
Variation potential in higher plants: Mechanisms
of generation and propagation

Vladimir Vodeneev*, Elena Akinchits, and Vladimir Sukhov

Department of Biophysics Lobachevsky State University of Nizhni Novgorod; Nizhni Novgorod, Russia

Keywords: generation, higher plants, propagation, simulation, variation potential

Abbreviations: AP, action potential; ES, electrical signals; VP, variation potential.

Long-distance intercellular electrical signals, including
variation potential (VP) in higher plants, are a potential
mechanism of coordinate functional responses in different
plant cells under action of stressors. VP, which is caused by
damaging factors (e.g., heating, crushing), is transient
depolarization with an irregular shape. It can include a long-
term depolarization and fast impulse depolarization (‘AP-like’
spikes). Mechanisms of VP generation and propagation are
still under investigation. It is probable that VP is a local
electrical response induced by propagation of hydraulic
wave and (or) chemical agent. Both hypotheses are based
on numerous experimental results but they predict VP
velocities which are not in a good accordance with speed
of variation potential propagation. Thus combination of
hydraulic and chemical signals is the probable mechanism of
VP propagation. VP generation is traditionally connected
with transient HC-ATPase inactivation, but AP-like spikes are
also connected with passive ions fluxes. Ca2C influx is a
probable mechanism which triggers HC-ATPase inactivation
and ions channels activation at VP.

Introduction

Plants live under variable environmental conditions, but they
are immovable organisms and cannot escape from stressors. As a
result, adaptive physiological responses are very important for
plant life. Development of these responses requires intracellular
and intercellular signals that coordinate functional responses in
different plant cells. In particular, long-distance intercellular sig-
nals are necessary under local action of stressors because they
induce functional changes in nonstimulated organs and tissues,
i.e., the systemic plant response.1,2

Chemical, hydraulic and electrical signals are considered to be
potential long-distance intercellular signals in plants.2-10 Electri-
cal signals (ESs) traditionally include action potential (AP),
which is induced by non-damaging stimuli (e.g., cooling, touch-
ing), and variation potential (VP), which is caused by damaging
factors (e.g., heating, crushing) (Fig. 1).8,11-14 Both signals are
affected via transient depolarization, although the dynamics of

membrane potential changes at AP and VP are different.7,11,12

Recently, an ES, termed ‘system potential’ (SP), has been shown
in higher plants.15 In contrast to AP and VP, SP is transient
hyperpolarization that can be induced by different stimuli and is
likely connected with HC-ATPase activation.15

Propagation of AP and VP affects numerous physiological pro-
cesses in plants. For example, ESs induce gene expression,16-18

phytohormone synthesis,17,19,20 phloem transport decrease,21

changes in root absorption,11 activation of respiration,22-26 and
inactivation of photosynthesis.23,24,26-31 Retivin et al.32 hypothe-
sized that the ultimate role of these physiological changes is the
increase of plant resistance to stressors. Indeed, it has been shown
that ESs can have a positive influence on resistance to stressors at
the whole plant level,32 including increasing photosynthetic
machinery resistance,30,33 which is strongly connected with inacti-
vation of photosynthesis. The precise mechanisms of ESs’ influ-
ence on physiological processes are under investigation. It has
been hypothesized34 that changes in ion concentrations could be
the initial mechanism that leads to a functional response. Investi-
gation of ESs-induced photosynthetic response in Chara algae and
higher plants showed that Ca2C27,28 and (or) HC26,29 influxes,
which participate in development of electrical reactions, can be
initiators of the functional response.

Thus ESs-induced physiological changes associated with AP
and VP generation depend on ion mechanisms. AP generation is
mainly based on passive Ca2C, Cl¡ and KC fluxes,35 but transient
HC-ATPase inactivation also participates in this process.36 VP
generation is still under investigation7,11-13 and it has been diffi-
cult to determine its precise functional role. AP is subjected to
the ‘all-or-none law’; i.e., propagation of this signal isn’t directly
related to its functional role. In contrast, VP propagation isn’t
subjected to the ‘all-or-none law’, and propagation parameters
can directly influence plant physiological responses. As a result, a
better understanding of VP generation and its propagation prin-
ciples is important for future investigations of its functional role.
The aim of our review is to provide an analysis of modern con-
ceptions about mechanisms of VP generation and propagation.

