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ABSTRACT
The shoot apical meristem is the central organizer of plant aerial organogenesis. The molecular bases of its
functions involve several cross-talks between transcription factors, hormones and microRNAs. We recently
showed that the expression of the homeobox transcription factor STM is induced by mechanical
perturbations, adding another layer of complexity to this regulation. Here we provide additional evidence
that mechanical perturbations impact the promoter activity of CUC3, an important regulator of boundary
formation at the shoot meristem. Interestingly, we did not detect such an effect for CUC1. This suggests
that the robustness of expression patterns and developmental programs is controlled via a combined
action of molecular factors as well as mechanical cues in the shoot apical meristem.
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Throughout their lifetime, plants are exposed to a number of
external mechanical perturbations, such as wind or touch. This
leads to changes in mRNA level of many genes, and long-term
developmental responses such as stem thickening and flower-
ing delay 5 In addition to these external factors, plants are also
constantly affected by intrinsic tensile stresses, notably because
plant cells are under high turgor pressure. There is now accu-
mulating evidence that these internal stresses are affecting
many aspects of the cells, thus channeling growth in the long
term.14

The shoot apical meristem (SAM) is the central organizer of
plant aerial organogenesis. Initiation of new organs and main-
tenance of SAM is achieved through the concomitant action of
multiple regulatory pathways. Genetic screens have identified
many key players, including transcription factors, hormones,
and microRNAs.38,48,53,55 In addition to these biochemical fac-
tors, mechanical forces are also present within the meristem. In
particular, the boundary domain that separates newly emerging
organ from the meristem is under highly anisotropic tensile
stresses.4,15,32 A key question for the future is the analysis of the
interplay between mechanical forces and the molecular regula-
tors of meristem function (Fig. 1A).

In a recent article,26 we showed that a master regulator of
meristem maintenance, the homeodomain protein SHOOT
MERISTEMLESS (STM) is expressed at a higher level in the
boundary domain, and that this local increase in promoter
activity can be related to mechanical stress: mechanical pertur-
bations are sufficient to induce STM expression in the meri-
stem. Interestingly, mechanical perturbations do not affect all
boundary-expressed genes in the same way. For instance, the
promoter activity of the PINOID gene, which is also increased

in the boundary domain, is not affected by mechanical
perturbations.26

Here we focus on the most canonical genetic markers of
boundary identity, the CUP SHAPED COTYLEDON (CUC)
genes. CUC1, CUC2 and CUC3, belong to a group of NAC
domain transcription factors and show a high level of func-
tional redundancy. They play an essential role in shoot meri-
stem initiation through the regulation of STM
expression.1,9,19,29,34,45,49 Recently it has been reported that
CUC1 and CUC2 are also required for formation and stable
positioning of the carpel margin meristems.23 Depletion of
these genes leads to defects in cotyledon separation, organ
fusions and cup-shaped cotyledons.19,49 Although functionally
connected, the expression of CUC1, CUC2 and CUC3 genes is
regulated through different pathways. This is also reflected by
their expression profiles, which are not identical in the
SAM,25,34,45 Fig. 1B

In addition to transcriptional control, CUC1 and CUC2 are
subjected to post-transcriptional regulation through the micro-
RNA pathway.2,27,37,39,42 In plants, miRNAs are produced from
larger RNA precursor transcripts that contain a self-comple-
mentary structure allowing the formation of a hairpin. After
transcription, the miRNA precursor is being recognized by a
protein complex that induces its cleavage and further matura-
tion of an active miRNA. miRNAs are short (20 - 22 nt) single
stranded molecules, that are predominantly associated with
AGO1 and target mRNAs to cleaveage or translational repres-
sion in a sequence-dependent manner.3,20,22,28,30,51 Based on
sequence similarity of the mature miRNA and the target speci-
ficity, the miRNAs are grouped to several (over 90) families
(http://www.mirbase.org/; 6,7,24,36,39 The mRNA of CUC1 and
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CUC2 is targeted for cleavage by the miRNAs of the miR164
family, comprising 3 isoforms - miR164a, miR164b and
miR164c.2,27,31,39,42,43 Plants, with the miR164-resistant versions
of CUC1 or CUC2 have been shown to have severe defects in
the organ boundary formation and organ separation during
both vegetative and reproductive development.2,27,31,33,35 The
elimination of miR164 activity leads to enlargement of the
CUC1 and CUC2 expression domains in the inflorescence meri-
stem, supporting a scenario in which miR164 acts in spatio-
temporal regulation of expression of these genes, preventing
the fluctuations and contributing to the robustness of develop-
mental programs.35,43 Interestingly, the CUC3 mRNA does not

contain the microRNA targeted site, yet it displays a robust
boundary specific expression,12,46,52 Fig. 1B.

We recently showed that mechanical perturbations in the
form of ablation in the SAM is sufficient to induce CUC3
expression in the SAM, while CUC1 expression profile
remains largely unaffected in the same conditions.26 Here we
further confirm this result: No significant induction of signal
or change in signal patterning was detected in the pCUC1::
CUC1-GFP line after ablation (Fig. 1C upper panels). This
suggests that CUC1 expression at the boundary is unlikely to
be controlled through mechanical cues. In contrast, the
pCUC3::CFP line exhibited a strong induction of the signal

