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Abstract

This paper presents a new methodology for automatically learning an optimal neurostimulation 

strategy for the treatment of epilepsy. The technical challenge is to automatically modulate 

neurostimulation parameters, as a function of the observed EEG signal, so as to minimize the 

frequency and duration of seizures. The methodology leverages recent techniques from the 

machine learning literature, in particular the reinforcement learning paradigm, to formalize this 

optimization problem. We present an algorithm which is able to automatically learn an adaptive 

neurostimulation strategy directly from labeled training data acquired from animal brain tissues. 

Our results suggest that this methodology can be used to automatically find a stimulation strategy 

which effectively reduces the incidence of seizures, while also minimizing the amount of 

stimulation applied. This work highlights the crucial role that modern machine learning techniques 

can play in the optimization of treatment strategies for patients with chronic disorders such as 

epilepsy.
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1. Introduction

Epilepsy is one of the most common disorders of the nervous system, afflicting 

approximately 0.6% of the world’s population. Currently, anti-convulsant drug therapies are 

the most popular approach to alleviate seizures, but about one third of epileptic patients have 

seizures that cannot be controlled by medication, highlighting the need for novel therapeutic 

strategies.35 Electrical stimulation procedures have recently emerged as a promising 

alternative. Implantable electrical stimulation devices are now an important treatment option 

for patients who do not respond to anti-epileptic medication. Both direct deep brain 

stimulation45,47,30,7,44,43 and vagus nerve stimulation18,42 have demonstrated the potential to 

shorten or even prevent seizures. The effect has also been shown in vitro.4,10 In all cases, the 

technology is similar: a small pacemaker-like device is implanted in the patient and sends 

electrical stimulation to the brain. Given this technology, there are many ways in which 

stimulation can be applied. For example one can vary the amplitude, duration, or frequency 

of the electrical stimulation. But because little is known about the optimal stimulation 

strategy, the most common approach is to hand-tune settings of these parameters through 

trial-and-error.

The main contribution of this paper is to propose a methodology to automatically learn a 

closed-loop stimulation strategy from experimental data. There are significant advantages to 

this approach. Closed-loop strategies are in general more powerful than open-loop ones 

because sensory feedback (in this case, field potential recordings) is integrated into the 

stimulation strategy. The stimulation pattern can therefore respond in real-time to the 

patient’s brain activity. In addition, because the strategy is optimized automatically, it can 

adapt to each individual, and over time. The long-term goal of this work is to build a device 

which, through an adaptive control system, can respond to a patient’s changing condition 

over time without direct operator intervention.

The mathematical framework we investigate to optimize stimulation strategies is known, in 

the area of computer science, as reinforcement learning.37 This framework is specifically 

designed to address the problem of optimizing action sequences in dynamic and stochastic 

systems. Applying reinforcement learning in the context of deep brain stimulation gives us a 

mathematical framework to explicitly maximize the effectiveness of stimulation, while 

simultaneously minimizing the overall amount of stimulation applied thus reducing cell 

damage and preserving cognitive and neurological functions. Reinforcement learning is 

particularly well suited to the problem at hand because, unlike traditional control theory, it 

does not require a detailed mathematical description of the relevant neural circuitry in order 

to optimize a stimulation strategy. Instead, it learns a control strategy through direct 

experience, which is advantageous given that the brain is extremely challenging to model.

The idea of applying reinforcement learning to optimize deep-brain stimulation strategies 

has not been sufficiently explored previously. It stands in contrast to most recent efforts by 

researchers to design neurostimulation devices which trigger stimulation in response to an 

automated seizure detection algorithm.24 An important feature of the reinforcement learning 

paradigm is that it does not necessarily rely on having accurate prediction or detection of 

PINEAU et al. Page 2

Int J Neural Syst. Author manuscript; available in PMC 2016 May 27.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



seizures. This is a significant advantage given that developing accurate methods for seizure 

prediction is proving to be extremely challenging and few conclusive results exist.28

