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Abstract: Polyvinylidene Flouride (PVDF) is a film-type polymer that has been used as sensors and
actuators in various applications due to its mechanical toughness, flexibility, and low density. A PVDF
sensor typically covers an area of the host structure over which mechanical stress/strain is averaged
and converted to electrical energy. This study investigates the fundamental “stress-averaging”
mechanism for dynamic strain sensing in the in-plane mode. A numerical simulation was conducted
to simulate the “stress-averaging” mechanism of a PVDF sensor attached on a cantilever beam
subjected to an impact loading, taking into account the contribution of piezoelectricity, the cantilever
beam’s modal properties, and electronic signal conditioning. Impact tests and FEM analysis were
also carried out to verify the numerical simulation results. The results of impact tests indicate the
excellent capability of the attached PVDF sensor in capturing the fundamental natural frequencies of
the cantilever beam. There is a good agreement between the PVDF sensor’s output voltage predicted
by the numerical simulation and that obtained in the impact tests. Parametric studies were conducted
to investigate the effects of sensor size and sensor position and it is shown that a larger sensor tends to
generate higher output voltage than a smaller one at the same location. However, the effect of sensor
location seems to be more significant for larger sensors due to the cancelling problem. Overall, PVDF
sensors exhibit excellent sensing capability for in-plane dynamic strain induced by impact loading.
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1. Introduction

Polyvinylidene Fluoride (PVDF) is a thin film-type polymer that is mechanically tough, flexible,
and low density. The piezoelectric effect in elongated and polarized films of polymers, particularly of
PVDF, was discovered by Kawai [1] in 1969. Since then, the fundamental properties of PVDF have
been extensively investigated. The semi-crystalline molecular structure of PVDF consists of long
chain molecules with a repeating CF2CH2 unit. Application of heat, electrical fields, and pressure can
interconvert the four different forms of PVDF’s crystalline domains [2–4]. The molecular dipoles in
the crystalline parts are oriented by thermal poling or corona poling, thus resulting in a permanent
polarization. In the β-phase, PVDF exhibits piezoelectric effect which means mechanical energy
can be converted to electrical energy and vice versa. Therefore, PVDF has been frequently used to
manufacture sensors and actuators for a number of practical applications such as shock impact and
pressure sensors [5–8], biomedical [9–11], acoustic [12–15], tactile sensors [16–18], active vibration
control [19], and structural health monitoring of civil and aerospace structures [20–22].

Many previous studies have focused on the use of PVDF sensors in the out-of-plane (3-3) mode in
which mechanical stress is induced in the thickness (poled) direction. However, the in-plane sensing
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mode of PVDF sensor has also been frequently employed for dynamic impact sensing. Lee and
O’Sullivan [23] developed a uniaxial strain rate gage that measures only strain rate along a specified
direction by combining the effective surface electrodes, appropriate skew angle, and the correct
polarization profile. Wang and Wang [24] presented a theoretical approach for feasibility analysis of
the application of PVDF sensors to cantilever beam modal testing. Sirohi and Chopra [25] investigated
the behavior of piezoelectric elements including piezoceramic (PZT) and piezofilm (PVDF) as dynamic
strain sensors of which superior performance compared to conventional strain gages in terms of
sensitivity and signal-to-noise ratio was demonstrated. Correction factors to account for transverse
strain and shear-lag effect due to bonding layer were analytically derived and experimentally validated
by the same authors. Ma et al. [26] investigated the effects of a PVDF sensor’s area and the use of a
charge amplifier on the measurement capability of a PVDF sensor attached to a cantilever beam that is
subjected to impact loading. PVDF sensors proved to be capable of capturing most of the resonant
frequencies from transient responses, and their sensitivity was demonstrated to be better than that
of conventional strain gages. Kotian et al. [27] presented an analytical investigation on the effects
of stress-averaging for both in-plane sinusoidal stress waves and in-plane impact-induced stresses.
It was concluded that the error induced by stress averaging becomes more significant as sensor length
increases, density of structure’s material increases, and magnitude of input stress increases, although
the error induced by stress averaging is minimal for most practical applications. Furthermore, only
very high frequencies (in the order of kHz) can cause a significant reduction in a PVDF sensor’s output
voltage due to stress-averaging.

