augmented features for cardiac 
MR images. Med. Image Anal. 2015; 19(1):98–109. [PubMed: 25299433] 

41. Mukhopadhyay A, Oksuz I, Bevilacqua M, Dharmakumar R, Tsaftaris SA. Data-Driven Feature 
Learning for Myocardial Segmentation of CP-BOLD MRI. FIMH. 2015

42. Mukhopadhyay A, Oksuz I, Bevilacqua M, Dharmakumar R, Tsaftaris SA. Unsupervised 
myocardial segmentation for cardiac MRI. MICCAI. 2015

43. Yang H-J, Sharif B, Pang J, Kali A, Bi X, Cokic I, Li D, Dharmakumar R. Free-breathing, motion-
corrected, highly efficient whole heart T2 mapping at 3T with hybrid radial-cartesian trajectory. 
Magn. Reson. Med. 2015 in press. 

44. Sundar H, Litt H, Shen D. Estimating myocardial motion by 4D image warping. Pattern Recogn. 
2009; 42(11):2514–2526.

Bevilacqua et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
BOLD signal intensity time series (as segmental averages of six different radial segments 

across the images, ie., frames, of the cine movie) extracted from rest CP–BOLD MRI data of 

the same subject, at baseline (left) and under ischemia (right). (CP–BOLD is ECG-triggered 

and first and last time points correspond to diastole. Time series have been normalized 

according to the process described in Section II-B for ease of visualization.)
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Fig. 2. 
Workflow of the proposed unsupervised ischemia detection (UID).
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Fig. 3. 
Effect of registration on intensity time series.
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Fig. 4. 
Example of “functional time series” from rest CP–BOLD MRI of a subject under baseline 

(left) and ischemia (right) conditions.
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Fig. 5. 
Examples of synthetic data sets with simulated remote (green) and ischemic (red) time 

series, for two different ischemic extents (IE) considered.
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Fig. 6. 
Visual representation of the evolution of the classification labels at each iteration of DDAD 

(green for normal, red for anomaly) from an initial state (top row). Bottom row represents 

ground-truth (GT) assignments.
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Fig. 7. 
Examples of intensity and functional time series under ischemia (left) and related circulant 

patterns (right), learned at the first (dashed line) and last iteration (solid line) of UID.
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Fig. 8. 
Ischemia classification maps related to one subject obtained with several methods (overlaid 

on an image in diastole from the CP–BOLD image sequence) compared with the 

corresponding LGE image obtained after 3hrs of ischemia and during reperfusion.
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Fig. 9. 
An ischemia likelihood map as obtained by UID for another subject, color-coded and 

overlaid on the original CP–BOLD image in diastole (a). Together we also show a six-

segment bulls-eye plot of likelihood for the same case (b); the color bar shown refers to both 

(a) and (b). In (c) the corresponding LGE image is reported.
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TABLE I

Acronyms appearing in the manuscript.

Acronym Definition First appearance

CP–BOLD Cardiac Phase-resolved
Blood-Oxygen-Level Dependent

Abstract

DDAD Dictionary-Driven Anomaly
Detection

Sec. I, p. 2

DL Dictionary Learning Sec. III, p. 4

DLwT Dictionary Learning with
Theshold

Sec. V, p. 8

FD-OCSVM Frequency-Domain One-Class
Support Vector Machines

Sec. V, p. 8

GT Ground-Truth Section V, p. 9

ICA Independent Component Analyis Sec. I, p. 2

IE Ischemic Extent Abstract

LAD Left Anterior Descending Sec. II, p. 3

LGE Late Gadolinium Enhancement Sec. II, p. 3

MRI Magnetic Resonance Imaging Sec. I, p. 1

NMP Nonnegative Matching Pursuit Sec. IV, p. 6

OCSVM One-Class Support Vector
Machines

Abstract

S/D Systole to Diastole ratio Sec. I, p. 1

SVM Support Vector Machines Sec. IV, p. 6

UID Unsupervised Ischemia Detection Abstract

WT Wall Thickness Sec. II, p. 3
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TABLE IV

Accuracy (mean ± standard deviation) of several algorithms for anomaly detection, including the proposed 

one, on synthetic data tests emulating variable IE (%).

K=24 K=48

Methods IE=25 IE=37.5 IE=25 IE=37.5

OCSVM 79±7 74±7 84±5 77±5

FD-OCSVM 80±8 78±11 82±8 82±10

ICA [6] 88±15 88±12 89±12 88±11

DLwT [12] 84±6 74±7 83±5 73±7

PROPOSED 87±10 84±11 90±10 86±11

PROP. (2 TS types) 91±7 86±10 92±7 90±8

K=60 K=90

Methods IE=25 IE=37.5 IE=25 IE=37.5

OCSVM 84±4 77±4 85±4 78±3

FD-OCSVM 83±7 78±11 83±8 79±11

ICA [6] 88±12 88±11 90±14 89±9

DLwT [12] 84±5 74±5 84±4 74±4

PROPOSED 90±9 87±11 91±9 88±11

PROP. (2 TS types) 91±6 89±9 93±6 91±9
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TABLE V

Pearson correlation coefficients (r) and related p-values, obtained by correlating, for different methods, 

ischemic extent (IE) with infarct size in our subject population.

Method r p-value Bootstrap. p-value

S/D [3] −0.0808 0.8491 0.5751

FD-OCSVM 0.2495 0.5512 0.3138

ICA [6] 0.2708 0.5164 0.2634

DLwT [12] 0.3233 0.4347 0.2247

PROPOSED (only intens.) 0.6643 0.0723 0.0394

PROPOSED (w. function) 0.8425 0.0087 0.0040
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TABLE VI

Accuracy (mean ± standard deviation) and resulting IE obtained with several algorithms, including the 

proposed one, on synthetic data tests emulating minor ischemia (IE=5%).

K=60, IE=5%

Methods Accuracy IE measured

OCSVM 72±2 33±2

FD-OCSVM 71±2 34±2

ICA [6] 75±11 29±11

DLwT [12] 96±1 1±1

PROPOSED 91±12 10±14

PROP. (2 TS types) 96±9 4±9
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