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Adaptation to stress entails a repertoire of molecular pathways that remodel the proteome, thereby promoting
selective translation of pro-survival proteins. Yet, translation of other proteins, especially those which are harmful for
stress adaptation is, on the contrary, transiently suppressed through mRNA decay or storage. Proteome remodeling
under stress is intimately associated with the cytoplasmic ribonucleoprotein (RNP) complexes called stress granules
(SGs) and processing bodies (PBs). The molecular composition and regulation of SGs and PBs in plants remain largely
unknown. Recently, we identified the Arabidopsis Tudor Staphylococcal Nuclease (TSN, Tudor-SN or SND1) as a SG- and
PB-associated protein required for mRNA decapping under stress conditions. Here we show that SGs localize in close
proximity to PBs within plant cells that enable the exchange of molecular components. Furthermore, we provide a
meta-analysis of mRNA degradome of TSN-deficient plants suggesting that TSN might inhibit the degradation of
mRNAs which are involved in stress adaptation. Our results establish TSN as a versatile mRNA regulator during stress.

Adaptation to stress depends on the availability of energy
resources.1 Stress drives cells to an energy crisis whereupon they
have to reduce energy expenditure in order to survive. To this
end, eukaryotic cells compartmentalize specific mRNAs and pro-
teins in cytoplasmic ribonucleoprotein (RNP) structures known
as stress granules (SGs) and processing bodies (PBs).2 In these
structures mRNA molecules are stored, degraded or kept silent in
order to prevent energy expenditure on producing useless, sur-
plus or even harmful proteins under stress conditions.3

Numerous components of SGs and PBs have been identified
in yeast and animal models. SGs typically contain poly(A)C

RNA, translation initiation factors (eIFs), poly(A) binding pro-
tein (PABP) and ribosomal proteins.4 In contrast, PBs contain a
suit of proteins involved in mRNA decay and translational
repression, including subunits of decapping and exosome com-
plexes, deadenylases, and RNA-binding proteins.5 Although
both types of RNP complexes are present under stress conditions,
they serve distinct functions. While SGs are thought to play a role
in sequestering, stabilizing and storing mRNAs and translation
factors,6,7 the main function of PBs is attributed to translational
repression and mRNA decay, in accordance with their
composition.8,9

Plants are sessile organisms subjected to and able to cope with
a vast array of biotic and abiotic stresses throughout their life-
spans. Recent studies have provided useful insight into the cell

biology and biochemistry of SGs and PBs in plants. Sorenson
and Bailey-Serres have found that Ubp1c, a SG-nucleating RNA-
binding protein, is a component of the machinery that repro-
grams post-transcriptional gene expression during hypoxia.10

More recently, we characterized the processes of SG assembly
and disassembly in plants under heat stress and established Tudor
Staphylococcal Nuclease (TSN) as a structural and functional
component of both SGs and PBs, essential for mRNA catabolism
under stress.11

Here we extend our previous study and show that (i) SGs
localize in a close proximity to PBs in plant cells, and (ii) TSN
may positively regulate stability of mRNAs involved in stress
adaptation pathways.

Although SGs and PBs have distinct functions and composi-
tion, several studies performed in animal and yeast models
pointed to the existence of a strong physical link between them.
It was demonstrated that both complexes are likely to exchange
mRNA and proteins between themselves and with polysomes.4

Several observations supported the idea that similar RNP shuttle
is also present in plants. First, some proteins were found to local-
ize in both SGs and PBs, such as CCCH tandem zinc finger pro-
teins TZF1, TZF4, TZF5 and TZF6.11,12 Second, treatment
with cycloheximide, which causes trapping of mRNA in poly-
somes by inhibiting the translocation step during the elongation
phase in protein synthesis, abolished SG and PB assembly.11,13
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By performing a co-localization study using SG- and PB-associ-
ated proteins eIF4e and DCP1, respectively, we have revealed
that these RNP complexes are situated in close proximity to each
other in Arabidopsis root cells under heat stress (Fig. 1,
arrowheads).