While the long-term goal is to develop an adaptive system for therapeutic purposes, in this 

paper we focus on applying reinforcement learning to optimize deep-brain stimulation 

strategies using data collected from an in vitro model of epilepsy.4,10 Animal models of 

epilepsy have been used extensively to analyze the biological mechanisms underlying 

epilepsy, as well as to study the effect of various non-adaptive stimulation strategies. An 

excellent review of the latter is provided by Durand and Bikson.11

The paper is organized as follows. Section 2 describes the particular animal model used as 

well as our data collection and analysis protocol. Section 3 contains a technical presentation 

of the reinforcement learning algorithm. Section 4 describes how the reinforcement learning 

algorithm can be applied to the problem of adaptive neurostimulation. Finally Section 5 

analyzes the application of the reinforcement learning framework to select optimal strategies 

using pre-recorded data from an in vitro model of epileptiform behavior. Our results 

demonstrate that an adaptive strategy can be learned from such data. Analysis of the learned 

adaptive strategy on pre-recorded data show a reduction in the duration of seizures 

(compared to control slices), as well as a reduction in the total amount of stimulation applied 

compared to periodic pacing strategies. We conclude the paper with a discussion of longer 

term research questions that arise as we move from the animal model to treating human 

patients.

2. Model and Methods

Epilepsy is a dynamical disease, typically characterized by the sudden occurrence of 

hypersynchronous discharges that involve multiple neuronal networks. Seizure activity can 

be induced in various ways, for example, by elevating extracellular potassium (K+), which 

has been done in both in vivo and in vitro preparations.39

We also know that ictal discharges can be reduced and eventually abolished by activating 

hippocampal outputs, a procedure that is achieved by delivering repetitive electrical stimuli. 

For example we have found that in pilocarpine-treated epileptic rat slices, low frequency 

(0.1–1.0 Hz) repetitive stimuli delivered in subiculum can reduce, but not halt, 4-

aminopyridine-induced ictal discharges.9 Overall this evidence suggests that electrical 

stimulation may interrupt the synchronous activity of neuronal populations.

2.1. Electrophysiological recordings

The dataset in our experiments consists of field potential recordings of seizure-like activity 

in rat brain slices maintained in vitro. A series of four recordings (each from a different 

slice, coming from a different animal) were made using a two-dimensional hippocampus-

entorhinal cortex (EC) slice, as depicted in Fig. 1. Slices were obtained from male adult 

Sprague-Dawley rats (250–350 g) following standard procedures as previously described10 

and were maintained in an interface tissue chamber, where they were continuously 

superfused at 1 ml/min with carbogenated (O2 95%, CO2 5%) artificial cerebrospinal fluid 

containing the convulsant drug 4-aminopyridine.3 Recording microelectrodes were placed in 
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the deep layers of the EC. Recordings were sampled at a rate of 5 KHz, however for the 

purposes of our analysis, all recordings were filtered, to roll off frequencies above 100 Hz. 

In total, our analysis uses 7 hours of recorded data (roughly equally divided between the four 

slices).

Electrical stimulation was applied to the subiculum using low-frequency single-pulse 

patterns with varied timing. Each slice was subject to a stimulation protocol consisting of 

seven phases of stimulation patterns. Each sequence began with a control period of 

recording with no stimulation. Then, stimulation was applied for several minutes at a fixed 

low-frequency (1.0 Hz). Stimulation was then turned off and the slice was allowed to return 

to baseline for a period of several minutes. This process was repeated with stimulation at 

different rates (0.5 Hz and 2.0 Hz), always interleaving, between each stimulation phase, a 

prolonged recovery period during which no stimulation was performed. Stimulation 

intensity (100–250 μA biphasic pulse-wave width 100 μs) remained fixed throughout the 

experiments. Slices which did not exhibit good suppression at 1.0 Hz were excluded from 

the dataset because presumably presenting with weak connection between the two regions of 

interest, i.e. the EC and the subiculum.

Figure 2 shows a sample trace recorded from the EC while stimulating the subiculum at 0.5 

Hz. An ictal event starts around t = 20 sec. The stimulation artifacts are also visible in this 

recording. In general, the actions may or may not be visible in the EEG signal, depending on 

the sample rate and relative electrode placement.

2.2. Signal processing

Each trace was divided into a set of overlapping frames of 65536 samples (approximately 13 

seconds) in length, with each frame beginning 8192 samples after the previous frame. Each 

frame is smoothed with a Hann window and normalized, and the mean, range, and energy of 

the signal is calculated. A discrete fast Fourier transform is used to extract spectral 

magnitude features from the frame. Within each frame, the smoothing, normalization, and 

Fourier transform is repeated for the final half frame (32768 samples), quarter frame (16384 

samples), eighth frame (8192 samples), and sixteenth frame (4096 samples). Low frequency 

components are extracted from the full-frame spectrum, and high frequency components 

from the subframe spectra. These features are combined with the mean, range, and energy of 

each subframe to yield a 114-dimensional continuous feature vector. Many other features 

could be extracted, for example those proposed in the literature on seizure prediction and on 

