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Abstract

The genetic, functional, or compositional heterogeneity of healthy and diseased tissues presents 

major challenges in drug discovery and development.1-3 In cancers, heterogeneity may be essential 

for tumor stability,4 but its precise role in tumor biology is poorly resolved. This challenges the 

design of accurate disease models for use in drug development, and can confound the 

interpretation of biomarker levels, and of patient responses to specific therapies. The complex 

nature of heterogeneous tissues has motivated the development of tools for single cell genomic, 

transcriptomic, and multiplex proteomic analysis. We review these tools, assess their advantages 

and limitations, and explore their potential applications in drug discovery and development.

Introduction

Over the past few years, there have been significant advances in the development of single 

cell analysis tools. For example, about five years ago, patch-clamping electrophysiology 

methods5, fluorescence in situ hybridization6, 7, flow cytometry8, 9, and ELISpot10 assays 

were about the only single cell molecular analysis tools available. Most of those methods 

could only analyze between 1-3 molecules from a given cell, although multi-color flow 

cytometry could capture about a dozen cell surface protein markers11.

This landscape is rapidly changing, and several technologies to comprehensively analyze the 

single cell at the molecular-level have now emerged. As examples, single cell tools and 

methods exist that can assay for reasonably large numbers (>40) of secreted proteins12, 

equally large numbers of cell surface markers13, and elements of phosphoprotein signaling 

pathways14, 15. In addition, single cells can now be analyzed for the genome at focused 16, 17 

or high coverage18, the transcriptome at sparse coverage19, 20 or the entire transcriptome 

with moderate21 or high22 cell statistics.

Additional reports in which integrated measurements of genes and transcripts23, limited 

numbers of proteins, transcripts24, 25 and genes26, and panels of proteins and metabolites,27 
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from single cells have also appeared. Microfluidic methods permit molecular analysis to be 

correlated with measurements of specific cellular functions (such as motility), or allow the 

analysis of defined, small populations of cells (i.e. 2-3 cells)28-30. Microfluidic designs can 

also permit cell analysis within highly controlled, custom environments,31-33 or can allow 

for non-destructive cell analysis, so that cells identified as interesting, such as B cells 

producing specific antibodies, can be harvested for further use.34, 35 Two recent tissue 

staining methods, in situ RNA profiling via sequential hybridization36-38, and proteomic 

analysis via ion beam profiling39 can enable the analysis of single cells within fixed, intact 

tissues, with a level of multiplexing that significantly exceeds traditional 

immunohistochemical staining methods. The level of analyte quantitation varies from 

measurements that yield copy numbers per cell22, 36, 40, to relative quantitation between 

cells. Many of these methods result in relatively new types of data, and so are being 

integrated with new computational approaches41-45. In fact, the development of 

computational tools that can analyze what are increasingly large single cell data sets is 

lagging behind the advances in experimental methods.

Although these diverse and rapidly evolving single cell technologies provide remarkable 

opportunities for drug discovery and development, they also provide a deluge of information 

for the non-technologist to wade through. This review is therefore intended to serve as a 

guide for the non-specialist. Here, we describe the state-of-the-art of single cell biology tools 

for different analyte classes, and discuss the new types of biological information that can be 

gleaned through the use of these tools, highlighted by 3 illustrative examples. To illustrate 

the broader application of these emerging technologies, these tools are placed within the 

context of two classes of cancer therapies. The first is the development and use of targeted 

inhibitors for treating heterogeneous tumors. The second is cancer immunotherapy, which is 

an area in which several single cell analysis tools are already playing important roles.

Single cell analysis tools can be grouped according to the measured analytes, i.e. genomics, 

transcriptomics, proteomics or metabolomics-based approaches, or by a combination of 

these. It is anticipated that the methods described here will likely emerge in the marketplace 

within a couple of years, although earlier generation variants are, in many cases, already 

commercially available as either whole platforms, commercial services, or through purchase 

of critical reagents.

Single Cell Genomics

The rapid technological advances in DNA sequencing tools have exposed the whole genome, 

the exome, and the transcriptome for single cell analysis. For single cell whole genome 

sequencing16, 46, 47, the genome must be amplified prior to sequencing. In principle, this can 

be done with PCR-based whole genome amplification (WGA) methods, but such methods 

are prone to bias because random genes can be over or under-amplified by the nonlinear 

PCR process48. A commonly used alternative is the multiple displacement amplification 

(MDA) method, which is a technique that utilizes the ϕ29 DNA polymerase enzyme for 

DNA synthesis49, and can amplify DNA isothermally at 30°C. MDA provides an improved 

representation of the whole genome, but the ϕ29 enzyme is still a nonlinear amplifier (like 

PCR), and so can yield bias. Such bias, in turn, makes it difficult to discern copy number 
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variations (CNVs) and single-nucleotide variations (SNVs), although Dago and coworkers 

have reported measurements of such quantities from single circulating tumor cells (CTCs) 

originating from prostate cancer.50 A second WGA approach, called multiple annealing and 

looping-based amplification cycles (MALBAC), has been recently reported51. MALBAC is 

designed so that the initial polymerase amplification steps yield an amplicon that, due to 

complementary sequences incorporated into the 3′ and 5′ ends, cyclizes, and so is not 

available as a template. This keeps the initial genome amplification process linear, and 

reduces amplification bias. As a result, CNVs and SNVs can be reliably quantitated at the 

single cell level. As an illustrative example, MALBEC has been extended to the analysis of 