In civil engineering structures, dynamic strain is one of the most fundamental measures.
To capture dynamic strain, conventional foil strain gages have been frequently used. PVDF sensor with
its superior signal-to-noise ratio can be an alternative for strain gages in several practical applications.
Since strain gage size is usually minute compared to that of host structures, dynamic strain output can
be considered strain at a point on the host structural member. On the other hand, PVDF sensors are
much larger in size compared to strain gages. An electrode of a PVDF sensor typically covers a relatively
large area of the host structural member over which dynamic strain may vary significantly depending
on the relative size of the PVDF sensor compared to that of the host member and strain gradient.
To understand the mechanism of strain averaging, both extreme scenarios including minor and large
strain variations should be investigated. In case of minor strain variation, a strain averaging mechanism
was thoroughly discussed in Kotian et al. [27] using tensile specimens subjected to sinusoidal excitation.
Ma et al. [26] indicated that the use of a charge amplifier is indispensable for improvement of a PVDF
sensor’s capability in capturing low-frequency vibration modes of a steel cantilever beam subjected to
impact loading. However, the conversion mechanism of dynamic strain to output voltage, i.e., strain
averaging mechanism, was not explicitly explained in the same study. Moreover, the effect of sensor
size was discussed by comparing sensor pairs at a fixed point for the purpose of illustrating charge
amplifier’s indispensability for low-frequency measurement.

This study investigates the strain averaging mechanism of a PVDF sensor attached to an area of
the host structural member where large strain variation occurs. A numerical simulation based on the
governing equations of piezoelectricity, classical beam theory, and electronic signal conditioning to
predict the output voltage of a PVDF sensor would be proposed. To verify the numerical simulation
results, experimental impact tests and FEM analysis would be conducted using a steel cantilever beam
subjected to impact forces since a cantilever beam can be regarded as the most fundamental and flexible
structure that has high strain gradient along its length. The proposed numerical simulation would
provide an insight into the mechanism of dynamic impact strain sensing by a PVDF sensor attached to
a surface with large strain variation. Furthermore, the effects of sensor size and position on the output
voltage would be investigated in parametric studies using the proposed numerical simulation.
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2. Theoretical Background

2.1. Governing Equation for Piezoelectricity

Consider the constitutive governing equation that is reduced from the tensor expression for the
piezoelectric effect induced by one-dimensional mechanical deformation [28]:

D3“ d31T1`ε
T
33E3 (1)

where D3 is the electrical displacement component; d31 is the piezoelectric constant; T1 is the axial
stress component, εT

33 is the permittivity component at constant stress, and E3 is the electrical field
component. Subscripts 1 and 3 indicate the longitudinal direction and the poling direction, respectively
(Figure 1). In case the external electrical field is absent (E3 = 0), the relation is further reduced to:

D3 “ d31T1 “ d31EpS1 (2)

where S1 is the bending strain and Ep is the Young’s modulus of the PVDF layer.
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The bending strain is expressed by the bending moment/curvature differential equation assuming
small deflection and rotation [29]:

S1 px, tq “ ´yp0
B2y px, tq
Bx2 (3)

where yp0 is the distance from the neutral axis of the cross-section to the center of the PVDF layer;
y(x, t) is the transverse displacement of the cantilever beam, which can be represented by a convergent
series of the eigenfunctions as

y px, tq “
8
ÿ

r“1

φr pxqηrptq (4)

where φr pxq is the mass-normalized eigenfunction; ηr ptq is the modal coordinate of the cantilever
beam for the r-th vibration mode. If the cantilever beam is assumed to be proportionally damped,
the eigenfunctions denoted by φr pxq are the mass-normalized eigenfunctions of the undamped free
vibration [30,31].

φr pxq “

c

1
mL

„

cosh
λr

L
x´ cos

λr

L
x´ σrpsinh

λr

L
x´ sin

λr

L
xq


(5)
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where m is the mass per unit length of the cantilever beam; λr is the dimensionless frequency number
for each mode obtained from the following characteristic equation:

1` cosλcoshλ “ 0 (6)

σr “
sinhλr ´ sinλr

coshλr ` cosλr
(7)

The mass-normalized eigenfunctions satisfy the following orthogonality conditions:

ż L

x“0
mφs pxqφr pxqdx “ δrs;

ż L

x“0
EIφs pxq

d4φr pxq
dx4 dx “ ω2

rδrs (8)

where E is the Young’s modulus of the cantilever beam; δrs is the Kronecker delta, δrs = 1 for s = r and
δrs = 0 for s ‰ r; andωr is the undamped natural frequency of the r-th mode:

