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The phytochemical indole-3-carbinol
is produced in Cruciferous plants

upon tissue rapture and deters herbi-
vores. We recently showed that indole-3-
carbinol modulates auxin signaling in
root tips. Here we present transcript pro-
filing experiments which further reveal
the influence of indole-3-carbinol on
auxin signaling in root tips, and also
show that I3C affects auxin transporters.
Brief treatment with indole-3-carbinol
led to a reduction in the amount of PIN1
and to mislocalization of PIN2.

Indole-3-carbinol (I3C) is a phyto-
chemical endogenously produced in the
Cruciferae plant family. It is formed from
the breakdown of indole-3-methylglucosi-
nolate (I3M), which is derived from glu-
cose and tryptophan.1 I3M is the
predominant indole glucosinolate, and
one of the most prominent glucosinolates
detected in roots. The cleavage of I3M to
I3C is catalyzed by myrosinase.2,3

In humans, a rich cruciferous vegeta-
bles diet has been associated with reduced
chances of cancer, and I3C as a therapeu-
tic treatment has potential for both pre-
vention and treatment of a wide verity of
cancers, such as leukemia, breast cancer
and prostate cancer among others.4-8

In Arabidopsis thaliana I3C is synthe-
sized upon tissue rapture and deters herbi-
vores. The glucosinolates and the
myrosinase are normally stored in separate
compartments in the plant cells. In
response to plant damage or insect attack
I3M and the myrosinase are mixed and
I3C is synthesized. I3C protects the plant
as it is toxic to herbivores, insects and
pathogens.9

While the toxic and deterrent effects of
glucosinolate breakdown on herbivores
and pathogens have been extensively stud-
ied, the secondary responses that are

induced in the plant by I3C are only now
starting to be revealed. Recently we have
found that I3C effects plant growth and
development by modulating auxin signal-
ing in the root tips.10

In an attempt to reveal a bigger picture
of the effect of I3C on auxin signaling in
Arabidopsis roots, we carried out microar-
ray experiments that revealed the extensive
effect of I3C on the plant at the molecular
level in general, and more specifically, on
auxin responsive genes. We also used seed-
lings expressing auxin transporters
reporter genes to understand if the effect
of I3C is local or wide spread in the root.

The auxin-dependent interaction
between SCFTIR1 with the Aux/IAA pro-
teins and subsequent degradation of the
Aux/IAA transcriptional repressors regu-
lates the transcription of auxin-induced
genes.11-14 As we previously showed that
I3C inhibits the interaction of auxin with
TIR1,10 we hypothesized that auxin-regu-
lated genes would be misregulated follow-
ing I3C treatment. We carried out a
transcript-profiling experiment on roots
tips briefly exposed to I3C. Gene ontology
analysis showed that auxin-regulated genes
are preferentially misregulated (FDR D
7.00E-05) in roots one hour following
I3C treatment. The basal expression of at
least 32 genes (12.8%) from a set of 250
auxin regulated genes is misregulated fol-
lowing I3C treatment (Fig. 1).

The distribution of auxin in the root is
determined mainly by its transporters.
The PIN family of active auxin transport-
ers particularly have a major role in regu-
lating auxin distribution,15 and indeed
different PIN proteins have a cell-specific
polar localization [reviewed in16].

To understand if the effect of I3C on
auxin is unique to the root tips or more
wide spread, we checked if auxin transport
is also affected by I3C treatment. For this
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purpose we used seedlings expressing
PIN1:GFP or PIN2:GFP.17,18 Seedlings
were grown on MS medium for 5 to
6 days, treated with 200 mM I3C for
30 minutes, and GFP fluorescence was
monitored by confocal microscopy.

The PIN1 transporter directs auxin to
the root tips to create the auxin maxima.
Thus under normal conditions PIN1 is
localized at the basal side of the cells of
the vascular bundle and can also be found
in the epidermal and cortical cells that sur-
round the quiescent center19 (Fig. 2A).
Following the short I3C treatment, we
detected a reduced amount of PIN1 pro-
tein in the epidermis and cortex (Fig. 2A).
Quantification of the relative integrated
density of the GFP fluorescence in these
cells showed a significant decrease in the
GFP signal following the I3C treatment
(50% of the signal of the control plants,
P < 0.01; Student’s t test).

The PIN2 transporter is localized at the
basal side of the cortical cells and at the api-
cal side of the epidermal cells19 (Fig. 2B).
Following the short I3C treatment, we
found that even though the amount of the

PIN2 protein was not significantly changed
following the I3C treatment, its localization
was altered by the treatment. I3C treatment
caused the PIN2 proteins to be more dif-
fuse in the cells and less oriented to the cell
membranes (Fig. 2B).

Based on the Sachs canalization
hypothesis,20 it is plausible that the effect
of I3C on the PIN proteins is not direct.
According to this hypothesis, auxin signal-
ing can affect its own transport by regulat-
ing its transporters. Indeed a change in
auxin concentration in the root affects the
polarization of PIN1 and PIN2.21 Since
we have recently shown that I3C modu-
lates auxin signaling,10 this change might
cause the mislocalization of PIN2 and the
decrease in the amount of PIN1.
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Figure 2. I3C treatment affects auxin transporters. (A) Seedlings expressing PIN1:GFP were grown
on MS medium for 5 days, treated with 200 mM of I3C or with DMSO for 30 minutes, and imaged
using confocal microscopy (Zeiss LSM780, with a 40x water objective). Heat-maps represent GFP
density. GFP fluorescence was quantified using ImageJ software. (B) Seedlings expressing PIN2:GFP
were grown on MS medium for 6 days, treated with 200 mM of I3C or with DMSO for 30 minutes,
and imaged using confocal microscopy (Zeiss LSM780, with a 40x water objective). Cell walls were
stained using 0.005mg/ml propidium iodide. co D cortex, epD epidermis.

Figure 1. I3C treatment leads to misregulation
of auxin responsive genes. Heat map of the
expression of known auxin-responsive genes
following treatment with 500mM I3C for one
hour. RNA was extracted from root tips of 10-
day-old seedlings and hybridized to Affyme-
trix ATH1 chips. A 2 fold cutoff was used. The
list of auxin-responsive genes was extracted
according to gene ontology in Agrigo [22].
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