CTCs from lung cancer patients.52 For certain challenging genes, such as oncogenes with 

multiple variants53, or the T cell receptor (TCR) α/β genes, nested PCR methods54, 55 

coupled with Sanger sequencing, are used. Recent, highly parallel, multi-step RT-PCR based 

techniques, coupled with next-generation sequencing tools, now allow such sequences to be 

determined from many (100 or more) single cells in parallel.56

Various target enrichment strategies have been developed to broadly select genomic regions 

of interest for sequencing.57 For example, as methods for exome sequencing have become 

standardized58, 59, they have been extended to single cell analysis60. Exome sequencing 

involves sequencing the 1% of the genome that is protein coding. This is a relatively cost-

effective procedure that yields an enriched data set of highly penetrant variants, such as 

those that are relevant to genetic disorders, or diseases that exhibit a genetic instability, such 

as many cancers. Examples of single cell investigations include capturing the genetic 

heterogeneity of tumors60, 61 or comparing CTCs with the originating tumor or metastatic 

lesion.62 Exome sequencing is a technique of rapidly increasing relevance to 

immunotherapy, as will be discussed below.

Single Cell Transcriptomics

Although the analysis of gene expression at the single cell level dates back to the early 

1990s63, the field has rapidly advanced over the past 5 years, with RNA sequencing (RNA-

seq) f exploiting the success of next-generation sequencing tools.64 Indeed, RNA-seq has 

advanced at such a rapid pace that a new report emerges almost every month describing a 

new set of protocols that enable an increasingly deeper and more quantitative analysis of 

larger numbers of single cells,22, 43, 65-68 with applications that range from the analysis of 

immune cells,67 CTCs,69 or capturing the transcriptional heterogeneity of various 

healthy20, 70 and diseased tissues.21 The basic biochemical method is PCR, but the major 

technical challenges have been to engineer contamination-free methods that can account for 

PCR bias correction and yield absolute quantitation. This has been best accomplished 

through the combined use of microfluidic platforms,66 including nanodrop 

technologies,71, 72 and molecular barcoding techniques.65, 72 The microfluidics character of 

these approaches implies that individual cells are isolated in volumes ranging from a few 

tens to a few hundreds of picoliters, and this lends several advantages. First, molecular 

diffusion times within such small volumes are short, and this can significantly shorten the 

times required for chemical reactions that are part of the processes flow. Second, the small 

volume raises the relative concentration of the cellular analytes being investigated, and 
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lowers the copy numbers of any molecular contaminants. Finally, small volumes limit 

reagent costs and allow many cells to be interrogated in parallel.

Two very recent quantitative single cell transcriptomic methods - CytoSeq and inDrop - are 

conceptually similar, but distinct in practice (Figure 1). Fan et al.22 reported on the CytoSeq 

technique that utilizes dilute cell loading into 20 picoliter volume microwells. Into each well 

is placed a 20 micrometer magnetic bead that is functionalized with many oligonucleotide 

primers, each containing a universal PCR priming site, a combinatorial cell label (the 

barcode), a unique molecular index,73 and an mRNA capture sequence. All primers on each 

bead contain the same cell label, but incorporate a diversity of molecular indices. Many 

mRNA molecules from a lysed cell are captured on a single bead, and all beads are 

combined for amplification and sequencing. Each sequence carries the barcode (single cell 

identity), the molecular index (1 index per transcript), and the gene identity, thus yielding a 

relatively deep, bias-free and quantitative analysis of the transcriptome from many single 

cells in parallel.

Two droplet microfluidics variants of this barcoding approach for single cell transcriptomics 

are the DropSeq method,72 and the (simultaneously published) inDrop approach.71 The 

basic concept of droplet microfluidics is to use microfluidic channel designs and flow 

control to combine oil and water so that the water separates into sub-nanoliter volume 

droplets separated by oil. Each of those nanodrops can be seeded with a cell, a barcoded 

microbead (or equivalent), cell lysis reagents, etc., so that each nanodrop comprises a self-

contained reaction vessel. Advanced microchip designs allow virtually the entire process, 

from cell introduction, to delivery of reagents for sequencing, to be automated on a 

microchip about the size of a microscope slide. The drop-seq method was utilized for the 

analysis of nearly 45,000 single mouse retinal cells, which is a testament to the scalability of 

droplet microfluidics, and similar to the capabilities of the CytoSeq method.

A common concern with single cell methods is the relationship between what is measured, 

and the copy numbers of the analyte that were actually in the cell. Even genetically identical 

cells, cultured side-by-side, will naturally exhibit significant variations in copy numbers of 

transcripts, proteins, metabolites, and other analytes (see Box 1).42, 74 For any analyte, 

capture efficiency is always an issue, and can be very challenging to quantify. For 

transcriptomics, this concern is complicated by the fact that the actual mRNA transcript is 

not measured, but instead it is a cDNA complement, amplified to many copies, that provides 

the input into the sequencer. Different mRNAs can be differentially amplified, and noise can 

be amplified along with signal.48, 75-77 Of course, having a single cell technique that 

captures the biological heterogeneity of the cells under study, rather than the measurement 

noise of the technique itself, is advantageous. Various methods have been used to increase 

and/or characterize the quantitative nature of single cell transcriptomics.78

The Unique Molecular Index (UMIs)65, 73, 74 mentioned in the description of CytoSeq, 

which is also utilized by both microdroplet methods, is a protocol designed to limit 

amplification bias by associating a unique molecular signature to each mRNA copy that is 

captured. A related method was reported by Fu and coworkers.79, 80 Thus, if 10 copies of a 

specific transcript are captured from one cell, each will have the same barcode, but a 
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different UMI, and so the copy numbers of a given mRNA captured is simply the number of 

unique UMIs for a given barcode. The use of UMIs, while a significant step towards 

absolute quantitation, does have limitations for counting low copy number transcripts.74. A 

second major issue is that of capture efficiency, which can vary from <5%74 to ∼20%,81 and 

can be assessed by counting mRNA copies using UMIs relative to those recorded using 

fluorescence in situ hybridization (FISH).74 Of course, a low capture efficiency will have a 

correspondingly large variance across many mRNAs, or between different single cells – 

especially for low copy number transcripts. Thus, quantitating and increasing capture 

efficiency is an analytical frontier of the field.