ωr “ λ2
r

c

EI
mL4 (9)

2.2. Governing Mechanical Equation

The governing equation of motion can be written as [31]:

EI
B4y px, tq
Bx4 ` csI

B5y px, tq
Bx4Bt

` ca
By px, tq
Bt

`m
B2y px, tq
Bt2 “ pptq (10)

where y(x, t) is the transverse displacement of the cantilever beam; cs is the equivalent coefficient
of strain rate damping; and I is the equivalent area moment of inertia of the cross-section.
In terms of damping, csI represents the equivalent damping term of the cross section due to structural
viscoelasticity while ca is the viscous air damping coefficient. Both of the above-mentioned damping
mechanisms satisfy the proportional damping criterion [30,31]; p(t) is the time history of external
excitation. For an impact, p(t) can be represented as:

p ptq “ Fδ px´ xFq δ pt´ τq (11)

where F is the magnitude of the impact force; xF is the location of impact force; and δ is the direct
delta function.

Substitution of y(x, t) in Equation (4) into the governing equation of motion (Equation (10)) and
using the orthogonality conditions (Equation (8)), the modal response of the cantilever beam can be
obtained from the following electromechanically coupled ordinary differential equation:

d2ηr ptq
dt2 ` 2ζrωr

dηr ptq
dt

`ω2
rηr ptq “ Nr ptq (12)

where ζr is the mechanical damping ratio including both effects of strain rate damping and viscous air
damping [32],

ζr “
csIωr

2EI
`

ca

2mωr
(13)

The assumption of proportional damping was discussed in [32]. In this assumption, once the
proportionality constants cs and ca are identified using the modal properties (i.e., natural frequencies
and damping ratios) of two vibration modes, the other mode’s damping ratio is not arbitrary but
mathematically derived from Equation (13). Identified damping ratios of the vibration modes of interest
might also be used directly without obtaining the cs and ca values since the resulting electromechanical
expressions only need the ζr values.
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The modal mechanical forcing function, Nr(t) , can be expressed as,

Nr ptq “
ż L

x“0
φr pxqp ptqdx (14)

The solution of Equation (12) can be expressed using the unit impulse response function in the
form of Duhamel integration as

ηr ptq “
1
ωrd

ż t

τ“0
Nr pτq e´ζrωrpt´τqsinωrdpt´ τqdτ (15)

whereωrd is the damped natural frequency of the r-th mode,

ωrd “ ωr

b

1´ ζ2
r (16)

2.3. Governing Electrical Equation

There are two equally valid equivalent electrical models of the piezofilm element—one is a voltage
source in series with a capacitance that is equal to the capacitance of the sensor, the other a charge
generator in parallel with a capacitance [33]. The latter is used in this study.

Capacitance of a PVDF sensor is expressed as:

Cp “ ε
A
t

(17)

where ε is the permittivity, which can also be expressed in the form of ε “ εrε0 where εr is the relative
permittivity (about 12 for PVDF) and ε0 is the permittivity of free space (constant, 8.854 ˆ 10´12 F/m);
A is the active area of the film’s electrodes; and t is the film thickness.

The signal conditioning circuit is shown in Figure 2. The advantages of connecting a PVDF
sensor to a charge amplifier have been emphasized in [25]. First, the charge generated by the sensor is
transferred onto the feedback capacitance CF. The voltage output of a charge amplifier is proportional
to the input strain, irrespective of the sensor’s capacitance. The gain is controlled by the feedback
capacitance of the charge amplifier. Second, the value of time constant, defined as RFCF, can be
selected in order to navigate the loading effect in order to obtain the desired dynamic frequency range.
Ma et al. [26] also indicated that a charge amplifier is indispensable for a PVDF sensor, especially a
small-sized one, to improve the low-frequency responses of a PVDF sensor.

1 
 

 

Figure 2 – Electrically equivalent model of a PVDF sensor connected to a charge amplifier. 
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Figure 2. Electrically equivalent model of a PVDF sensor connected to a charge amplifier.
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The governing equation of a charge amplifier’s output voltage can be found in [19]:

V0 “ ´
´jωAVsCp

”

jω
`

pA` 1qCF `Cp `Cc
˘

`

´

1
Ra
` pA` 1q 1

RF

¯ı (18)

whereω is the angular frequency (rad/s); Vs is the voltage generated by the PVDF sensor; Cp is the
equivalent capacitance of the PVDF sensor; Ra is the output impedance of the PVDF sensor; Cc is the
equivalent capacitance of the electric wire; A is the gain of the charge amplifier; and CF and RF are the
feedback capacitance and impedance of the charge amplifier, respectively.