General information about variation potential
In higher plants, local damage, including burning and other

mechanical injuries7,11,13,15,37, induces a unique ES referred to as
variation potential (VP), which is defined as a transient depolari-
zation with an irregular shape. Burning is the most commonly
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used stressor for inducing VP in a wide variety of plants, includ-
ing barley,37 faba bean,37 soybean,38 tobacco,39 sunflower,40

mimosa,11,41,42 tomato,6,43 Bidens pilosa,44,45 pumpkin,11,46

wheat,47 and pea.26,30,31 Mechanical injury also can induce VP.
It was shown that pricking sunflower hypocotyls induced VP,7

and cutting stems and roots induced VP in sunflower,7 maize,48

and pea.49 However, similar mechanical injuries did not induce
VP in tomato and wheat.47,50 Because the presence/absence of
VP induction depends on the type of damage, burning has
become the preferred inductor of VP.

VP has an irregular shape that can include 2 components. The
first is long-term depolarization over the course of a minute to
several minutes,5,7,12 and which is an absolutely necessary com-
ponent of VP. It has wide-range variable amplitude (» tens mV)
and low velocity propagation (» mm s¡1).46,47 However, VP
may also include fast impulse depolarization, a similarity it shares
with AP.

These ‘AP-like’ spikes can take the lead over the long-term
depolarization in mimosa, sunflower and bean,42,51,52 join the
depolarization and form the first fast depolarization in pumpkin,
geranium and pea,24,30,46 and be generated during the depolari-
zation in mimosa, sunflower, tomato, pumpkin and cucum-
ber.11,43,47,51,53 However, VP can occur without ‘AP-like’ spikes,
as well. Only long-term depolarization was observed in pea epico-
tyls,49,53,54 wheat47 and spiderwort.55 It should be noted that
presence and absence of ‘AP-like’ spikes may be observed in the
same plants, i.e., its generation is determined by damage parame-
ters and distance from the zone of stimulation (Fig. 1).46,56

Propagation of VP has a number of specific properties. It is
known that VP amplitude is proportional to the intensity of the
damaging stimulus.11 Amplitude and propagation velocity of VP
decreases with increasing distance from the damage zone.46,47,56

This decrement was about 10% cm¡1 in pumpkin46 and
wheat.47 Our theoretical investigation56 showed that this decre-
ment depends on initial damage intensity. Another interesting
property of VP propagation is its transmission through inactive
or dead plant parts.11

Thus, parameters of VP are essentially distinguished from AP
in major 3 ways:7,11,13,15 (i) AP is induced by undamaging stim-
uli and VP is caused by damage; (ii) AP is a spike whereas VP
has an irregular shape, including long-term depolarization and
‘AP-like’ spikes; and (iii) AP is subjected to the ‘all-or-none law’

and VP depends on stimulus type, distance from zone of dam-
age, and plant species. As a result, generation and propagation
mechanisms of VP are considered to be distinguishable from
those for AP.

Mechanism of variation potential propagation
There are 3 basic hypotheses that describe potential mecha-

nisms of VP propagation in plants. The first hypothesis55 sup-
poses that VP propagation is a self-propagating ES, which is
similar with AP transmission in principle. It was shown that VP
propagation velocity is well described by a cable equation,55 i.e.,
its process may be based on active ES transmission. However,
this hypothesis doesn’t explain several important properties of
VP transmission. In particular, VP can propagate through zones
where its generation was suppressed by low and high tempera-
tures,42,57,58 potassium cyanide,53 sodium azide,46 and EGTA.46

Moreover, it was shown that VP could propagate between cut
stems, if plant parts were joined by solution.11 These results are
contrary to a hypothesis regarding self-propagating VP and show
that xylem is likely to be the main pathway of variation potential
transmission. Data of Tzaplev and Zatzepina55 can be connected
with measurement of propagation velocity of ‘AP-like’ spike,
which may take the lead over long-term depolarization and is
similar to AP.

