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ABSTRACT
Jasmonates (JAs) are a class of plant hormones, essential in plant development and defense. JA
induces the interaction of the JA receptor Coronatine Insensitive 1 with jasmonate ZIM-domain (JAZ)
proteins, and promotes subsequent JAZs degradation, leading to the release of downstream factors
and activation of diverse plant development and defense processes. We recently revealed that the
IIIe bHLH transcription factors MYC2, MYC3, MYC4 and MYC5 interact with the MYB transcription
factors MYB21 and MYB24 to form the bHLH-MYB complex, and JAZs repress the bHLH-MYB
complex to regulate JA-mediated stamen development. Here, we further discuss the different
properties of the components of the bHLH-MYB complex in expression pattern and stamen
regulation.
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The phytohormone jasmonates (JAs) are oxylipin signaling
molecules, participating in the control of various aspects of
the plant life, such as plant fertility,1,2,3 anthocyanin accu-
mulation,4,5 root growth,6,7,8 fruit ripening9 and leaf senes-
cence.10,11 They also act as defense signals to mediate plant
responses against abiotic and biotic stresses.12,13,14,15 Upon
exogenous or endogenous JA induction, the JA receptor
protein Coronatine Insensitive 1 interacts with and triggers
the degradation of the jasmonate ZIM-domain (JAZ) pro-
teins, which interact with and repress diverse downstream
transcription factors to inhibit multiple aspects of JA
responses.16-22

The R2R3-MYB transcription factors MYB21 and
MYB24 are essential for floral organ development, including
petal expansion, stamen development and gynoecium
growth, and secondary metabolism in flower.23-26 We previ-
ously showed that JAZ proteins interact with MYB21 and
MYB24 to regulate JA-mediated stamen development,
including filament elongation, anther dehiscence and pollen
maturation.24 Recently we reported that the IIIe bHLH
transcription factors MYC2, MYC3, MYC4 and MYC5,
which are also targets of JAZs,6,7,8,27 function redundantly
in promoting stamen development and plant fertility, and
regulate JA-mediated stamen development and fertility by
forming the bHLH-MYB transcription complex with
MYB21 and MYB24.27 Here, we focus on investigating the
variant characters of the MYB and bHLH factors in the
bHLH-MYB complex.

Microarray expression data and histochemical staining
analysis have shown that the MYB components (MYB21
and MYB24) of the bHLH-MYB complex are expressed in
sepals, petals, stamens and carpels,26,28 supporting their
roles in the regulation of floral organ development and
secondary metabolism (e.g. sesquiterpene synthesis).23-26

Here, we performed quantitative real-time PCR assays to
analyze the expression of the bHLH components of the
bHLH-MYB complex in the sepal, petal, stamen and car-
pel of flower. Expressions of MYC2, MYC3, MYC4 and
MYC5 were all detected in stamens (Fig. 1), supporting
their role in stamen development and plant fertility.25,26,27

Furthermore, we found that MYC2 and MYC3 exhibited
high expression level in all four floral organs (Fig. 1A, 1B
and 1D), while MYC4 and MYC5 were preferentially
expressed in sepals or carpels respectively (Fig. 1C). The
expressions of the MYC genes in floral organs indicate
that they might also control the development of other
flower organs and floral secondary metabolism, which
remain to be elucidated. MYC2 has been shown to regu-
late sesquiterpene synthesis in flower.29

Mutation, inhibition and overexpression of MYB21 and
MYB24 obviously inhibit stamen development, demonstrat-
ing that proper stamen development requires the appropri-
ate expression level of MYB21 and MYB24.24 Our recent
study demonstrated that the malfunction of MYC2, MYC3,
MYC4, and MYC5 delays stamen development and reduces
fertility.27 Now, we generated MYC2, MYC3, MYC4, and
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MYC5 overexpressing transgenic plants to investigate
whether overexpression of these bHLH factors represses
stamen development. Among all the transgenic lines of
every gene (101, 68, 71, and 87 overexpressing transgenic
lines respectively for MYC2, MYC3, MYC4, and MYC5),
none of them showed altered stamen development or plant
fertility (2 representative overexpression lines for each gene
are shown in Fig. 2), suggesting that overexpression of
MYC2, MYC3, MYC4, or MYC5 does not affect stamen
development, which is distinct from that of MYB21 and
MYB24.

JA regulates the expression of the bHLH and MYB
components of the bHLH-MYB complex.7,25,26 The tran-
script levels of MYB21, MYB24, and MYC2 increased rap-
idly and significantly to about 20-, 30-, and 16-fold in
response to JA treatment,25 whereas the expression of
MYC3 and MYC4 were only mildly (~2 fold) induced by
JA.7 Here, we found that the expression of MYC5 cannot
be elevated by JA in wild type (Fig. 3), suggesting MYC5
and the other components of the bHLH-MYB complex
exhibit different JA-induced expression patterns.

The MYB factors (MYB21 and MYB24) and bHLH
factors (MYC2, MYC3, MYC4 and MYC5) form the

bHLH-MYB complex to control JA-mediated stamen
development.24,27 Here we noticed that studies have
revealed differences existing among these factors: 1)
MYC2 and MYC3 exhibit high expression levels in all
four floral organs, while MYC4 and MYC5 preferentially
express in sepals or carpels, respectively; 2) Overexpres-
sion of MYB factors inhibits stamen development, while
overexpression of these bHLH factors cannot influence
stamen development; 3) The expression of MYB21,
MYB24, MYC2, MYC3 and MYC4 can be either signifi-
cantly or mildly induced by JA, whereas MYC5 cannot.
So far, MYB21 and MYB24 have been reported to mainly
function in the flower, such as in floral organ develop-
ment and floral sesquiterpene biosynthesis, while MYC2,
MYC3, and MYC4 regulate diverse plant responses,
including root growth, leaf senescence, secondary meta-
bolic processes, and plant defense responses, as well as
stamen development. As these MYB and bHLH factors
share common functions and exhibit differences at the
same time, it will be interesting to investigate what other
plant responses the bHLH-MYB complex regulates besides
stamen development, and what other plant responses the
bHLH and MYB factors separately control, and how.

Figure 1. Expression Levels of MYC2, MYC3, MYC4 and MYC5 in Floral Organs. (A-D) Quantitative real-time PCR analyses of MYC2 (A), MYC3 (B), MYC4 (C), and MYC5 (D) in
leaves and floral organs of 8-week-old Col-0 wild type using ACTIN8 as the internal control. L, leaf; Se, sepal; Pe, petal; St, stamen; Ca, carpel. Each value is the mean
(§SE) of 3 biological replicates.
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