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It has been reported that salicylic acid
(SA) induces both immediate spike

and long lasting phases of oxidative burst
represented by the generation of reactive
oxygen species (ROS) such as superoxide
anion radical (O2

�¡). In general, in the
earlier phase of oxidative burst, apoplas-
tic peroxidase are likely involved and in
the late phase of the oxidative burst,
NADPH oxidase is likely involved. Key
signaling events connecting the 2 phases
of oxidative burst are calcium channel
activation and protein phosphorylation
events. To date, the known earliest sig-
naling event in response to exogenously
added SA is the cell wall peroxidase-cata-
lyzed generation of O2

�¡ in a hydrogen
peroxide (H2O2)-dependent manner.
However, this model is incomplete since
the source of the initially required H2O2

could not be explained. Based on the
recently proposed role for H2O2-inde-
pendent mechanism for ROS production
catalyzed by plant peroxidases (Kimura
et al., 2014, Frontiers in Plant Science),
we hereby propose a novel model for
plant peroxidase-catalyzed oxidative
burst fueled by SA.

Introduction

It has been reported that salicylic acid
(SA) induces both immediate and long
lasting phases of oxidative burst repre-
sented by generation of reactive oxygen
species (ROS), chiefly superoxide anion
radical (O2

�¡) and hydrogen peroxide
(H2O2).

1-3 Early studies have indicated
that SA is an active signal accompanying
oxidative burst by which development of

systemic acquired resistance (SAR) against
a wide range of pathogens is induced, as
reviewed in several articles by our group.2-
6 In 1990s, it has been proposed that SA
signaling paths leading to SAR require the
accumulation of ROS derived from
H2O2,

7 based on the observation that SA
binds and inhibits 2 types of H2O2-detox-
ifying enzymes, namely catalase8,9 and
ascorbate peroxidase.10 In addition to
these passive modes of ROS production
by SA, more active modes of SA action
involving extracellular peroxidase and
NADPH oxidase that directly generates
ROS in the presence of SA was reported
later.1,11,12 Interestingly, multiple roles
for ROS confirmed to date include (i)
activation SAR associated with systemic
propagation of the oxidative burst, (ii)
induction of intracellular signaling path-
way such as the further synthesis and
release of SA and activation of mitogen-
activated protein kinase (MAPK) cascade,
(iii) strengthening of cell wall through oxi-
dative cross-linking of glycoproteins, and
(iv) direct microbicidal actions.2,7

In general, in the earlier phase of oxida-
tive burst, apoplastic peroxidase are likely
involved and in the late phase of the oxi-
dative burst, NADPH oxidase activity is
likely involved.13 The key signaling events
connecting 2 phases of oxidative burst are
calcium channel activation and protein
phosphorylation events.6,11,13,14 Real-
time detections of both SA-induced ROS
generation (especially of O2

�¡) and SA-
induced increase in cytosolic calcium con-
centration were first performed by our
group by using Cypridina luciferin analog
(CLA)-treated and aequorin-expressing
model plant cells (tobacco BY-2 cells).11
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CLA is an O2
�¡-specific chemilumines-

cent probe and aequorin is a calcium
responsive luminescence protein. Treat-
ment of tobacco BY-2 cells with SA (sub-
mM) resulted in rapid and transient gen-
eration of O2

�¡ and in turn, O2
�¡ stimu-

lated the influx of extracellular Ca2C into
the cytosolic space in the tobacco cells in a
ROS scavenger-sensitive manner. Here,
we need to emphasize that SA-induced
extracellular O2

�¡ generation was shown
to be catalyzed by apoplastic free and cell
wall-bound peroxidases.11,15

To date, known earliest signaling event
in response to exogenously added SA is
the cell wall peroxidase-catalyzed genera-
tion of O2

�¡ in a H2O2-dependent man-
ner.11 Interestingly, peroxidase-mediated
O2

�¡ generation and secondarily induced
calcium signaling are important events in
the early signaling phase of SA-induced
rapid stomatal closure in Vicia faba16 and
Arabidopsis thaliana.17

Previously proposed formulae for SA-
dependent generation of O2

�¡ in
plants11,15 and model enzyme system
using horseradish peroxidase (HRP),18,19

suggest that the byproducts of peroxidase-
catalyzed oxidation of SA is involved in
generation of O2

�¡ as follows:

POXN 3ð Þ CH2O2 !CI 5ð Þ CH2O (1)

CI 5ð Þ C SA!CII 4ð Þ C SA� (2)

CII 4ð Þ C SA!POXN 3ð Þ C SA� (3)