According to the other 2 hypotheses, VP (or only long-term
depolarization) is a local electrical response induced by propaga-
tion of a specific factor. This factor may be a hydraulic wave4,7 or
chemical agent (‘wound substance’, ‘Ricca’s factor’).3,11,13 A
combination of hydraulic and chemical signals is also proposed
in some studies.59

The hydraulic hypothesis maintains4,7 that damage increases
hydraulic pressure in the stimulated zone that induces a hydraulic
wave that is propagated through the plant body. A number of
experimental data support this hypothesis. First, it was shown in
several studies that local damage induced changes in stem or leaf
thickness that reflected hydraulic wave propagation through the
plant.4,47,53,60,61 Changes in thickness started before the electrical
reaction was initiated4,40,47,51 thus supporting their key role in
VP induction. Additionally, artificially increasing xylem hydrau-
lic pressure in the positive direction7,49,53 induces electrical reac-
tions that are similar to VP.

Thus, participation of a hydraulic wave in VP propagation is
likely. However, the velocity of hydraulic wave propagation (up
to the speed of sound in water) is essentially greater than the
velocity of VP transmission (»mm s¡1). Stahlberg and Cos-
grove53 supposed that low VP velocity was connected with a lag-
phase prior to the start of VP generation. This lag-phase was
extended as hydraulic wave amplitude decreased; in turn, the
amplitude was reduced with distance from the damage zone.

The chemical hypothesis proposes that damage induces syn-
thesis and (or) excretion of a wound substance that propagates
through xylem vessels and induces a local electrical reaction.3,13

This wound substance can be contained in plant homogenates
because homogenization breaks cells in a manner similar to a
damage stimulus. It was shown that homogenates can induce an
electrical reaction in mimosa,11 biophytum,62 and tomato.63-65

Figure 1. Electrical signals in hypocotyl of pumpkin seedling induced by
different stimuli. (a) action potential induced by ice water;11 (b) variation
potential without spikes induced by leaf burning;46 (c) variation potential
with AP-like spikes induced by leaf burning.56 Electrical signals were reg-
istered in 7 cm from zone of stimulation. Redrawn from works.11,46,56
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In contrast, the homogenate didn’t change VP, induced by cut,
in pea.54 The exact nature of the wound substance isn’t known.
This substance must: (i) be synthesized quickly in response to
damage, (ii) induce electrical reactions, and (iii) propagate easily
in plants. Oligosaccharides of broken cell walls,66 systemin,67

jasmonate,18,68 salycilic acid,69 ethylene19,70 and abscisic acid1,2

are considered to be potential wound substances. In recent stud-
ies,71 hydrogen peroxide (H2O2) has been shown to propagate
from the damage zone and induce an electrical reaction. It is
known that H2O2 can activate Ca2C channels72-74 that can trig-
ger VP development (see below), and hydrogen peroxide mole-
cules can be quickly synthesized and propagated when a plant is
under stress.75-78 These properties support the hypothesis of
H2O2 participation in VP transmission.

The mechanism of wound substance propagation through
plants is not well known. The first modification of the chemical
hypothesis supposed that wound substances propagate through
the plant body with water flow in the xylem.11 However, this
supposition cannot explain basipetal VP transmission, which has
been shown in a number of studies.12,26,30,31 Molecular diffusion
in water solutions is a relatively slow process,79 and it is unlikely
that this mechanism is the basis for wound substance propaga-
tion. Alternative possible mechanism of electrical signal propaga-
tion may be connected with diffusion of volatile wound
substance (e.g., ethylene) in air spaces of plant. This mechanism
has not been shown for VP; however, propagation of light-
induced electrical signals through Coleus leaves on 12–20 mm is
possible to be caused by CO2 diffusion in leaf air spaces.80 It
shows potential possibility of this mechanism of VP propagation
in plants.