When the magnitude of gain is large enough, the output voltage equation can be reduced to:

V0 “
´jωVsCp

jωCF `
1

RF

(19)

In the high frequency region, the output voltage can be further reduced to:

V0 “ ´
VsCp

CF
“ ´

q
CF

(20)

Meanwhile, in the low-frequency region, the amplitude of output voltage is expressed as:

|V0| “ ´
ωq

b

1
R2

F
`ω2C2

F

(21)

where q is the electrical charge accumulated on the PVDF sensor’s electrodes, which is given as

q “
ż

A
d31EpS1ndA “ bp

ż xp2

xp1

d31Ep

ˆ

´yp0
B2y px, tq
Bx2

˙

dx “ ´yp0d31Epbpηr ptq
8
ÿ

r“1

dφr pxq
dx

|
xp2
xp1 (22)

The cut-off frequency is written as:

fc “
1

2πRFCF
(23)

3. Numerical Simulation of PVDF Sensor’s Response to Impact Force

Numerical simulation was conducted using MATLAB. The sampling rate was chosen as 10 kHz
and one second of the PVDF sensor’s output voltage response was simulated. The basic input
parameters for simulation are shown in Table 1. Figure 3 illustrates the simulation flow. Three
vibration modes were included for impact at locations 1 and 2 and five modes for location 3. Natural
frequencies of the cantilever beam were determined using Equations (9) and (16) for flexural modes.
Damping ratios obtained by the half-power method (Table 3) were employed to create the unit
impulse-response function. For mode shape simulation, the length increment of 1 mm was chosen.
Impact time-histories at three impact locations illustrated in Figure 4 were employed as input impact
loading in the simulation process (Figure 5). The unit impulse-response function, modal response, and
mode shape slope difference are determined for each vibration mode. The electrical charge is then
summed from the contribution of all included vibration modes. Predicted output voltage is finally
determined from the electrical charge determined by Equation (20).
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Table 1. Input parameters for simulation.

Item Symbol Parameter Value

Sensor

Lp Length 155 mm
bp Width 19 mm
tp Thickness 0.028 mm

d31 Piezoelectric constant 23 ˆ 10´12 (C/N)
Ep Young’s modulus 4 GPa
Cp Capacitance 11 nF

Charge Amplifier fc Cut-off frequency 0.1 Hz
CF Feedback capacitance 100 nF

Cantilever beam
ρ Density 7860 kg/m3

E Young’s modulus 200 GPa

4. Impact Tests

To obtain the actual impact histories that would be input for numerical simulation and to verify
the numerical simulation results, impact tests were conducted by applying impact loadings on a steel
cantilever beam on which a PVDF sensor was attached. The piezofilm lab amplifier [34] operating in
charge mode was used for signal conditioning. Feedback capacitance of 100 nF was selected. The lower
cut-off frequency and higher cut-off frequency were selected as 0.1 Hz and 100 kHz, respectively. The
NI USB-4431 enabling four 24-bit simultaneous analog inputs was used for data acquisition. 10 kS/s
was chosen for sampling rate and 1 kS/s for data windowing for real-time visualization of the PVDF
sensor’s output response during the impact tests. One DT4-028 K/L PVDF sensor [35] was attached to
the steel cantilever beam by a commercial double-coated adhesive tape. One edge of the PVDF sensor
distances 30 mm from the fixed end of the cantilever beam (Figure 4). The impact hammer PCB 086C03
manufactured by PCB Piezotronics with a mounted plastic tip was used to apply impact force on the
cantilever beam at the three impact locations illustrated in Figure 4. During the impact tests, impact
signal was transmitted to the ICP sensor signal conditioner provided by PCB Piezotronics. A unit gain
was set on the ICP signal conditioner. To verify the numerical simulation results, strain gages were
also attached to the opposite side of the cantilever beam to obtain “true” strain (Figure 4). Typical
impact force time-histories are shown in Figure 5. Impact force histories at locations 1 and 2 contain
two peaks which are both due to the physical contact between the impact hammer and the cantilever
beam. Particularly, the first peak represents the first time when the cantilever beam is collided by
the hammer tip. The energy absorbed by the cantilever beam is then transformed to displacement
of the cantilever beam’s free end, which mainly excites the first vibration mode. Right after the first
collision, the hammer tip continues to move in the same direction as that of the cantilever beam’s free
end due to the effect of inertia induced by the hammer’s weight and velocity. Approximately one to
two milliseconds after the first collision, the hammer hits the tip of cantilever beam the second time,
which causes the second impact. However, for impact at location 3 which is close to the fixed end,
impact energy absorbed by the cantilever beam is transformed mainly into excitation of higher modes
rather than displacement at the point of collision. Therefore, only one peak appears in the time history
of impact at location 3. However, time history of impact rather than impact force magnitude (i.e., peak)
was employed in the numerical simulation, which means impact force energy is taken into account in
the prediction of the PVDF sensor’s output voltage in this study.