Figure 1. Interplay between molecular and mechanical regulators at the shoot meristem boundary. (A) Shape changes at the meristem is accompanied by the expression
of specific genes.52,46 Among those are ANT, CLF, AS1, AS2 that are expressed mainly in the growing organ and, CUC1, 2 and 3, the expression of which is restricted to the
boundary domain.43,46,52,54 The pattern of stress anisotropy is represented by color bar with green corresponding to the regions with lower stress anisotropy (central
zone and organ) and orange in the boundary domain where stress anisotropy is maximal. This stress and gene expression pattern correlates with the distribution of the
plant hormone auxin that has its local maximum where new organ initiates and its local minimum at the organ boundary.8,17,38 Acting in a PIN1-dependent manner, auxin
may promote organ emergence, notably through the repression of KNOX genes,11,16,41 whereas in the boundary, it may negatively regulate the axillary meristem forma-
tion.50 (B) CUC1 and CUC3 expression pattern at the boundary in meristems from greenhouse-grown plants: Signal intensity (right panels) and Gaussian curvature (left
panels) of pCUC1::CUC1-GFP and pCUC3::CFP in representative SAM. Membranes were labeled with FM4–64. Gaussian curvature is extracted using the level set method
and MorphoGraphX. Representative images highlighting the differences between pCUC1::CUC1-GFP and pCUC3::CFP signal intensities in young boundaries, as revealed by
the curvature map. Scale bars: 10 mm. (C) Expression of pCUC1::CUC1-GFP (upper panels) and pCUC3::CFP (lower panels) in meristems from in vitro grown plants, before
and after ablation. Expression is shown using the Fire lookup table in ImageJ, with the threshold of 5 in the Fire representation. No significant induction of signal is
observed for pCUC1::CUC1-GFP; only an increase of autofluorescence in dead cells can be detected 24 hour after ablation. In contrast, pCUC3::CFP expression (lower panels)
is induced 24 hours after ablation, when compared to control. Scale bar, 20 mm. (D) Expression of pCUC3::CFP in meristems from in vitro grown plants, before and after
treatment with 20 mM isoxaben. The two upper panels display representative untreated pCUC3::CFPmeristems with induction only when an organ emerges (upper panel).
In contrast, after the isoxaben treatment the intensity of pCUC3::CFP signal is induced everywhere in the meristem, when compared to control. Scale bar, 20 mm.
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in meristem (here represented at 24 hours after ablation
(Fig. 1C lower panels).

To further investigate the effect of mechanical perturbation
of CUC3 expression, the pCUC3::CFP reporter line was treated
with isoxaben and the impact on CFP signal intensity was ana-
lyzed over time. Isoxaben is a well-known inhibitor of cellulose
synthesis; such a treatment is supposed to weaken and increase
tensions in cell walls. We detected an increase of the CFP signal
intensity in the regions of tissue folding in the treated meris-
tems (Fig. 1D).

This rather supports a scenario in which mechanical stress
may impact CUC3 expression, and channel its expression in
the boundary domain of the meristem, while CUC1 would rely
on miRNA activity to achieve such specificity. Needless to say
that other factors, and notably auxin depletion at the boundary,
may very well add another layer of regulation to these expres-
sion patterns.

Altogether, this work illustrates how the members of a small
gene family can be regulated by different cues, despite having
redundant functions. It also shows how mechanical cues and
miRNA activity can differentially channel molecular inputs
into specific outputs. As the molecular bases of meristem func-
tions are now well described, elucidating further such interplays
represents a major challenge for the future of plant
development.

Material and methods

Plant lines and growth conditions

The pCUC1::CUC1-GFP and pCUC3::CFP lines have recently
been described.12

“Greenhouse-grown plants” were initially grown in short-
day conditions (8 hr/16 hr light/dark period) for one month
and then transferred to long-day conditions (16 hr/8 hr light/
dark period). Stems were cut and the SAM was dissected when
the inflorescence meristem was visible, i.e. between the appear-
ance of the first flower to the appearance of first silique (stages
13 to 17 44 and transferred on a half MS medium with vitamins
and 0.125 mg/mL of BAP for imaging as already described.10

“In vitro grown plants” were grown in a phytotron in long
day conditions on Arabidopsis medium (Duchefa) supple-
mented with 10 mMNPA to inhibit flower initiation and gener-
ate naked meristems. NPA-treated in vitro grown plants were
transferred to a medium without NPA as soon as naked meris-
tems were formed as already described.13 Meristems were then
imaged from 24h to 48h after transfer on the NPA-free
medium.

Confocal laser scanning microscopy and image analysis

Dissected meristems and plants grown in vitro were imaged in
water using a SP8 confocal microscope (Leica, Germany) or a
LSM780 microscope (Zeiss, Germany) to generate stack of opti-
cal sections with an interval of 0.25, 1 or 2 mm between slices.
In some cases, membranes were stained with FM4-64.

The maps of meristem curvature, pCUC1::CUC1-GFP and
pCUC3::CFP signals at cellular levels were obtained using
the MorphographX software (www.morphographix.org).

The curvature maps were generated by plotting the mean
Gaussian curvature on non-segmented meshes with a neigh-
boring of 15 mm.

Ablations and isoxaben treatment

Each experiment was performed on at least 2 independent sets
of plants, and with at least 4 independent plants in each set. In
all experiments, the t D Xh time point corresponds to X hours
after the beginning of treatment. Controls and assays were ana-
lyzed in parallel (same growth conditions, same imaging condi-
tions). The ablations and isoxaben treatments that were carried
out on WT plants were performed on plants previously grown
in vitro NPA and transferred in a medium without NPA 0 to
24h before the beginning of the experiment.

The ablations were performed with a needle as already
described.15,47

The isoxaben treatments were conducted by immersing the
plants in aqueous solutions of 20 mM of isoxaben overnight
(for 12 to 14 hours,18,47). Controls were obtained by water
immersion with an equivalent volume of Dimethyl Sulfoxide
(DMSO). The presence of isoxaben in the meristem could be
confirmed by its impact on meristem and cell size.
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