EEG analysis.28,1,31 In fact the question of feature selection is a challenging statistical 

problem, which will be the subject of future investigations. The other information which 

could be included is the time elapsed since beginning of the pulse train.a We do not include 

this information in the current implementation, because we assume that all recordings we 

use feature periodic stimulation that has been applied for a sufficiently long time to ignore 

edge effects.

aPresumably, applying a single pulse is not the same as applying a sequence of 10, or 100, or more; the system adapts to trains and 
responds differently depending on whether the train is of long or short duration.
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2.3. Data labeling

The adaptive control algorithm described in the following section requires a number of 

traces with hand-annotated state information, for automatically learning the optimal 

stimulation strategy. Therefore all recorded traces were labeled by hand, indicating on each 

frame whether it features ictal or normal activity, as well as which stimulation protocol was 

used at the time. In the future, this step could be performed by an automatic seizure 

detection algorithm.

3. Adaptive Control Algorithm

Questions of prediction and control in dynamical systems have a long history in engineering 

and computer science. A variety of computational methods from these fields have been 

proposed to automatically detect or predict epileptic seizures from EEG recordings.
20,25,34,26,15,36 But much less effort has been spent on applying equally principled 

mathematical tools to the question of optimizing stimulation strategies. In vitro experiments 

have investigated the application of electrical stimulation based on periodic pacing,3,21,23 

nonlinear control38 and feedback control.46,16 However most of these methods are not 

automatic (in the sense that the strategy is learned directly from data), and some are neither 

adaptive (in the sense that the strategy evolves over time), nor optimal (in the sense that it 

minimizes a cost function).

More recently, models based on chaotic oscillator networks have been proposed, as a means 

of controlling epileptic seizures.40,41,8 These models aim to minimize spatial 

synchronization via a feedback mechanism. These methods have the advantage that they 

require no training period. The results so far are limited to theoretical models of epilepsy, 

and their efficacy with animal models is not known. Nonetheless the results with the 

theoretical models confirm that open-loop periodic stimulation (as currently used in clinical 

trials) can be inefficient at achieving desynchronization, compared to a closed-loop feedback 

control strategy which can require much less stimulation power. Furthermore these methods 

generally require that the parameters of the control strategy (e.g. control gain, feedback 

threshold) be set by hand, or through trial-and-error. One of the advantages of the method 

we propose in this paper is that it uses automated learning techniques to gradually optimize 

the setting of the control parameters as it acquires data.

3.1. Reinforcement learning

Reinforcement learning is one of the leading techniques in computer science and robotics for 

automatically learning optimal control strategies in dynamical systems. The technique was 

originally inspired by the trial-and-error learning studied in the psychology of animal 

learning (thus the term “learning”). In this setting, good actions by the animal are positively 

reinforced and poor actions are negatively reinforced (thus the term “reinforcement”). 

Reinforcement learning was formalized in computer science and operations research by 

researchers interested in sequential decision-making for artificial intelligence and robotics, 

where there is a need to estimate the usefulness of taking sequences of actions in evolving, 

time varying system.22,37 It is especially useful in situations in which the agent’s 
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environment is stochastic, and for poorly-modeled problem domains in which the optimal 

control strategy is not obvious.

Recent developments in reinforcement learning have brought about a wealth of new 

algorithmic techniques, which can be used to automatically learn good action strategies 

directly from experimental data, yet the application of reinforcement learning to medical 

treatment design is very recent.19,32 In this section, we describe how reinforcement learning 

can be used to directly optimize stimulation patterns of a closed-loop stimulation device, 

without necessarily requiring accurate seizure prediction.

Informally, the learning problem can be formulated as follows: at every moment in time, 

given some information about what happened to the signal previously (our state), we need to 

decide which stimulation action we should choose (if any) so as to minimize seizures now 
and in the future.

Considering the problem more formally, we assume the underlying dynamical system can be 

modeled as a Markov decision process (MDP).5,33 The MDP model is defined by a set of 
states, , describing the space of observable variables, and a set of actions, , describing 

the available input set. In our case, the states are defined by the postprocessed EEG 

recordings (i.e. the feature vector described in Sec. 2.2). The (discrete) set of actions 

corresponds to the different stimulation frequencies applied during data collection (Sec. 2.1).