Multiplex single cell proteomics methods

Multiplex single cell proteomic methods (Table 1, Figure 2) are classified as either flow11- 

or mass13 cytometry (CyTOF) tools, or as microfluidic platforms. Each of these methods 

rely on antibodies, so, unlike mass spectrometry proteomics of bulk samples82, 83, single cell 

proteomics methods cannot yet serve as discovery level tools. For the microfluidic 

platforms, the microengraving technique35, 84, single cell barcode chips (SCBCs), and 

single-cell Westerns85 (scWesterns) yield the most advanced capabilities. A number of 

alternative approaches, typically with reduced levels of multiplexing, have been reported, 

including high throughput microdroplet-base screening approaches,33, 86-89 and some of 

these are reviewed elsewhere90.

For analysis and cell sorting based upon cell surface markers, flow cytometry based 

fluorescent-activated cell sorting (FACS) is the mature single cell proteomics method,8 and 

interfaces with almost all other single cell methods described in this Review. FACS is 

routinely employed to analyze and sort viable cells based upon a half-dozen or more surface 

markers, and so is tremendously useful for purifying cellular phenotypes for subsequent 

analysis.

The analysis of cellular function at the molecular level, or the specific influence of drugs on 

that function, typically requires the analysis of functional analytes, such as phosphorylated 

kinases or secreted cytokines, apoptotic or proliferation markers, and/or metabolites. In 

general, these different classes of molecules can require different assay methods. For 

analyzing functional cytoplasmic proteins, CyTOF is the most mature tool,15 although 

SCBCs have emerged with similar and complementary capabilities14. ScWesterns, while 

having origins that can be traced back to single cell gel electrophoresis assays, known as 

comet assays91, 92, represent the youngest technology, but one that is perhaps most closely 

aligned to standard biology practice. Each of these tools has advantages and limitations. For 

analyzing secreted proteins, SCBCs have the unique capability of capturing large panels 

(>40) of proteins secreted from viable cells12. Microengraving tools capture only a few 

secreted proteins, but permit kinetic studies of protein secretion from individual cells93. For 

both SCBCs and microengraving, cells that exhibit unique or desirable protein signatures 

may be further analyzed.34 CyTOF can capture large panels of ‘secrete-able’ proteins, but 

protein secretion must be blocked and the cells fixed prior to analysis, and so the detected 

proteins are not actually secreted, and the cells cannot be further analyzed13. For the 

microfluidics tools, the cells can be imaged in situ, so that factors such as cell motility or 
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morphology can be correlated with the secretion of specific proteins94. The microfluidics 

tools also permit assays on discrete numbers of cells28, 44, 95. Since CyTOF utilizes antibody 

staining of fixed cells, that staining can be done within fixed tissues, permitting CyTOF to 

be used as a very powerful variant of immunohistochemical staining.39 Each of these tools 

requires significant user skill, although that requirement will likely diminish as the platforms 

advance.

As with transcriptomic methods, quantitative assessment of single cell protein levels is an 

increasingly important issue. All single cell proteomics methods utilize antibodies as the 

dominant detection technology. A recent publication provided a protocol for establishing a 

clear, quantitative metric for antibody performance, 96 and raised serious questions about 

whether a given antibody even detects its intended target. Of some 1124 antibodies tested, 

only 452 were found to recognize their target in HEK293 cell lysates92. Given that large 

caveat, the use of antibodies for staining (as with flow cytometry or CyTOF methods) is very 

different from their use in Western blotting or fluorescent sandwich immunoassays (SCBCs 

and microengraving), with each affording different quality checks. scWesterns, similar to 

standard immunoprecipitation-western methods, provide 2 separate measurements of each 

protein – the mass ladder (albeit of lower resolution than is common for bulk western 

blotting assays), plus a primary detection antibody 97. However, absolute quantitation and 

absolute assessments of experimental uncertainty can be challenging. For multiplex 

fluorescent sandwich immunoassays, each individual protein assay provides two separate 

measurements per cell (since two antibodies per protein are used). Each individual assay can 

also be compared against every other assay in the panel for cross-reactivity98, and each assay 

can be calibrated against solutions spiked with recombinant standards,14, 98 thus providing 

assay readouts in terms of copy numbers per cell. However, on a cautionary note, 

recombinant standards may not be commercially available, or may be modified from the 

corresponding protein produced within the cells. SCBC platforms have an additional quality 

check in that individual protein levels can be assayed multiple times from the same single 

cell14, thus providing a metric for experimental accuracy. Single cell methods that rely upon 

antibody staining of cells are the most challenging to quantitate, although experiments on 

FACS-sorted cells can provide validation that the antibodies used for staining surface 

markers are effective, thus providing a level of quantitation regarding the cell fractions that 

are positive or negative for specific markers.