2SA� C 2O2 ! 2SAC C 2O�¡
2 (4)

where POX N, CI, and CII stands for
native ferric form, Compound I and
Compound II of plant peroxidase, respec-
tively. SA� and SAC are free radical species
and the 2-electron oxidized intermediate
products derived from substrate SA,
respectively. The likely structures of SA�

and SAC were proposed by Gozzo.20 The
formal oxidation states of the heme within
the peroxidase enzyme are indicated by
numbers in the small brackets. As above,
SA is an e¡ donating substrate while
H2O2 is viewed as the e¡ acceptor. Then,
phenoxy radical species derived from SA
(shown as SA�) released thereafter may
react with molecular oxygen to form
O2

�¡. Since O2
�¡ is readily transformed

into H2O2 in biological systems, a single

cycle of SA-oxidizing peroxidase reactions
initiated by single unit of H2O2 results in
yield of 2 units of O2

�¡ which is equiva-
lent to 2 units of H2O2, and therefore, by
this way, ROS could be amplified.1,11

Electron spin resonance spectroscopic
analysis has shown that production of SA�

occurs in SA-treated plant cells and reac-
tion mixture of purified HRP.15 Since this
mechanism requires the initial input of
low level of H2O2 as one of starters, sup-
plementation of low dose H2O2 report-
edly enhances the SA-induced production
of O2

�¡ in cell suspension culture11 and
model enzyme system.15

However, above model is incomplete
since the source of the initially required
H2O2 could not be explained. Here, we
propose a novel model for plant peroxi-
dase-catalyzed oxidative burst fueled by
SA.

H2O2-independent ROS production
When plants are threaten by pathogens

or recognized the molecules derived from
microorganisms, extracellular space alkali-
zation is often induced, under which pH-
dependent extracellular oxidative burst
involving peroxidase reportedly proceeds,
especially at the site of microbial chal-
lenge. However, direct stimulus involved
in activation of peroxidase-catalyzed oxi-
dative burst has not been fully understood.
We have recently studied a likely role for
free ferrous ion (Fe2C) in reduction of fer-
ric native enzyme of HRP (with heme at
FeIII) into ferrous enzyme intermediate
(FeII) which H2O2-independently produ-
ces O2

�¡ via mechanism involving Com-
pound III (FeIII-O2

�¡), especially under
alkaline condition, thus, possibly contrib-
uting to the plant mechanism combatting
against the microbial invasion.21 This
H2O2-independent cycle of enzyme is
now referred to as oxygenase-like cycle as
molecular oxygen participates and binds
to the enzyme. In addition to Fe2C,
indole-3-acetic acid (IAA) is an active
inducer of O2

�¡ production in H2O2-
independent manner1,22-24 possibly
involving molecular oxygen25 to form
Compound III.26

Based on the views that formation of
enzyme-substrate complexes such as
[POX-IAA-O2] equivalent to Compound
III results in release of O2

�¡,24 medical

application of HRP-labeled antibodies
and IAA has been proposed as a novel
O2

�¡-generating system for cancer cell-
targeted and controlled cell death induc-
tion, by designing the HRP-conjugated
immuno-labeling of cancer-related mole-
cules or expression of recombinant HRP
in mammalian cells.27-30

Furthermore, we have previously pro-
posed our view that nitric oxide (NO) is
also one of candidate chemicals for reduc-
ing native plant peroxidase into ferrous
intermediate to initiate the oxygenase-like
cycle of plant peroxidases.2 As summa-
rized in Figure 1A, after completion of
the oxygenase-like cycle, O2

�¡ which
could be converted to H2O2 via dispro-
portionation can be released, suggesting
that H2O2-dependent cycle of peroxidase
reaction can be concomitantly achieved
depending on the types and combination
of the substrates or chemicals added to the
system (Fig. 1B).

Algebraic and graphical handling of
enzyme behaviors

Graphs presented in Figure 1B are
summary of redox state shifts in plant per-
oxidase upon treatment with various sub-
strates or chemicals. These theoretical
graph models are based on our previous
bio-computational approach for algebrai-
cally expressing the cyclic behavior (redox
cycling) of HRP among native enzyme
and its 2 electron-oxidized and single elec-
tron-oxidized intermediates (Compounds
I and II) as a cyclic additive group Z3 D
{C0, C2, C1} D {C0, 1C2, 2C2} D {0, 2,
1}, and a cyclic multiplicative group Z3

*

D {C1, C2} D {C1, C2
1} D {1, 2}, with C2

as the common generator (generalized
inputs of e-donating and e-accepting
substrates); by viewing that the system
is simply consisted of “states” and
“transitions.”31

Each of small graphs in Figure 1B is
consisted of 5 vertices and directed edges
corresponding to the enzyme intermedi-
ates and their transitions, respectively.
Red and blue edges represent the steps
with and without (direct and/or concomi-
tant) release of O2

�¡, respectively. Final
state of the enzyme following various
chemical treatments are highlighted with
red-colored circles. Chemicals listed are
H2O2, typical peroxidase substrates (AH)
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such as phenolics, Na
ditionate (an active reduc-
tant with deoxygenation
effect), nitric oxide (NO),
Fe2C, IAA, and SA.