5. Verification of Numerical Simulation Results by FEM

In order to verify the simulation results, FE model of the cantilever beam subjected to impact
loading was analyzed using the commercial software ABAQUS. The purposes of FEM analysis were:
(1) To acquire the knowledge of the cantilever beam’s vibration modes, as well as mode shapes and
natural frequencies that would be used for the numerical simulation; (2) to obtain dynamic strain for
verification of the numerical simulation results; and (3) to convert output impact histories of the ICP
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signal conditioner into force unit. Table 2 indicates that the natural frequencies of the cantilever beam
obtained by FEM analysis, classical beam theory, and modal impact test exhibit a good agreement.
Most of the flexural modes can be accurately identified by the PVDF sensor, which indicates the
capability of PVDF sensors in identifying natural frequencies of the host structure’s fundamental
vibration modes. The first torsional mode at 341.41 Hz did not appear in the frequency response
functions (Figure 6), which may indicate the dominance of flexural modes for all three impact locations.
If torsional modes are excited due to an impact location that deviates from the central line of the
cantilever beam, PVDF sensors can also capture such torsional modes. The superiority of PVDF
sensors compared to conventional foil strain gages in capturing torsional modes was indicated in
Ma et al. [26]. For the second purpose, FEM modal dynamic analysis was conducted using the actual
recorded impact that had been previously generated by the impact hammer during the impact tests.
Direct damping ratios (Table 3) determined by the half-power point method [36] using the frequencies
response functions shown in Figure 6 were used for the first five flexural modes of the cantilever beam
in the FEM analysis. To obtain the theoretically simulated strain shown in Figure 7, the transverse
displacement in Equation (4) was determined from the mass-normalized eigenfunction written in
Equation (5) and the modal coordinate (i.e., the solution of Equation (12)) expressed in Equation (15).
Dynamic strain was then calculated in Equation (3) by taking the second derivative of the known
transverse displacement. There appears to be a good agreement between the strain values obtained by
FEM analysis, those measured in the impact tests and those predicted by the numerical simulation for
impacts at locations 1 and 2 (Figure 7a,b). For impact at location 3, only the strain values determined
by FEM analysis and those predicted by simulation were compared since the strain amplitude is only
as low as the noise level in strain gages. A good agreement was also observed for impact location 3
(Figure 7c).

Table 2. Natural frequencies of the cantilever beam (Hz).

Mode No. Mode Type FEM Theory
Modal Test Maximum

Difference (%)Location 1 Location 2 Location 3

1 1st Flexural 12.135 12.071 12.29 12.3 12.32 2.02

2 2nd Flexural 76.029 75.651 77.06 77.08 77.15 1.94

3 1st Lateral 120.44 n/a 119.5 n/a n/a 0.79

4 3rd Flexural 212.89 211.85 215.2 215.4 215.5 1.69

5 1st Torsional 341.41 n/a n/a n/a n/a n/a

6 4th Flexural 417.28 415.14 422.4 422.5 422.9 1.83

7 5th Flexural 690.06 686.19 698.3 698.3 698.9 1.81

8 2nd Lateral 739.77 n/a n/a n/a n/a n/a

9 2nd Torsional 1026.7 n/a n/a n/a n/a n/a

10 6th Flexural 1031.3 1025.1 1044 1044 1044 1.81

Table 3. Idenfified damping ratio by half-power method.