Upon performing an action a ∈  in state s, the learning agent receives a scalar reward, r = 

R(s, a). This reward serves as a reinforcement signal to the agent, indicating which actions 

are good (=high reward) and which actions are to be avoided (=low reward). The reward can 

be positive or negative, but must be finite.

After an action is performed, the environment moves to a new state s′ according to some 

conditional probability distribution, P (s′|s, a). Time is modeled as a series of discrete 

steps with 0 ≤ t ≤ T, corresponding to the interval at which a decision must be made 

regarding the choice of action. At every time step, the state is assumed to be a sufficient 

statistic for the past sensor observations; this is the so-called Markov assumption.

The primary objective is to find a policy π :  →  that maps each state to an action such 

as to maximize the expected total reward over some time horizon:

(1)

Here γ ∈ (0, 1] is a discount factor for future rewards (it can be thought of as the agent’s 

probability of surviving to the next time step). For T = ∞, γ must be less than one to 

preclude an infinite total reward. For finite T we can allow γ = 1.

Given this formulation, we can write the value of a given state if the agent follows a fixed 

policy π as:
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(2)

We define the optimal value for a state V*(s) to be:

(3)

which we can expand to the recursive equation:

(4)

This equation is often referred to as the value function. Here the value of a state is the 

maximum of the reward possible in the current state (s) plus the expected value over the 

successor states (s′), presuming that the agent behaves optimally at every subsequent time 

step. The corresponding optimal policy π*(s) is defined as:

(5)

It is also sometimes useful to express the value of a state-action pair, which defines the 

expected long-term reward of applying action a when in state s:

(6)

This is sometimes referred to as the Q-function. From this, we can directly compute the 

optimum policy:

(7)

In many real-world problems, the transition probabilities are not known in advance, thus it is 

not possible to solve the above equations exactly. However, if enough empirical data is 

collected, for example, using the protocol described in Sec. 2, it is possible to treat this as a 

set of training trajectories to estimate the Q-function using the Fitted Q-Iteration algorithm.
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3.2. Fitted Q-iteration algorithm

To apply Fitted Q-Iteration, it is necessary to begin by pre-processing the trajectories such 

that the state, action and reward information are extracted in a sequence of atomic events. 

This produces a set ℱ of 4-tuples of the form 〈st, at, rt, st+1〉, where each tuple is an example 

of the one-step transition dynamics of the system. This forms the input set for the Fitted Q-

Iteration algorithm. The core of this algorithm is simple. It consists of repeatedly applying 

the following recurrence relation:

(8)

In cases where the set of possible states can be finitely enumerated, this sequence can 

converge to the optimal Q function (Eq. (6)) under some conditions.33 In cases where the 

state space is very large (or continuous), it is necessary to assume a functional form for Q̂
k, 

and use a regression algorithm to learn the mapping Q : S ×A → ℜ. Though-out our 

experiments, the term Q̂
k is approximated using Extremely Randomized Tree Regression.

14,12 This method has been shown to be effective in settings with large numbers of weak 

variables and substantial noise, as well as being computationally efficient.

4. Adaptive Neurostimulation

This section describes how the reinforcement learning algorithm outlined above can be 

applied to automatically learn an optimal neurostimulation policy for the treatment of 

epilepsy.

4.1. Reinforcement learning problem definition

Our state space  is constructed such that each element st is a vector of 114 continuous 

dimensions, summarizing past EEG activity. Our action set  consists of four options: no 

stimulation, and stimulation at one of the fixed frequencies of 0.5, 1.0, or 2.0 Hz. Each 

frame is assigned an action at based on the labeling information (Sec. 2.3).

We define a reward function

(9)

to penalize both stimulation and seizure occurrences. We assume Rseizure(st)={−1 if seizure 

is occurring at time t, 0 otherwise} and Rstim(at)={−1 if stimulation is applied at time t, 0 

otherwise}. This reward function requires a quantitative trade-off between the penalty for 

occurrence of a seizure, and the penalty for applying stimulation. This trade-off is defined by 

the parameter α. In most experiments described below, we assume that a seizure is 

substantially more costly than delivering a single stimulation event (unless mentioned 

otherwise, we assume α = 0.04). Changing this parameter may affect the learned stimulation 

strategy; we investigate this further in the experiments presented below.
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Each element of the training set ℱ is constructed by concatenating the experience-tuples 〈st, 
at, rt, st+1〉.

