Skip to main content
. Author manuscript; available in PMC: 2017 Jan 1.
Published in final edited form as: IEEE Trans Med Imaging. 2015 Aug 19;35(1):282–293. doi: 10.1109/TMI.2015.2470075

Algorithm 1.

Proposed Dictionary-driven Anomaly Detection (DDAD) algorithm.

1: procedure DDAD(Y1, …, YM, 𝒟ℳ1, …, 𝒟ℳM)
2:   Label initialization:
l(i)=1i=1,K
3:   Separate dictionary learning problems:
Learn [D1,X1] from Yl1 according to 𝒟1Learn [DM,XM] from Yl1 according to 𝒟M
4:   Jointly consider all different types of time series:
Z=[Y1;;YM]
=[D1X1;;DMXM]
5:   Compute distances in the Kernel space:
di=2(Cϕ(zi)𝖳ϕ(i))i=1,K
6:   Solve the modified OCSVM:
min ω,ρω22ρs.t.ω𝖳ϕ(zi)ρλdi
7:   Update the labels:
l(i)=sgn(ω𝖳ϕ(zi)ρ)i=1,K
8:   If num. max iterations not reached go to Step 3.
9:   return l     ▷ Output labels
10: end procedure