It was also shown that water-soluble chemical agents (fluores-
cent dyes, radioactive isotopes) can propagate throughout the
plant body with a velocity that was similar to the velocity of VP
transmission.6,47,50,81 As a result, an alternative mechanism of
wound substance transmission was suggested. According to
Malone,59 local damage increases hydraulic pressure in the stimu-
lated zone; in turn, this pressure growth induces acropetal and
basipetal water flows in xylem, which transfers wound substances
(‘hydraulic dispersion’). Another possible way of wound sub-
stance propagation was suggested previously.47,56 It is known
that water flows in xylem are rather turbulent,82 and diffusion in
turbulent flow is 3–4 orders of magnitude faster than molecular
diffusion,79 and velocity of turbulent diffusion is similar to the
speed of VP propagation.47 Therefore, we proposed that wound
substance propagation is based on turbulent diffusion.47,56

Both mechanisms of wound substance propagation (hydraulic
dispersion and turbulent diffusion) suppose that this propagation
can be intensified by damage-induced changes in hydraulic pres-
sure (hydraulic wave transmission), i.e., the chemical and hydrau-
lic mechanisms cooperate during VP propagation.47,59

Mechanisms of variation potential generation
Both potential mechanisms of VP propagation rely on dam-

age-induced signals that influence ion transporters in plant cell
plasma membranes, which are ligand-dependent (chemical mech-
anism) or mechano-sensitive (hydraulic mechanism). Therefore,

discerning the nature of these transporters is key to understand-
ing VP generation mechanisms.

In contrast to AP, which is mainly based on passive ions
fluxes, VP generation is traditionally connected with transient
HC-ATPase inactivation.7,13,14 This hypothesis was initially sup-
ported by inhibitor analyses. It was shown that metabolic inhibi-
tors (EN¡, NaN3) decreased VP amplitude and velocity of
depolarization, or suppressed generation of variation potential in
pea, pumpkin, tomato and Bidens pilosa.43-46,54 Katicheva et al.83

showed that amplitude of VP and its depolarization and repolari-
zation velocities were essentially reduced in wheat after treatment
by sodium orthovanadate, a specific inhibitor of HC-ATPase. It
should be noted that the repolarization phase of VP was more
suppressed by inhibitor treatment than depolarization.44-47,54,83

Activation of HC-ATPase by fusicoccin induced the opposite
effect and VP amplitude increased under the treatment.49

Participation of HC-ATPase inactivation in VP generation has
also been shown by using different external pH conditions.
Decrease in pH from 7 to 4 induced depolarization that was
caused by lowering of HC-ATPase activity44,45. VP amplitude
was low under these conditions. Application of the protonophore
carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which
increases permeability of the plasma membrane for HC,
decreased VP amplitude.44,45

Changes in extracellular and intracellular pH, which were
observed during VP development, also supported an important
role of HC-ATPase inactivation in generating variation poten-
tials. Using potentiometric and fluorescence methods, it was
shown that VP generation was accompanied with apoplast alkali-
zation26,29,37,46,49,84 and that its magnitude varied from about
0.223 to about 0.726,34 pH units. pH in cytoplasm was also
affected by VP and decreased in the range of 0.3 to 0.6 pH
units.23,26 Dynamics of pH changes were similar to the dynamics
of the electrical response;23,46 VP amplitude was correlated with
magnitude of pH change in the apoplast and cytoplasm.23

These results show that changes in HC-ATPase activity are an
important mechanism of VP generation: depolarization caused
its inactivation and repolarization was associated with its reactiva-
tion. However, the question ‘Is HC-ATPase inactivation the sole
mechanism of variation potential?’ is still under investigation.
Presence/absence of changes in conductivity of the plasma mem-
brane is one potential argument that supports/rebuts the partici-
pation of ion channels in VP generation. According to Stahlberg
et al.,54 VP development did not induce changes in plasma mem-
brane conductivity in pea, and that was considered as an argu-
ment supporting absence of ion channel participation in VP
generation. However, investigation of wheat leaves83 showed that
VP generation was accompanied with increased conductivity of
plasma membranes, and that observation supports activation of
ions channels during VP development. These contradictory data
can be explained by the complicated nature of total plasma mem-
brane conductivity, which includes ion channel conductivities as
well as HC-ATPase conductivity. As a result, total conductivity
can be weakly changed with increase of ion channel conductivi-
ties (ions channel activation) and decrease of HC-ATPase con-
ductivity (HC-ATPase inactivation) taken together. Therefore,
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participation of passive ion channels in VP generation requires
more detailed analysis.

