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Abstract This paper proposes a novel horizontal visi-

bility graph entropy (HVGE) approach to evaluate EEG

signals from alcoholic subjects and controlled drinkers and

compare with a sample entropy (SaE) method. Firstly,

HVGEs and SaEs are extracted from 1,200 recordings of

biomedical signals, respectively. A statistical analysis

method is employed to choose the optimal channels to

identify the abnormalities in alcoholics. Five group chan-

nels are selected and forwarded to a K-Nearest Neighbour

(K-NN) and a support vector machine (SVM) to conduct

classification, respectively. The experimental results show

that the HVGEs associated with left hemisphere, C1, C3

and FC5 electrodes, of alcoholics are significantly abnor-

mal. The accuracy of classification with 10-fold cross-

validation is 87.5 % with about three HVGE features. By

using just optimal 13-dimension HVGE features, the

accuracy is 95.8 %. In contrast, SaE features associated

cannot identify the left hemisphere disorder for alcoholism

and the maximum classification ratio based on SaE is just

95.2 % even using all channel signals. These results

demonstrate that the HVGE method is a promising

approach for alcoholism identification by EEG signals.

Keywords Multi-channel EEG � Alcoholism � Graph

entropy � Slow waves � Classification

1 Introduction

Alcoholism is a common neurological disorder caused by

the mutual effect of genetic and environmental factors. It

not only damages the brain system but also leads to

cognitive and mobility impairments [1]. These impair-

ments may lead to serious accidents while driving and

operating machineries [2]. The World Health Organiza-

tion (WHO) [3] reported that alcohol abuse is the third

highest risk factor for causing diseases and results in 2.5

million deaths each year. How to distinguish alcoholics

from normal subjects in a reliable way will not only

reduce unnecessary economic losses and social problems,

but also provide a quick and easy way for doctors in the

clinical settings. Electroencephalogram (EEG) is a very

effective tool for studying the complex dynamics of brain

activities. It can visualize complex brain activities as

dynamic outputs. Therefore, it can be used to distinguish

alcoholics from normal subjects based on the differences

in the signals, which aids in the detection and diagnosis

of alcoholics.

Frequency-domain analysis and time-domain methods

are widely used to assess alcoholic EEG or EOG signals.

Hayden et al. [4] claimed by analysing the frequency

power that alcoholism in people may lead to frontal lobe

dysfunction. Michael et al. [5] found the alpha-wave

coherence increases at the central region and the appear-

ance of a slow-beta coherence. Winterer et al. [6] reported

that the alcoholic subjects showed increased left-temporal

alpha coherence and slow-beta coherence. Hughes et al. [7]

noticed that both EEG and QEEG reveal marked abnor-

malities in alcoholic subjects, which might result in

increased slow activity or the converse, while Waite et al.

[8] using QEEG techniques confirmed that slow waves

dominated the brain of alcoholics. By using an event-
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related potential technique, Zhang et al. [9] suggested the

right hemisphere dysfunction in alcoholics unlike that of

drinking controlled subjects. Zhu et al. [10] studied the

alcoholism using a likelihood synchronization method

and found that there is a slight difference between

alcoholics and normal persons based on EOG signals.

However, most of these reports did not match the recent

finding based on the study of brain tissue mitochondria

[11] or fMRI detection [12] that alcohol significantly

reduced amygdala reactivity to threat signals. New non-

linear methods are needed to investigate the alcoholic

EEG or EOG signals.

Currently, some nonlinear EEG complexity analysis

methods, such as correlation entropy [2], sample entropy

[13] and Omeg-complexity [14], have been applied to

analyse the alcoholic EEG signals. In general, the input

signals are more random, and the value of entropy is

large. Based on this principle, Zhou et al. [13] showed

that the EEG signals of alcoholics are more random than

those of normal using a sample entropy (SaE) method. In

contrast, SaE of heavy drinkers is less than healthy

during driving [2], while correlation entropy is reverse.

Thus, biologists are finding these contradictions very

difficult to interpret. Thus, it is necessary to find a good

entropy to measure the complexity of the alcoholics and

the results can be interpreted from the biological point of

view.

This paper uses HVGE features to analyse the alco-

holic EEG signals from multi-channel EEG signals.