Applications of single cell analysis: Uncovering New Biology

As tools have emerged that can analyze larger numbers of single cells with an increasing 

depth of analysis, a central emergent theme is that cellular biology is highly heterogeneous 

at virtually all molecular levels beyond the genome. Some of this heterogeneity is intrinsic to 

the nature of single cells (Box 1), while some of it is reflective of genetic or epigenetic 

influences 99, 100. In many cases, it is becoming apparent that the heterogeneity is not 

arbitrary, and may be mined to yield a treasure trove of new biological information. A 

second emergent theme has been that a few cells can bias a population average.101, 102

Single cell genomic or transcriptomic analysis can permit lineage tracing of rare cell types 

(see below), which can provide insight into the origin (e.g. primary tumor or metastatic site) 
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of circulating tumor cells (CTCs), or into the use of CTCs as a liquid biopsy that reflects the 

originating lesion.52, 62, 103, 104 A second application, pioneered by Quake's group, has been 

to provide a deep, molecular view of healthy20 or diseased105 tissue development via lineage 

tracing at the transcript and protein level. Related work has focused on identifying how 

multiple genetic defects associated with a single gene, but non-uniformly distributed 

throughout the tumor, influence tumor development and drug response.53

Advances in single cell proteomics have largely exploited the ability to interrogate 

combinations of secreted (or secrete-able) cytokines, chemokines and cytotoxic granules 

from highly defined cells of the hematopoietic lineage106, 107. This has permitted 

comparisons of the importance of immune cell function versus immune cell 

abundance11, 13, 93, 98 (see below), and it has also revealed deeper insights into the 

hematopoietic lineage. Such studies are being applied in cancer 

immunotherapies, 29, 56, 102, 108, as discussed later. Single cell proteomics has also opened 

detailed characterizations of the structure of phosphoprotein signaling pathways.14, 15 (see 

below and Box 1).

An emerging frontier is the use of microfluidics platforms that permit highly customized 

assays designed to correlate weak perturbations to single cells with changes in the 

transcriptome or proteome42. Two examples are studies that correlated cell motility with 

proteomic90 or transcriptome analysis32. A third example was an analysis of how specific 

cancer cells respond to targeted inhibitors as the physical environment is altered from 

normoxia to hypoxia31. Other examples include studies of cellular responses to engineered 

molecular stimulations (i.e. periodic versus continuous),109, 110 or studies designed to 

interrogate how one cell is influenced by another111, including how that influence depends 

upon cell-cell separation distance.28, 44 Such studies are enabled by the standardization of 

the relevant single cell assay biochemistries, and are limited only by the imagination of the 

researchers. They represent tremendously powerful approaches for decoding how genetic 

and epigenetic influences (such as drugs) are processed by living organisms.

Lineage tracing of Cellular Phenotypes

Single cell proteomics and transcriptomics may be used to understand the origins of cellular 

heterogeneity, as demonstrated by Dalerba and coworkers in colon cancer (Figure 3).105 It 

was found that the transcriptional diversity of a human tumor could be largely explained by 

in vivo multilineage differentiation98. These findings are consistent with additional 

models112 and mechanistic113 investigations that demonstrate the ability of cancer cell 

differentiation (and de-differentiation) to maintain a phenotypic equilibrium within certain 

tumors. The study by Delarba and colleagues98 was limited by the numbers of transcripts 

per cell, and the numbers of single cells, that could be analyzed a few years ago. The recent 

advent of high throughput, single cell global transcriptome analysis and exome sequencing 

should allow for such lineage tracing studies to dive significantly deeper into a host of 

developmental biology problems with relevance to both healthy and diseased states.
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Cellular Functionality versus Cellular Abundance: Surprising properties of hematopoietic 
stem cells

Immune cells of the myeloid lineage are often considered the first responders of host defense 

against bacterial infection; meanwhile, hematopoietic stem and progenitor cells (HSPCs) 

have been thought to respond in a delayed fashion, so as to ensure sufficient production of 

myeloid cells consumed during an infection.114-116 This response of HSPCs was considered 

to be a passive response to the depletion of downstream immune cells. Recent evidence 

suggests that HSPCs may participate directly by sensing systemically elevated cytokines as 

well as bacterial and viral components through cytokine receptors and Toll-like receptors 

(TLRs), respectively117, 118. Single cell functional proteomics (12-plex SCBC assays), 

combined with flow-cytometry cell sorting and genetically engineered mouse models, 

indicated that short term hematopoietic stem cells (ST-HSCs) and multipotent progenitor 

cells (MPPs) also have the capacity to respond to bacterial components via the TLR/necrosis 

nuclear factor kB (NF-kB) axis.106 In fact, HSPCs were shown to be significantly more 

potent cytokine producers in terms of speed, breadth and especially quantity, than the 

conventional cytokine producers of the immune system, such as myeloid cells and 

lymphocytes99. Clustering of data from HSC SCBC assays revealed 4 functional subsets of 

LKS HSCs (defined as Lin-Sca1+cKit+), secreting either a set of lymphoid or a set of 

myeloid-associated cytokines, or produced all proteins, or were completely silent99. The 

overall findings indicated that ST-HSCs and MPPs, although rare cells, can aggressively 

translate danger signals arising from an infection into the vigorous production of cytokine 

signals that allow them to directly self-regulate stress-induced hematopoiesis. These findings 

have multiple implications, with one possibility being related to patients who have 

undergone lymphodepletion regimens as part of a therapy procedure. Since the single cell 

functional proteomics assays are non-destructive to the cells, a logical next step in this type 

of work would be to analyze those functional subsets at the transcriptome level, to identify if 

there are specific cell surface markers that can be used to further differentiate those HSPC 

functional subsets.