Participation of passive Ca2C influx is the most thoroughly
investigated VP generation mechanism. It was shown that inhibi-
tion of Ca2C channels and (or) lowering of external concentra-
tions of calcium ions essentially decreased VP amplitude or
suppressed this electrical reaction in pumpkin, wheat, barley,
tomato and Bidens pilosa.37,44,46,83 Removal of Ca2C can also
decrease number of AP-like spikes during VP development43.
Moreover, VP generation was accompanied with decreased

concentration of calcium ions in the
apoplast34. These results show that
Ca2C influx is needed for develop-
ment of VP. Also, it should be noted
that strong local stressor can induce
propagation of long-distance calcium
signals in plant leaves, and parameters
of these signals are similar with
parameters of VP propagation.85

According to several stud-
ies,43,45,46,56,83 Ca2C influx initiates
VP generation, inducing HC-ATPase
inactivation and, possibly, Cl¡ chan-
nel activation;56 i.e., Ca2C plays a reg-
ulator role in VP development.
However, other studies49 have shown
that inhibition of Ca2C channels only
weakly influenced VP parameters in
pea that could be connected with
Ca2C flux from internal sources dur-
ing VP development.

Possible participation of anion and
potassium channels on generation of
VP has received significant attention.
Several works44 showed that Cl¡ and
KC permeability of the plasma mem-
brane was not changed during the
repolarization phase of VP in Bidens
pilosa. Moreover, inhibitor analysis
did not show the influence of anion
and potassium channels on slow wave
parameters in pea and tomato.43,49

However, we have shown that VP
generation was accompanied with a
decrease in plasma membrane electri-
cal resistance;83 and that this resis-
tance change was affected by anion
and potassium channel blockers. VP
amplitude decrease or full suppression
of these electrical signals under the
action of ion channel blockers were
also shown.46,86 Potentiometric analy-
sis showed that VP generation was
accompanied by an increase in exter-
nal concentrations of Cl¡.37,46 What
seems apparently contradictory in

these different studies may be explained by differences in ion
mechanisms among different VP components. We hypothe-
sized56 that activation of anion and potassium channels is the
main mechanism of AP-like spikes and initial fast depolarization,
and transient inactivation of HC-ATPase is the key mechanism
for long-term depolarization. Ca2C influx triggered both HC-
ATPase inactivation and anion channel activation.

Figure 2 shows hypothetical mechanisms of VP generation
and propagation. Accordingly, it shows propagation of a chemi-
cal or hydraulic signal or combination of these signals (hydraulic

Figure 2. Hypothetical mechanism of VP generation and propagation. Propagation of chemical signal,
hydraulic signal or combination of these signals (hydraulic dispersion and turbulent diffusion) activated
ligand-dependent or mechano-sensitive Ca2C channels. Ca2C influx inactivates HC-ATPase and induces
long-term depolarization. Depolarization to AP threshold activates potential-dependent Ca2C channels.
Additional Ca2C influx and plasma membrane depolarization activate potential-dependent Cl¡ channels,
and, later, KC-channels. As a result AP-like spike is formed.
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dispersion and turbulent diffusion) activated via ligand-depen-
dent or mechano-sensitive Ca2C channels. Influx of calcium ions
inactivates HC-ATPase and induces development of long-term
depolarization. Depolarization to the AP threshold activates
potential-dependent Ca2C channels. Additional Ca2C influx and
plasma membrane depolarization activates potential-dependent
Cl¡ channels, and, later, KC-channels. As a result, an AP-like
spike develops. Thus, according to the scheme, VP generation is
connected with long-term HC-ATPase inactivation (mainly
long-term depolarization) and with anion and potassium channel
activation (mainly AP-like spikes); and Ca2C influx is possible to
trigger both mechanisms.

Mechanisms of VP and AP generation are very similar. Depo-
larization of both electrical responses is connected with passive
ion fluxes as well as with HC-ATPase inactivation. Differences of
VP and AP properties are possibly caused by different initiation
mechanisms for these signals.14 Activation of potential-depen-
dent Ca2C channels is the first stage of AP generation; whereas
VP initiation is connected with activation of ligand-dependent
(chemical mechanism) or mechano-sensitive (hydraulic mecha-
nism) calcium channels. These differences allow for different par-
ticipation of active and passive mechanisms in VP and AP
generation.