Although the concept of HVGE has been appearing for a

long time [15], HVGE has been only recently applied to

social networks [16] and data mining [17]. The HVGE

has never been applied to analyse the alcoholic EEG

signal processing as far as we know. To show the out-

come, the SaEs are compared to study at the same three

steps. At first, the HVGE and the SaE features are

extracted from multi-channel EEG and EOG signals to

distinguish alcoholics from controlled drinkers. Each of

EEG and EOG recordings in 1 s from 63 channels is

mapped to 63 HVG. There are 1,200 EEG recordings to

be analysed. Totally, 76,800 HVGE and SaE features are

extracted. Then all the HVGE features are evaluated with

Kruskal-Wallis test to identify the abnormal channels.

Finally, the features from one channel, three left hemi-

sphere channels, 13 optimal channels and 63 channels

are forwarded to a K-Nearest Neighbour (K-NN) and a

support vector (SVM) to conduct classification,

respectively.

This paper is organized as follows: the experimental

data and the proposed graph entropy and other related

methods are introduced in Sect. 2. Section 3 presents

experimental data and the experimental results. Finally,

conclusions are drawn in Sect. 5.

2 The methods

2.1 Horizontal visibility graphs

A horizontal visibility graph (HVG) is a kind of complex

networks [18]. Normally, a time series fxigðx¼i;...;nÞ is

mapped into a graph GðV ;EÞ, where a time point xi is

mapped into a node vi 2 V . The relationship between any

two points xi; xj

� �
is represented by an edge eij, which are

connected if and if only the maximal values between xi and

xj are less than both of them. Our previous work [19] shows

that the edge can be defined as

wij ¼
1; xj [ max x½ðj þ 1Þ. . .ði � 1Þ�ð Þ
1; j þ 1 ¼ i

0; otherwise:

8
<

:
ð1Þ

where eij ¼ 0 implies that the edge does not exist, otherwise

it does. Figure 1 shows an HVG associated with an alcoholic

EEG time series, which was collected from electrode FP1 of

subject co2a0000368 [20] in alcoholic EEG datasets.

The number of time points in Fig. 1a is 40. The first

node in Fig. 1b is associated with the first point in Fig. 1a.

The second node corresponds to the second point of the

time series and so on. In a complex network, the node

degree and degree sequence are the two basic characteris-

tics of graph. A degree dðviÞ of node vi is the number of

connected edges from vi; while a degree sequence (DS) is

the sequence of the degree of a graph.

Example 1 : Let Y denote the first 12 values shown in

Fig. 1a (5.015, 5.503, 4.039, 2.085, 0.132, 0.132, 0.621,

0.621, 0.132, �0.356, �0.844, �0.356) and in Fig. 1b,

d1 ¼ 1 and d2 ¼ 2. The DS of the HVG associated with Y

is (1, 2, 2, 3, 2, 2, 3, 2, 2,3 ,2, 2).

2.2 Graph entropy

There are several graph entropy calculation methods based

on either vertex or edges [15]. This study defines the graph
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Fig. 1 An alcoholic EEG (a) and the corresponding HVG (b)
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entropy (GE) with Shannon’s entropy formula [21] mea-

surement as shown:

h ¼ �
Xn

i¼1

pðkÞ logðpðkÞÞ; ð2Þ

where pðkÞ is the degree distribution of the graph G.

The degree distribution (DD) is a probability degree k

over a DS. It is obtained by counting the number of nodes

having degree k divided by the size of the DS. Following

example 1, the pðkÞ of the DS in that example is (0, 1/12, 8/

12, 3/12). Then the graph entropy is 0:824 when the log-

arithm operator is based on two. It is obvious that the more

fluctuating the degree sequence is, the larger the graph

entropy is. In other words, the more regular a graph is, the

smaller its graph entropy is.

2.3 Sample entropy

Sample entropy (SE) was proposed by Richman and

Moorman [22]. It has been used to measure the complexity

of alcoholic EEG [13], epileptic EEG [23, 19] and other

EEG signal processing. An SaE algorithm used in this

study to estimate the SaE is available in the Physione

website (http://www.physionet.org/physiotools/sampen/).

The algorithm of SampEn has three input parameters: (1)

m: the embedded dimension, (2) r: the similarity criterion,

(3) n: the length of a time series fxigi¼1;2;...;n. In this study,

two SaE features (Se1: m ¼ 2, r ¼ 0:15 Se2: m ¼ 2,

r ¼ 0:2) of each epoch of EEG signals are extracted.