High Throughput Drug Screening via Single Cell Phosphoproteomics

While single cell methods can provide a rich treasure trove of information, most are limited 

to analyzing only one to a few samples at a time. However, cellular barcoding techniques are 

evolving to remove this limitation.22, 119 For mass cytometry, the basic idea is that cells are 

separated into a multi-well plate and barcoded with a unique combination of mass signatures 

that identify a given cell with its well location, and the experimental conditions (i.e. a 

specific dose of a specific drug) applied to that location. The cells are then analyzed all 

together, so that many experimental conditions are captured in parallel. For example, 

Bodenmiller and coworkers108 used 7 mass-labeled barcodes to provide up to 27 barcoding 

capacity (128 possible addresses). This method was applied to a 96-well plate format to 

explore the kinetic and/or dosing influences of 27 inhibitors on 14 distinct peripheral blood 

mononuclear cell (PBMC) phenotypes (defined by 10 cell surface markers), via monitoring 

14 phosphorylation sites per cell. From this data, IC50 values and percentage inhibition of 

the phosphorylation levels for all phosphorylated sites was extracted.
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As described above, single cell, multiplex phosphoproteomic assays yield both the levels of 

the assayed proteins, as well as the protein-protein correlations. Thus, a major advantage and 

distinguishing feature of this high throughput screening approach is that it permits an 

analysis of how both on-target and off-target drug interactions influence the signaling 

networks, rather than just the relevant protein levels. A major challenge going forward will 

be to expand the multiplexing of these types of assays to capture more complete pictures of 

the phosphoprotein signaling networks, as well as additional networks associated with 

cellular proliferation, apoptosis, and metabolism.

Applications of single cell analysis in oncology

The single cell analytic methods discussed in this review are being applied towards 

addressing a number of fundamental biomedical problems, particularly in cancer biology 

and clinical oncology. Below, we discuss two such challenges that are deeply connected to 

modern drug discovery and development: cancer immunotherapy, and tumor heterogeneity.

Cancer Immunotherapy

The prototype model for our understanding of cellular differentiation and diversification in 

humans is the hematopoietic system. In fact, this knowledge has provided a scientific 

cornerstone behind the recent and remarkable advances in cancer immunotherapy.120, 121 

Single cell technologies have emerged as a critical set of tools for advancing this knowledge, 

often in dramatic fashion.

For cancer immunotherapies, single cell analytic tools are, or soon will be, providing critical 

guidance across multiple levels of biological information. Whether the immunotherapy is 

based upon dendritic cell vaccines122, adoptive cell transfer123 or checkpoint 

inhibitors124-126, or some combination thereof, the primary tumor cell killers are T cells. 

Some of the most important biomarkers are the kinetic persistence and functional behaviors 

of specific anti-tumor T cell phenotypes across the course of a given patient's therapy 

regimen. For cell based therapies, the importance of designing clinical protocols that account 

for T cell differentiation has emerged as a key consideration.127 In addition, patient-specific 

mutant epitopes128 (called neoantigens) were suggested a few years ago to be a potentially 

important factor for understanding, or perhaps controlling, the anti-tumor specificity of an 

immunotherapy, and that suggestion has been borne out by recent findings.108, 129-133 

Closely associated factors are the T cell receptor (TCR) α/β chain sequences that recognize 

the specific expressed neoantigens with high avidity.

For much of this work, highly multiplex flow and mass cytometry methods11, 13, 134, 135, and 

associated reagent development,136-141 have provided the workhorse. These techniques 

allow a phenotypical characterization of immune cells, and also study intracellular signaling 

pathways. With the realization that T cell responses to cancer can lead to unprecedented 

levels of durable tumor responses in several cancers (melanoma, lung, bladder, lymphomas, 

leukemias), there is a need for further characterization of such responses that would lead to 

increased refinement in the therapeutic approaches and continued improvements in patient 

care.
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To understand immune responses to cancer, it is of high interest to develop approaches that 

can match the TCR genes with their specific (or cognate) antigen, which is usually resulting 

from nonsynonymous somatic mutations specific for each cancer. 108, 136, 138-143 As each T 

cell has two TCR chains, it is important that they are defined from individual T cells to allow 

their correct pairing. Single cell analysis platforms coupled with DNA sequencing for TCR 

chains and paired neoantigens have the potential to revolutionize our knowledge about this 

critical interaction, guiding the success of cancer immunotherapy strategies.21, 56 With the 

increased knowledge, it is easy to envision that in the near future, the definition of TCR 

chains that specifically recognize neoantigens in cancers may be translated into truly 

personalized cancer immunotherapy approaches for patients.

Once the recognition elements of T cells are fully defined, a next question is which T cell 

subsets are empowered to fight cancer. While these T cell subsets are each governed by 

specific transcription factors and can be identified by a series of surface molecules, 144 a 

specific subset can also exhibit a broad range of functional phenotypes, ranging from anti-

tumor to immune-modulatory.102 Single cell assays provide an unparalleled quantitative 

assessment of the different T cell subtypes, their progenitors, and their functional 

capabilities.13, 16, 41, 102, 106 These assays are being applied to the characterization of T cell 

responses to cancer induced by several immunotherapy approaches102, 106. These methods 

are helping define how patients respond or resist to immunotherapy approaches, such as 

checkpoint blockade therapy, and may help guide the next generation of combination 

therapy studies that will be designed based on understanding what is lacking in patients 

whose immune systems do not respond to these therapies.