Additions of Fe2C to
HRP21 and NO to soybean
peroxidase (SBP),32 report-
edly result in arrest of the
enzymes at Compound II
suggesting that these
enzymes enter the conven-
tional peroxidase cycle after
oxygenation cycle. Upon
addition of peroxidase sub-
strates such as phenolics or
amines, the peroxidase
cycle is completed and
native enzyme was shown
to be regenerated.32 In case
of IAA, multiple roles are
played by IAA, primarily as
an enzyme-reducing agent
converting native enzyme
to ferrous enzyme, and sec-
ondarily as a conventional
peroxidase substrate being
oxidized by compound I
and II.24 Thus, both reac-
tion cycles are completed
eventually leaving native
enzyme. By analogy to the
roles of NO, Fe2C and
IAA, modes of SA actions
leading to release of O2

�¡

catalyzed by plant peroxi-
dase must be revised.

Proposed model
Among three potential

inducers of O2
�¡ (IAA, SA,

Fe2C), only Fe2C induced
an intense and long-lasting
peak of CLA-CL in both
HRP21 and SBP (unpub-
lished results). These data
might be reflecting the facts
that both IAA and SA pres-
ent at excess level behave as
suicide substrates by target-
ing Compound III
(Fig. 1A).19,33

SA has affinity for vari-
ous forms of heme proteins
such as native form of cata-
lase8,9 and ascorbate

Figure 1. Mechanism of peroxidase-catalyzed ROS production. (A) Hourglass model which summarizes the inter-con-
versions among active and inactive forms of peroxidases involved in ROS generation. This model emphasizes that 2
distinct cycles are initiated by conversion of native peroxidase with e¡ acceptor via conventional peroxidase cycle or
with e¡ donor via oxygenase-like cycle. (B) Graph theoretical summary of redox state shifts in plant peroxidase upon
treatment with various substrates or chemicals. Each of small graphs is consisted with 5 vertices corresponding to the
enzyme intermediates at different redox states, and directed edges (maximally 6 edges allowed). The formal oxidation
states of the heme within the enzyme are indicated by numbers in the circles (vertices). Directed edges (arrows) indi-
cate the transitions of the redox states. Red and blue edges represent the steps with and without direct and/or con-
comitant release of O2

�¡. Final states of the enzyme following various chemical treatments are highlighted with red
circle. Graphs in (B) were made based on the documented knowledge (Kawano, 2003a, 2003b, 2013; Kawano et al.,
1998, 2001, 2002a, 2002b, 2004; Kawano and Bouteau, 2013a; Kawano and Muto, 2000; Kimura et al., 2014; Takayama
et al., 2012). (C) Expanded model for SA-induced oxidative burst, based on the relay of H2O2-independnet and H2O2-
dependent peroxidase actions. Series of reactions were numbered from (1) to (8).

www.tandfonline.com e1000145-3Plant Signaling & Behavior



peroxidase,15 Compound II of HRP18 and
SBP,32 and Compound III of HRP.19 We
can expect that SA may interact with
native form of plant peroxidases. In fact,
such preliminary data on the SA-depen-
dent stimulation of native HRP21 and
SBP32 leading to generation of O2

�¡ have
been shown in our previous articles. How-
ever, when we have reported such data, it
was early for us to clarify our working
hypothesis on the mode of SA action in
the H2O2-independent peroxidase action
leading to generation of ROS.

After publication of recent work by
Kimura et al.,21 we examined and con-
firmed that SA actually induces the gener-
ation of O2

�¡ in the presence of model
enzymes such as HRP and SBP, even in
the absence of H2O2 supplementation.
Here, typical data obtained with SBP are
shown (Fig. 2). The data presented here
simply but clearly supported our view that
plant peroxidases catalyze the SA-depen-
dent O2

�¡ generation in H2O2-indepen-
dent manner. Furthermore, comparison
of the actions of SA and IAA at neutral
and alkaline condition (Fig. 2) suggests
that there is possibility that SA but not
IAA contributes to the alkaline-responsive
oxidative burst in plant defense mecha-
nisms associated with microbe-associated
molecular patterns, by involving the extra-
cellular peroxidases as proposed by the
group of Bolwell.34-37
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