2.4 K-Nearest Neighbour (K-NN) algorithm

To compare the performances of HVGE based on HVGs, a

K-Nearest Neighbour (K-NN) algorithm is selected to

conduct the binary classification. K-NN algorithm is a

traditional pattern recognition method, which is a statistical

supervised classification. The idea is that given a new test

data t, the algorithm obtains the K� nearest neighbours

from the training set based on the distance between t and

the training set. The most dominated class amongst these K

neighbours is assigned as the class of t. In this study, the K-

NN algorithm is included in R package (FNN; http://cran.r-

project.org/web/packages/FNN/index.html), where K is

assigned as 3 without considering the optimal case.

2.5 SVM

To measure the performance of the HVGE features from 63

electrodes, a support vector machine (SVM) is selected to

conduct the binary classification. The SVM has been

successfully used to classify the HVG features associated

with sleep EEG signals [24]. It can perform both the linear

space discrimination and nonlinear classification by

choosing different kernel functions which can be linear,

polynomial kernel, radical basis function (RBF) and sig-

moid. In this paper, the SVM algorithm with RBF kernel is

implemented in R package e1071 [25]. The RBF kernel

was applied. When optimal case is not considered, two

parameters, cost C and r , of the RBF kernel of SVM are

fixed to 10 and 0.1, respectively.

3 Experimental data and results

The experiments include two parts: (1) analysing alcoholic

EEGs based on the HVGE and SaE of the HVGs and (2)

evaluating the classification accuracy by HVGE and SaE

separately. All algorithms are conducted by C language and

R language. All experiments are implemented on a com-

puter with 3.0 GHz Inter CoreTM Duo E8400 processor

and 4 GB of RAM.

3.1 Experimental data

The experimental data used in this paper were obtained

from the University of California, Irvine Knowledge Dis-

covery in Databases Archive UCI KDD [20]. They were

collected from 122 subjects. Each subject completed 120

trials with three types of stimuli [9]. The recordings from a

subject include 61 channel EEG signals, two EOG channels

and one reference electrode. The sampling rate of all

channel data is 256 Hz, and the duration of each trial is one

second. There are three datasets which are SMNI_CMI_-

TRAIN, SMNI_CMI_TEST and FULL, respectively. In

this study, only the first two databases are used because

FULL datasets contain a few all-zero recordings [10].

There are 600 recorded files in SMNI_CMI_TRAIN, with

each recording containing the signals from 64 electrodes

caps. The indices of the 64 electrodes are ‘‘FP1’’, ‘‘FP2’’,

‘‘F7’’, ‘‘F8’’, ‘‘AF1’’, ‘‘AF2’’, ‘‘FZ’’, ‘‘F4’’, ‘‘F3’’, ‘‘FC6’’,

‘‘FC5’’, ‘‘FC2’’, ‘‘FC1’’, ‘‘T8’’, ‘‘T7’’, ‘‘CZ’’, ‘‘C3’’, ‘‘C4’’,

‘‘CP5’’, ‘‘CP6’’, ‘‘CP1’’, ‘‘CP2’’, ‘‘P3’’, ‘‘P4’’, ‘‘PZ’’,

‘‘P8’’, ‘‘P7’’, ‘‘PO2’’, ‘‘PO1’’, ‘‘O2’’, ‘‘O1’’, ‘‘X’’, ‘‘AF7’’,

‘‘AF8’’, ‘‘F5’’, ‘‘F6’’, ‘‘FT7’’, ‘‘FT8’’, ‘‘FPZ’’, ‘‘FC4’’,

‘‘FC3’’, ‘‘C6’’, ‘‘C5’’, ‘‘F2’’, ‘‘F1’’, ‘‘TP8’’, ‘‘TP7’’,

‘‘AFZ’’, ‘‘CP3’’, ‘‘CP4’’, ‘‘P5’’, ‘‘P6’’, ‘‘C1’’, ‘‘C2’’,

‘‘PO7’’, ‘‘PO8’’, ‘‘FCZ’’, ‘‘POZ’’, ‘‘OZ’’, ‘‘P2’’, ‘‘P1’’,

‘‘CPZ’’, ‘‘nd’’ and ‘‘Y’’. The electrodes X and Y are EOG

signals, and nd are reference electrodes. The nd are

removed in our analysis. Thus, features are extracted from

63 channels.
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3.2 Comparisons of HVGE and SaE indices

between alcoholics and drinking controlled

subjects

Average HVGE and SaE of 63-channel EEG signals are

drawn in supplementary Fig. S1. Compared the average

HVGE of alcoholic with those of controlled drinkers, the

results show that the HVGE associated with alcoholic EEG

signals are lower than those of controls in 42=63 channels.