Shuttling of cytoplasmic mRNAs between polysomes, PBs
and SGs has been well documented in stressed mammalian
cells.14 Yet, the mechanisms and directionality of mRNA move-
ment between PBs and SGs remain unresolved. A longstanding
notion is that mRNAs stalled at a step of translation initiation
are kept in SGs for storage, or directed to PBs for degradation.
However, several studies have found that mRNA decay enzymes
such as XRN1 can be also found in SGs, suggesting that mRNA
degradation may also take place in these foci.8,14 Likewise, we
showed that TSN is localized in both SGs and PBs and that enzy-
matically active tandem repeat of 4 N-terminally situated SN
domains confers this localization.11

TSN is an evolutionarily conserved protein present in almost
all eukaryotes, with the notable exception of Saccharomyces cerevi-
siae.15 The domain composition of TSN is also conserved, invari-
ably comprising a tandem repeat of 4 non-canonical SN domains
followed by a Tudor and a C-terminal partial SN domain.16 In
animals, TSN functions in several gene expression pathways in
both the nucleus and the cytoplasm, including regulation of

Figure 1. Colocalization analysis of GFP-DCP1 and eIF4E proteins. 5-day-
old Col Arabidopsis seedlings expressing GFP-DCP1 (green) were heat
stressed at 39�C for 40 min and then immunostained with anti-elF4E
(red) as described previously.27 Root cells were examined by confocal
laser microscopy. Control seedlings were grown at 23�C. Note a close
proximity between eIF4E-SG and DCP1-PB denoted by arrowheads. Scale
bars, 2 mm.

Figure 2. Analysis of global mRNA decapping pattern in Arabidopsis under heat stress as affected by TSN deficiency. (A) Quantitative analysis of tran-
scripts enriched in uncapped form in control (23�C) and heat stress (39�C for 40 min) conditions in Col, Ler and tsn1tsn2 plants. (B) GO analysis (term
“Biological Process”) of transcripts enriched in uncapped form in Col, Ler and tsn1tsn2 plants under heat stress. The charts display the ratios between the
percentages of mRNAs belonging to a particular GO term that show significant enrichment in uncapped form under heat stress and under control condi-
tions. Asterisks indicate significant differences at P < 0.05, Fisher’s exact test. To identify enrichment of uncapped transcripts, significance analysis was
performed using TIGR MultiExperiment Viewer modelu of TM4 software.28 A further description of the microarray experiment can be found elsewhere.29

GOSlim annotation developed by TAIR was used to organize sets of genes into broad ontology categories.30
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transcription,17-20 pre-mRNA splicing,21 and RNA silenc-
ing.22,23 Arabidopsis genome has 2 partly redundant TSN genes
(TSN1 and TSN2) which were shown to confer stress tolerance
through the stabilization of mRNAs encoding secreted proteins
24 and gibberellin 20-oxidase 3, a key enzyme in gibberellin bio-
synthesis.25 Unlike animal TSN, in Arabidopsis TSN1 and
TSN2 are exclusively cytoplasmic.11,26 However, the role of
TSN in plants seems to be extended to also encompass an oppo-
site process, viz. mRNA decay, under stress. In our recent work,
the purification of uncapped mRNA molecules, intermediates of
the 50–30 decay pathway, from Columbia-0 (Col), Landsberg
erecta (Ler) and tsn1tsn2 double knock-out plants grown under
control conditions or heat stress and subsequent cDNA arrays
analysis revealed that TSN is essential for mRNA decapping
under stress.11 While heat-stressed Col and Ler plants exhibited a
pronounced increase in the accumulation of uncapped mRNA,
this increase was abrogated in TSN-deficient plants (Fig. 2A).
This analysis has also detected large changes in the pattern of
uncapped transcripts caused by heat stress.

In order to determine which categories of transcripts are
enriched in the uncapped form (i.e. subject to degradation) dur-
ing heat stress, we grouped them into Gene Ontology (GO) Bio-
logical Process (Fig. 2B). A comparison between the heat stress
versus control condition showed that the transcripts related to
categories “DNA or RNA metabolism,” “electron transport or
energy” and “transcription, DNA-dependent” are less uncapped
in all genetic backgrounds, indicating that these transcripts are
critical for heat stress adaptation. Noteworthy, transcripts of

genes encoding components of stress response and signal trans-
duction pathways are enriched in uncapped form in the tsn1tsn2
background but not in wild-type plants (Fig. 2B). These data are
in agreement with the previously reported role of TSN in stabiliz-
ing certain mRNAs encoding secreted proteins.26

Here, we provide evidence that SGs and PBs are located in
close proximity in plant cells, further supporting the notion that
RNP components can shuttle between them. In addition, we
show that transcripts related to cell signaling and stress adapta-
tion are preferentially uncapped in tsn1tsn2 background. Further
work is required to unravel the molecular mechanism that ena-
bles TSN to play 2 seemingly antagonistic roles in RNA metabo-
lism under stress, i.e., facilitating global mRNA decapping and
thus degradation, and on the other hand stabilizing particular
mRNAs that are required for survival.
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