Simulation of variation potential
VP simulation can be an effective method for the theoretical

analysis of mechanisms of variation potential generation and
propagation.47,56 There are several interconnected problems for
simulation of VP: (i) modeling of VP propagation, (ii) modeling
of VP generation, and (iii) description of irregular dynamics of
the electrical potential, which can reflect VP propagation and VP
generation.

One-dimensional systems can be suitable models for theoreti-
cal investigations of VP propagation,44 subject to significant
excess of stem length compared with the transverse dimension.
The chemical mechanism of VP propagation has been theoreti-
cally tested in our previous work47,56 using the diffusion equa-
tion. It was assumed that a wound substance was instantly
generated at wounding, and then it diffused along xylem vessels
and induced VP generation when its concentration reached the
threshold mean. Under this set of assumptions, the diffusion
equation described well VP propagation at the diffusion coeffi-
cient (D), equaling about 0.05 cm2 s¡1 in wheat.44 This D mag-
nitude was 2000 times larger than the coefficient of diffusion of
small molecules in a water solution (molecular diffusion).79 This
difference has been explained using turbulent diffusion,44 which
can develop in turbulent flows (e.g., in xylem flow)82 and may be
thousands of times larger than coefficients of molecular diffu-
sion.79 Experimental analysis using a radioactive marker showed
that D equaled 0.06 cm2 s¡1 after wounding in wheat.44 Theo-
retical analysis of VP propagation in pumpkin showed that D
was about 0.12 cm2 s¡1.56 Thus simulation of VP propagation
supports participation of turbulent diffusion in the transmission
of chemical signals under wounding.

Modeling VP generation requires a detailed electrophysiologi-
cal model of the plant cell. These models vary widely in range

and scope; there are models that were based on Hodgkin-Huxley
model,87,88 and models that were based on detailed descriptions
of ion transport in plant plasma membranes.56,89-92 An electro-
physiological model that was based on our previous simulation
of VP generation56 takes into account KC, Cl¡ and Ca2C chan-
nels, HC- and Ca2C-ATPase, 2HC/Cl¡–symporter and HC/KC-
antiporter, changes of ion concentrations in the cell and in the
extracellular space, and buffers in the cytoplasm and apoplast.
Analysis of the VP generation model56 supports the necessity of
Ca2C influx for VP generation, the key role of HC-ATPase inacti-
vation in long-term depolarization, and participation of
Cl¡channel activation in the generation of AP-like spikes. Inten-
sities of ions fluxes during VP generation and their dynamics are
also calculated using the model. Thus, simulation of VP genera-
tion supports mechanisms of VP that have been shown in experi-
mental investigations.

An additional important result of theoretical analyses of VP
generation and propagation is the simulation of irregular dynam-
ics of electrical potential during VP. Investigations using the VP
model show56 that imitation of damage with different intensity
(different extraction of wound substance) induces different elec-
trical potential dynamics during VP. This result is in good accord
with data on variability of VP shape7,46 and about dependence of
VP parameters on wounding intensity. Also, the electrical poten-
tial dynamics depend on distance from the wounding zone; and
that the distance dependence is in good accord with experimental
data.46,56 The VP model has taken into account VP generation
as well as VP propagation, and can describe the irregular shape of
variation potential.

Conclusions

There are 2 main questions that are connected with generation
and propagation of variation potential. First, is the wound-
induced signal chemical, hydraulic, or a combination of the 2?
Second, are the passive ion fluxes that participate in VP genera-
tion or HC-ATPase inactivation the sole mechanism of variation
potential development? We propose that the solution to both
questions involves a combination of mechanisms. There is good
evidence to connect VP propagation with an interaction between
chemical signals and a hydraulic wave. VP generation is a com-
bined process, including long-term HC-ATPase inactivation
(long-term depolarization) and short-term activation of anion
and potassium channels (AP-like spikes). Testing these hypothe-
ses should form the basis for future VP investigations.
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