In contrast, the SaE features are higher than those of

controls except for two channels: C1 and C2. In order to

observe clearly, 13 optimal HVGE and SaE channels are

selected by statistical test.

The optimal channels are selected by the following two

tests: Firstly, Shapiro-Wilk tests show that the HVGE of

both EEG and EOG signals does not satisfy normal dis-

tributions. Then non-parametric Wilcoxon tests are applied

to select the HVGEs from different channels. According to

the statistical significance (p\0:001), 13 optimal channels

are selected as shown in Fig. 2. In contrast to alcoholic’s

SaE decrease, the HVGE of C1 and C2 from the same

group are significant increase. SaEs are always higher in

alcoholic, whereas only seven HVGEs of alcoholic, AF8,

C3, C4, CP5, CP6, FC5 and TP7, are larger than those of

controlled drinkers in Fig. 2.

To show the test detail of the HVGEs between alco-

holics and controlled subjects, five groups’ statistical with

Wilcoxon test are listed in Table 1. The first group is

channel C1 as it is abnormal in both HVGE and SaE. The

second one is three left electrodes C1, C3 and FC5,

because left hemisphere has been reported to be abnormal

in [9]. The third group is the two EOGs as our previous

results [10] showed that these two channels were not sig-

nificantly different with synchronization likelihood meth-

ods. The fourth one is the selected optimal channels based

on Fig. 2. The last is all 61 EEG channels.

It is clear that the HVGE of two-channel EOGs is

slightly different from the alcoholics and control drinkers

(p [ 0:05). However, most HVGE features of EEG signals

are significant difference between these two groups.

3.3 Comparing classification accuracy of HVGE

with SaE features

This section investigates the HVGE and SaE features of

EEG signals for identifying alcoholic from healthy sub-

jects. The database SMNI_CMI_TRAIN is the training

set, and the database SMNI_CMI_TEST is the testing set.

At first, the classification accuracy of HVGE and SaE from

61-channel EEG data and two EOG signals is investigated

as shown in supplementary Fig. S2. All individual channel

features are forwarded to a K-NN and a SVM to conduct

single-channel classification, respectively. To display

clearly, the classifying results based on 13 selected chan-

nels from Fig. 2 are shown in Fig. 3. It is clear that the

accuracy of SVM-based HVGE and SaE is highest at

channel 20 (CP6). However, accuracy based on HVGE is

larger than that of SaE.

Then, four group channels are illustrated in detail by

comparing with the HVGE and SaE. The first group is the

channel 20 (CP6) based on Fig. 3. The second one is the

combination of three channels on the left hemisphere C1,

C3 and FC5 based on Fig. 3 and Table 1. The third class is

the 13 optimal channels selected based on Figs. 2 and 3.

The last group uses all electrodes. Finally, the HVGE and

SaE from these four groups of combined channels are

forwarded into classifiers K-NN and SVM to conduct the

classification, separately. The results are shown in Table 2.

Table 1 Statistical HVGE features from five group channels

Electrodes Alcoholic Control p value

C1 1.683 � 0.465 1.984 � 0.430 \0.01

C1, C3, FC5 1.935 � 0.295 1.928 � 0.310 \0.001

Two EOGs 1.997 � 0.128 2.013 � 0.235 0.07

13 EEGs 1.964 � 0.229 1.959 � 0.130 \0.001

61 EEGs 1.904 � 0.170 1.927 � 0.137 \0.001
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It should be noticed that the performance of K-NN is

better than that of the SVM on both HVGE and SaE fea-

tures as shown in Table 2. Ten-fold cross-validation and

grid search method [26] are applied to verify these results

by elaborately selecting the kernel parameters of SVM. The

K-NN method is selected as the optimal k neighbours. The

datasets are combined from the database SMNI_CMI_-

TRAIN and SMNI_CMI_TEST. The results are listed in

Table 3. The performances of HVGE based on classifiers

K-NN or SVM are approximate or equivalent.

Based on Fig. 3 and Tables 2 and 3, the proposed

method based on HVGE features is better than that of SaE.