Advances in cell therapy manufacturing for adoptive cell transfer (ACT) approaches, where 

a large army of T cells are manufactured in the laboratory and re-infused back to patients, 

are being supported by new biotechnology approaches designed to guide higher level T cell 

characterizations.29, 56, 108, 133 The knowledge on the TCR specificity and the generation of 

chimeric antigen receptors (CAR) to genetically re-direct T cell specificity to cancer, allows 

the manufacture of autologous cell therapies145. By applying highly multiplexed single cell 

analyses, the different T cell subsets can be surveyed before and after infusion of these cell 

therapies to patients and define which approaches lead to improved long term functionality 

to attack cancer. It has become clear that less mature cells that have long term repopulation 

ability (naïve, T stem cell and long term memory cells) are preferred in these ACT 

approaches127, as more mature T effector cells have short term functionality and cancer may 

regrow after their infusion.102, 146

The next wave of advances in cancer immunotherapy will likely rely on the characterization 

of large numbers of single immune cells at the DNA, RNA and protein levels to de-

convolute the complexity of immune responses to cancer and guide further therapeutic 

strategies. Lower order analyses fail to provide the necessary knowledge to understand 

immune responses to cancer and cannot explain the heterogeneity in patients response.

Understanding tumor heterogeneity

Intratumoural heterogeneity is increasingly recognized as a central hallmark of human 

cancer,147 and describes three main types of variability: a) variation of mutational patterns 
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among tumors of the same histological type; b) variation of histological pattern within a 

tumor; and c) intratumoural mutational polyclonality, i.e. variation of the mutational 

complement within individual cells of a tumor.148 In addition to mutational polyclonality, 

single cells within a tumor will intrinsically vary in the activity of their signaling14, 15 and 

metabolic27 networks, influencing the biological properties and therapeutic vulnerabilities of 

distinct tumor cell subpopulations. The impact on intratumoural mutational polyclonality 

and heterogeneity of signaling and biochemical networks on treatment and resistance are not 

currently well understood, in part because the standard genetic tools have not been well 

suited to measure it.

Tumors develop into a complex heterogeneous tumor mass, primarily through the 

intertwined forces of spontaneous somatic mutation coupled to clonal sequential selection 

for aggressive subclones.147, 149-151 As tumors progress, new mutations are produced with 

an ever increasing frequency, accelerating the extent of intratumoural mutational 

polyclonality, and confounding treatment strategies.148, 149 Intratumoural mutational 

polyclonality is enhanced in cancers that are associated with a causal environmental insult 

that directly damages DNA,152 as well as by the progressive loss of key tumor suppressor 

proteins, and mutations in genes that control DNA damage sensing and repair 153.

The local microenvironment also provides a critical non-genetic force. Autocrine and 

paracrine interactions between inflammatory, stromal, endothelial and tumor cells are just a 

few factors that can influence the process of selection, and may yield cells bearing different 

mutations within different parts of a tumor or its distant metastases154, 155. Treatments also 

provide a source of non-genetic heterogeneity, expanding or collapsing tumour cell 

subpopulations depending on the treatment.147, 148, 151

Exome and genome-wide surveys have provided an atlas of driver mutations and a 

compelling road map for guiding the implementation of precision and personalized cancer 

medicine. However, intratumoural heterogeneity presents a serious challenge to this 

paradigm.156 Fortunately, single cell technologies are poised to address this challenge.

Glioblastoma, GBM, the most common and lethal form of primary brain cancer, provides an 

illustrative example. GBM was one of the first cancers sequenced by The Cancer Genome 

Atlas.157, 158 In that survey, 57% of tumors contained EGFR amplification and/or gain of 

function mutation, including EGFRvIII.159, 160 EGFRvIII is oncogenic in mouse models 

when introduced in association with CDKN2A loss,161 as commonly co-occurs in 

patients.148 However EGFRvIII protein expression varies dramatically among the cells 

within a GBM and single cell DNA sequencing,53 RNA sequencing,21 as well as bulk 

analysis of DNA and RNA extracted from different regions of a tumor162, 163 demonstrate 

considerable DNA, transcript and protein heterogeneity, including of EGFRvIII. Importantly, 

recent work suggests that the widespread variability of EGFRvIII gene, transcript and 

protein within individual cells of a GBM, may contribute to the resistance to EGFR-targeted 

therapies that is currently seen in the clinic.113 In addition, single cell bar proteomics and 

metabolomics assays point to considerable variability in the signaling and metabolic 

networks of individual GBM cells27 within an EGFRvIII+ tumor, potentially shedding new 
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light on mechanisms of resistance to targeted therapies, either pre-existing and/or adaptive 

that could be used to guide more effective combination treatments.

Challenges, limitations and outlook

The emergence of single cell ‘omics’-tools over the past half-decade has happened at a 

lightning pace, and the potential for their use in the discovery and development of broad 

classes of therapies and therapeutic strategies is very high. The resultant data sets do not just 

provide deeper views of biology that is already measured using existing methods, but also 

offer a fundamentally different view that is not masked by the intrinsic heterogeneity of a 

cell population. However, the newness of these single cell techniques also implies various 

limitations. For example, most methods discussed in this review have just recently emerged 

from academic labs, and so require significant skill sets and cross-disciplinary infrastructure 

that may be new to those in the drug discovery and development community. As cases in 

point, the three papers highlighted in the section “Uncovering New Biology via Single Cell 

Analysis,” have, on average, 13 authors representing 5 different departments or institutions. 

In other words, it can take a village to effectively integrate the technology, the biology, and 

the computational analysis. A second caveat is that algorithms for the in depth analysis of 

single cell data are even less mature than the experimental platforms, and effective 

visualization and interpretation of what are increasingly large data sets remains challenging, 

with techniques that vary across research groups. However, as methods mature, the 

experimental protocols, the reagents, and the computational analysis routines will become 

more standardized. This has, of course, largely happened for multicolor flow cytometry, and 

it is beginning to happen for CyTOF and single cell RNA-seq, but even those methods are 

still rapidly evolving, and they all involve dedicated user facilities.