1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode

Impact at 1 0.011159 0.002566 0.005434 - -
Impact at 2 0.009391 0.002647 0.006121 - -
Impact at 3 0.013542 0.002346 0.005920 0.001362 0.002831
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Figure 7. Strain measured at 70 mm from the fixed end for three impact locations. (a,b) Impact at
location 1; (c,d) Impact at location 2; (e,f) Impact at location 3.
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6. Results of Numerical Simulation

There appears to be a good agreement between the actual output voltage of the PVDF sensor
obtained in the impact test and that predicted by the numerical simulation. Even for impact at location
3 for which the amplitude of output signal is much lower than that for locations 1 and 2 (Figure 8a,b),
a reasonable prediction by simulation was also obtained (Figure 8c,d).Sensors 2016, 16, 601 11 of 14 
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Figure 8. Simulation results for three impact locations. (a) Impact at location 1; (b) Impact at location 2;
(c,d) Impact at location 3. The sensor size is 155 ˆ 19 ˆ 0.028 (mm). One sensor edge is placed 30 mm
from the fixed end of the cantilever beam so that the lead wire goes towards the fixed end.

Parametric studies were conducted using sensor size and sensor position as input parameters for
the numerical simulation described in the previous section in order to investigate the effect of sensor
size and sensor position on the output voltage of a PVDF sensor. The input impact forces, damping
ratios and all remaining input parameters were chosen similar to those used for the prediction of
output voltage shown in Figure 8. Five different sensor lengths including 20, 40, 80, 160, and 240 mm
were employed in the simulation. The width of simulated sensors is 20 mm. For the investigation on
the effect of sensor position, a midpoint position increment of 10 mm was used. Figure 9 shows the
simulated output voltage for different sensor sizes and midpoint positions. For impact at location 1,
there appears to be one position at about 260 mm from the fixed end where the output voltage reaches
minimum regardless of sensor size. PVDF sensors located closer to the fixed end tend to generate
higher peak voltage, which may be attributed to the fact that in the first mode of vibration bending
moment increases towards the fixed end. The fact that the minimum voltage occurs at about 260 mm
might be due to the problem of cancelling of mode shape slope calculated at the two opposite edges
of PVDF sensor (Equation (22)). For impact at locations 2 and 3, the minimum output voltage occurs
at multiple positions, which may be due to the cancellation problem at multiple nodal points as a
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result of higher number of excited vibration modes. The first five flexural mode shapes as well as the
corresponding nodal points for each mode shape were illustrated in Figure 10. For all three impact
locations, a larger sensor tends to generate higher output voltage and vice versa. For impact location 3,
a sensor longer than 240 mm appears to result in no increase in output voltage. Furthermore, larger
sensors appear to result in larger variation in the output voltage, which means that the effect of sensor
location tends to be more significant for sensor with larger sizes.Sensors 2016, 16, 601 12 of 14 
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7. Conclusions

This study investigates the “stress-averaging” mechanism of the in-plane sensing mode of the
PVDF sensor for dynamic strain sensing. A numerical simulation was conducted to predict the output
voltage response of a PVDF sensor attached to a steel cantilever beam subjected to impact loading
based on the fundamental knowledge of piezoelectricity, classical beam theory, and signal conditioning.
FEM analysis and impact tests were also conducted to verify the simulation results. The results of
impact test indicate the excellent capability of PVDF sensors in capturing the fundamental natural
frequencies of the cantilever beam. The PVDF sensor’s output voltage could be reasonably predicted
by the numerical simulation. Parametric studies on the effects of sensor size and sensor position
indicate that a larger sensor tends to generate higher output voltage and vice versa. Furthermore,
the effect of sensor position seems to be more significant for larger sensors. However, when a large
number of modes are excited, e.g., impact at location 3, increasing sensor size may not always result
in increased output voltage. The sensor size beyond which increasing sensor size does not result in
increased output voltage may depend on the number of dominant vibration modes which in turn
depends on impact location. The results indicate that, in order to maximize the signal-to-noise ratio for
actual measurements in small scale structures (i.e., the size of an attached PVDF sensor is relatively
large with respect to the size of the host structural member), vibration mode shapes of the structural
member should be considered to choose the optimal sensor location that helps avoid the cancelling
problem. Overall, PVDF sensors exhibit an excellent in-plane sensing capability for dynamic strain
induced by impact loading.
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