As high as 98.2 % classification accuracy could be

achieved when using all electrodes by K-NN. However,

accuracy of 95.8 % based on 13 optimal channels is close

to the highest performance. Even with three left optimal

channels, the accuracy achieved is 87.6 % with a SVM

classifier. Therefore, the feasibility of the proposed method

in discriminating alcoholics and controlled subjects is

obvious.

4 Discussion

The present study demonstrates a novel HVGE to assess

alcoholic EEG signals from multi-channel EEG signals. In

contrast to higher sample entropy features in alcoholic

EEGs, lower HVGE features dominate the alcoholic EEG

and EOG signals.

The HVGE of three left hemisphere electrodes from

alcoholics, C1, C3 and FC5, are found to be significantly

abnormal, which can achieve 87.6 % of accuracy. When 13

HVGE features are applied, the classification accuracy is

close to the whole 63-channel performance.

From physical point of view, higher entropies imply

random signals. SaE of alcoholics is higher than those of

healthy subjects as shown in Fig. 2; similarly, the alcoholic

EEG signals can be explained as more random than those

of healthy subjects [13]. However, high HVGE of a time

series does not imply random signals. In contrast, low

HVGE can be interpreted that the signals is dominated by

slow frequency bands. As the presented HVGE is defined

based on degree as shown in Eq. 2, a low HVGE of a graph

leads to regular graph. According to Nunez et al.’s [27]

results, a low period of signals leads a low mean degree of

HVG. In that case, the low HVGE of alcoholics EEG is

interpreted as slow frequency domination, which is dif-

ferent to those low SaE of the healthy EEG implied regular

signals.

From biological point of view, two meaningful results of

alcoholism are presented by HVGE features. The first is

that the left hemisphere of alcoholic patients are signifi-

cantly impacted. From Fig. 2 and Tables 1 and 2, the left

hemisphere channels,C1, C3, FC5, are significantly dif-

ferent from those of healthy subjects. These results agree

with the Zhang et al.’s [9] results that the left hemisphere

of alcoholics are significantly impacted. The other one is

that the alcoholic brains are dominated by slow waves

according to the lower HVGE as shown in Table 1.

According to the low HVGE of alcoholics as shown in

Fig. 2 and Table 1, our results indicate that the alcoholic

EEG signals possess low frequency domain, which is

consistence with results of [8].

5 Conclusion

This study contributed to three following facts:

First, the low HVGE of alcoholics proves that the

alcoholic EEG signals are dominated by slow waves, which

shows that the horizontal visibility graph of alcoholic EEG

signals is more regular than those of the controlled sub-

jects. Next, the 13 optimal channels for identifying

Table 2 Classification accuracies of K-NN and SVM based on

HVGE and SE features with four group channels

Electrodes HVGE SaE

K-NN (%) SVM (%) K-NN (%) SVM (%)

CP6 77.2 79.1 62.7 67.8

C1, C3, FC5 86.5 85.5 69.5 69.5

13 channels 94.5 96.2 82.7 82.0

63 channels 97.2 96.5 92.8 85.5

Table 3 Ten-fold cross-

validation accuracies of K-NN

and SVM based on HVGE and

SE features with optimal

parameters

Electrodes HVGE SaE

K-NN SVM K-NN SVM

k Acc (%) C r Acc (%) k Acc (%) C r Acc (%)

CP6 24 79.3 8 33.47 79.4 26 75.3 0.3 23.08 76.6

C1, C3, FC5 9 87.5 8 0.93 87.6 23 84.5 8 0.55 83.8

13 channels 9 95.6 8 0.09 95.8 21 89.7 4 0.07 90.2

63 channels 7 98.2 4 0.01 98.1 7 95.2 8 0.01 94.3
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alcoholics are selected by HVGE. Based on 10-fold cross-

validation, these optimal channels can achieve 95.8 % of

accuracy, and it is just 2.2 % less than the highest perfor-

mance which needs 63 channels. Last, this research is the

first to apply the graph entropy features to study alcoholic

EEG signals. And it is also the first time several existence

alcohol studies are confirmed from a public alcoholic EEG

signals, such as inactivity of left hemisphere, slow wave of

alcoholic EEG signals. Based on these conclusions, it can

be deduced that the proposed HVGE method is very robust

and efficient for alcoholic EEG signal analysis and classi-

fication. It will be also useful for other biomedical signal

recognition.
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