Much of modern biological practice is designed around extracting correlations and 

associated statistical trends from biological systems that are intrinsically heterogeneous and 

thus noisy. The promise of single cell biology is to resolve and make sense of this 

confounding heterogeneity. Several studies highlighted in this review provide hints of the 

resultant clarity that can be achieved. It is likely that, as the tools of the field increase in 

terms of quantitation, throughput, and ease of use, the impact will be to fundamentally 

change the practice of biology, as well as the associated applied sciences, including drug 

discovery and development.
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Box 1

Biophysical Interpretation of Single Cell Data

The ability to quantitate the level of analytes from single cells provides fundamentally 

new insights into the cellular biology. For example, the abundance distribution of an 

analyte, as tabulated across many single cells, is also called the fluctuations of that 

analyte, and represents a unique single cell measurement. A certain width of the 

fluctuations is fundamental and unavoidable, and is reflective of the statistics associated 

with the many steps through which signals are processed by gene and protein networks. 

For purely stochastic99 processes, the distribution width should narrow as the square root 

of the average copy numbers per cell of the analyte increases.164 However, most analytes 

will not behave according to this limit and, in fact, the shapes of analyte distributions can 

reveal new biology, such as evidence of bistable steady states165, or evidence that the 

cells are in a stable steady state,42 or are unstable and responding to some perturbation 

(i.e. a drug). A relevant example of bistability might be a cell population that is 

comprised of both a quiescent state and an active state166, 167, and thus yields differential 

responses to drugging.

Measurements of multiple analytes from the same single cells can be used to extract 

quantitative analyte-analyte correlations (and anti-correlations). Again, this is a uniquely 

single cell measurement. Consider, for example, the levels of the three hypothetical 

phosphoproteins (p-A, p-B, and p-C) shown in the figure. These proteins represent a 

small signaling network within a cell. Stimulation (or drugging) of the cell may 

collectively repress these phosphoprotein levels, as is reflected in the bulk 

immunoprecipitation assays. However, a more in depth picture of the signaling is 

revealed by an analysis of a statistical number of single cells, such as is presented in the 

two-dimensional scatter plots. Note that in the plots for the undrugged cells, all 

phosphoprotein levels are high, but only p-A and p-B are strongly correlated. Upon 

drugging, all phosphoproteins are repressed, but p-A and p-B are non-correlated, p-C and 

p-B are strongly correlated, and p-A and p-B are anti-correlated. This inferred correlation 

network is shown in the graphic, in which the protein levels are indicated by the sizes of 

the spheres, and the correlations are indicated by the edges. Correlation, of course, does 

not mean causation, but a correlation network generated at the single cell level can 

provide a rich set of testable hypotheses that may ultimately allow the chemical kinetic 

relationships that comprise a signaling network to be extracted. In principle, if one knows 

these relationships, then one can make accurate predictions regarding how a specific drug 

will disrupt the cellular signaling machinery. Improved measurement quantitation 

provides significant additional value. This is because most signaling cascades actually 

behave as excitable devices with built-in excitability thresholds, enabling them to 

integrate diverse temporal and spatial inputs to produce specific signaling responses.168 

In other words, the outputs of a signaling cascade are not typically linearly dependent 

upon the inputs, and quantitative assays permit such input/output relationships to be more 

accurately defined.

Heath et al. Page 21

Nat Rev Drug Discov. Author manuscript; available in PMC 2016 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Quantitative single cell transcriptomic methods
Two separate, but conceptually similar methods, with similar throughput capabilities, are 

illustrated in this figure, along with representative data. a. The CytoSeq method is based 

upon isolating individual cells within 30 micrometer diameter (20 picoliter volume) wells, 

and then placing into each well a single barcoded bead. b. Each barcoded bead is designed 

with the shown structure. Each bead contains tens to hundreds of millions of distinct 

oligonucleotide primers which are each comprised of a barcode that identifies the bead (and 

thus the single cell), plus a molecular index (UMI) that is associated with a particular mRNA 

capture sequence. After bead and cell co-localization within a well, cells are lysed and 

mRNAs are captured via hybridization onto specific bead-bound oligonucleotides. The 

beads are then all removed from the well-plate, and all amplification reactions are carried 

out in a single tube. Adapted from 22. c. The microdrop-based in Drop technique for single 

cell transcriptomics. For this method, single cells are entrained into a single droplet, along 

with a hydrogel microsphere. Each hydrogel microsphere contains photo-cleavable 

oligonucleotide primers that have a similar construction to the bead shown in part b, while 

the droplets contain the cell lysis buffers and reverse transcription (RT) reagents, so that the 

whole process from cell capture and lysis to signal amplification happens separately in each 

droplet. d. A snapshot of representative data from an inDrop study of the kinetics of 

differentiation of mouse embryonic stem (mES) cells following leukemia inhibitory factor 

(LIF) withdrawal. For this plot, data sets representing 5 time points are analyzed using 

principal component anaysis to reveal asynchrony in mES cell differentiation. Each dot 

represents a single cell. Adapted from ref 71.
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Figure 2. Emerging single cell proteomics methods
a. Mass cytometry uses antibodies (Abs), encoded with transition metal containing mass 

tags, to label proteins of interest. Cells are fixed and permeabilized so as to permit Ab-

staining of cytoplasmic proteins. Single cells are entrained into vapor and atomized. A mass 

filter separates the transition metal atoms, which are then mass analyzed. The abundance and 

identities of the transition metal atoms are traced back to the Ab staining reagents. b. The 

microengraving technique utilizes a microchip with many thousands of microwells, into 

which between 0 and a few cells of interest are loaded. An Ab coated coverslide is placed 

over the microchip to capture specific secreted proteins. Microchip addresses are correlated 

with regions on the coverslide and with microscopy images to associate a given cell with a 

given secretion profile. Captured proteins are detected using fluorescent secondary Abs, with 

different proteins identified using different fluorophores. The coverslide can be replaced 

during the time-course of an experiment to capture single cell secretion kinetics. Cells of 

interest may be removed for further analysis. c. Single cell barcode chips (SCBCs) contain 

up to a few thousand microchambers, into which between 0 and a few cells are loaded. An 

Ab-barcoded glass slide is patterned so that each microchamber contains a complete, 

miniaturized Ab array onto which secreted, or following cell lysis, cytoplasmic or membrane 

proteins are captured. Protein assays are developed using fluorescently-labeled secondary 
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Abs, with different proteins identified according to the spatial location of the immunoassay 

within the barcode. If cells are not lysed (only secreted proteins detected), then the cells 

remain viable and may be further investigated. d. Single cell Westerns are miniaturized 

variants of traditional Western Blotting methods, with ∼103 single cells analyzed per 

microchip.
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Figure 3. Single cell analysis traces the lineage of a colon cancer
The work flow proceeds from left. A biopsy of a healthy colon is analyzed using FACS to 

separate cells extracted from the crypt-like structures of the colon epithelium. The bottom 

regions of the crypts are enriched in stem cell-like populations, with those cells identified as 

EpCAM+/CD44+. More differentiated enterocyte and goblet cells are found near the top of 

the crypts, and are defined as EpCAM+/CD44-/CD66ahigh. Single cell, multiplex 

transcriptomics is used to develop a 53 gene expression classifier. Principal component 

analysis (PCA) of the single cell data resolves the major cellular subpopulations. The genes 

that define those subpopulations are plotted with respect to how they are represented within 

the two dominant principal components. The plot reveals how the classifier resolves 

immature progenitors (top left of graph), enterocyte-like cells (top right), and goblet-like 

cells (bottom left). Classifers of these populations, also identified from hierarchical 

clustering of the single cells transcriptome data, provide the color coding for each mRNA on 

the plot. Once established, the classifier was used to analyze cells collected from a patient 

colon cancer tumor, and to show that the tumor cells (drawn with a red border) are largely 
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goblet-like and immature progenitors. A single immature progenitor tumor cell is sorted 

from the patient tumor using FACS, and implanted into a mouse model to grow a 

monoclonal tumor. Analysis of that tumor reveals a cellular composition reminiscient of the 

original patient tumor, implying that the tumor cellular heterogeneity can originate from 

expansion and lineage differentiation of a single progenitor-like cell. The principal 

component plot is adapted from reference 105.
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Table 1
Characteristics and Capabilities of Single Cell Proteomics Methods

Single Cell Proteomics 
Method Protein Detection Method Comments

literature

Fluorescence Activated Cell 
Sorting (FACS)

Staining with fluorophore-
labeled antibodies

• Standard for cell sorting based on 
membrane protein cell surface 
markers

• High throughput tool with 
excellent statistics

• Mature technique.

• Multiplexing is colorimetric.

• Typically requires large sample 
size;

• Sorted and analyzed cells are 
viable and for subsequent 
analysis.

• Commercial product (many 
vendors).

References: 8, 11

Mass Cytometry (CyTOF)
Staining fixed cells with mass-
tag labeled antibodies

• Good for cytoplasmic proteins;

• Excellent statistics;

• Demonstrated as a drug screening 
tool,

• >30 proteins assayed per cell.

• Multiplexing is via mass 
spectrometry.

• Applicable to fixed tissue 
analysis.

• Commercial product (Fluidigm). 
References

References 13, 15, 39, 45, 108

Single Cell Barcode Chips 
(SCBCs)

Spatially-encoded antibody 
array for fluorescent immuno-
assays of secreted proteins or 
analytes released from lysed 
cells

• Permits absolute quantitation.

• Small (102-103 cells) biospecimen 
size ok.

• Demonstration of >40 proteins 
assayed per cell.

• Secreted proteins detected from 
viable cells.

• Some designs integrate cell lysis 
to permit cytoplasmic protein 
assays and integrated protein/
metabolite assays.

• Analysis of cell-cell interactions.

• Small (103-104 cells) biospecimen 
size ok.

• Cost effective.

• Multiplexing is via spatially 
encoded arrays.

• Commercial Service (Isoplexis).

References 12, 14, 27, 93, 95

MicroEngraving
fluorescent immunoassays of 
secreted proteins

• Small numbers of secreted 
proteins.

References: 35, 80, 89, 103
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Single Cell Proteomics 
Method Protein Detection Method Comments

literature

• >104 single cells assayed in 
parallel.

• Cost effective.

• Permits kinetic studies of protein 
secretion

• recovery of analyzed cells for 
further analysis

• analysis of cell-cell 
interactions103.

• Small (102-103 cells) biospecimen 
size ok.

• Cost effective.

• Multiplexing is colorimetric.

Single Cell Western 
Blotting (scWestern)

Miniaturized, automated 
Western Blotting on a 
microchip

• Small (102-103 cells) biospecimen 
size ok.

• 103 cells assayed per microchip

• multiplexing to ∼12 proteins 
demonstrated

• permits cytoplasmic proteins from 
lysed cells;

• reasonably fast (4 hours).

• Provides protein ladder reference.

• Relative quantitation.

References 81
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