We assume a discrete time step of 1.6 seconds (= 8192 samples). This is sufficient to 

compute our input features in real time, yet is sufficiently short to allow flexibility in the 

learned policy. For all of our experiments, the discount factor is γ = 0.95; this is a common 

choice in the reinforcement learning literature.

4.2. Learning the regression function

The algorithmic approach for the Extremely Randomized Tree regression is analogous to 

that proposed by Ernst et al.13 (the reader is referred to that publication for details of what 

we outline next). A few of the parameter choices are worth discussing briefly. Throughout 

the experiments presented below we assume a set of M = 70 regression trees for each action. 

The estimate Q̂(s, a) is obtained by averaging the value returned by each of these trees at the 

current state s. We repeat this individually for each action, and choose the action with 

maximal value. The number of candidate tests considered before expanding a node (defined 

by the parameter K) is set to 40. Finally, the minimum number of elements at each leaf 

(parameter nmin) is set to 5. We did not extensively tune these parameters; this could be done 

through a cross-validation procedure. In general we found that performance of the algorithm 

was quite robust to these parameter choices (within an order of magnitude).

Throughout an initial learning phase (lasting 30 iterations), the Fitted Q-Iteration algorithm 

is applied over the full set of trees and we allow the set of trees to be rebuilt entirely at each 

iteration. After this first phase, the structure of the trees is fixed and in subsequent iterations 

only the value at each node is allowed to vary. This second phase continues until the 

Bellman error falls below a given threshold.b This two-phase learning is common to ensure 

proper convergence.

The output of this learning phase is the regression function Q̂(s, a), defined for any state-

action pair (s, a). This function estimates the expected long-term cumulative reward that can 

be obtained by applying any action a in any state s. The optimal action choice for each state 

can be extracted using Eq. (7). During deployment of the neurostimulation system, it is 

sufficient to store the Q̂(s, a) in memory, and repeatedly apply Eq. (7) as the state of the 

system evolves, so that the best possible neurostimulation action is selected at every time 

step. Thus we get an online control strategy which adaptively changes in response to 

changes in the dynamics of the system.

It is worth noting that other types of regression function could be used to fit the Q-function. 

We experimented also with linear regression, as well as neural networks, but found the 

random tree approach to yield better empirical performance.17

4.3. Analysis method

Finally, we turn to the question of validating the learned adaptive neurostimulation strategy. 

The preferred method for evaluating the performance of the strategy learned by 

bThe Bellman error is defined to be |Q̂k − Q̂k−1|.
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reinforcement learning is to deploy it directly in vitro, and measure seizure incidence and 

duration, compared to other (non-adaptive) strategies of stimulation. However, this approach 

requires substantial time and resources, thus we begin our analysis by looking at 

performance metrics over the pre-recorded data.

Instead we consider quantitative measures which can be estimated using a hold-out test set, 

which is separate from our training data. This is a common technique in machine learning, 

whereby part of the recorded data is used to learn the regression function, and the remaining 

data is used to quantify the error in the estimate. Our original data set includes recordings 

from four animal slices. Therefore during testing we perform four-fold cross-validation, 

whereby the Q-function is estimated using data from three different slices, and we then 

measure performance on the fourth slice. We then repeat with all slice permutations. This 

means that data in the test set comes from a different animal than the training data. It is well-

documented that epileptic seizures vary greatly between animals (and individuals), therefore 

this is an important test for the generalizability of our approach. In future work, an 

individual Q-function could be learned for each patient (or slice), using the algorithm 

outlined above, thereby providing a neurostimulation strategy that is specific to each 

individual.

There is another subtle difficulty in using a test set to validate a target policy (e.g. the 

learned optimal policy, π*). That is the fact that the test set was collected using a behavior 
policy, π, which is different from the target policy. We cannot simply compute a score over 

the test set. Instead, we create a surrogate data set for the target policy by using rejection 

sampling to select only those segments of the test set which are consistent with the target 

policy. Recall that the test set is divided into single-step episodes: 〈si, ai, ri, si+1〉. We define 

an indicator function:

(10)

to flag experience-tuples where the action in the test set (ai) matches the target policy (π(si)). 

We exclude all experience-tuples that do not match the target policy. Using this indicator 

function, we consider two different scores to quantify the performance of the adaptive 

neurostimulation strategy.

The first score is an estimated proportion of seizure steps when following a particular 

strategy π. Again, we compare the action selected by the policy and the action in the test 

trace for each experience-tuple from the test trace, and count the number of states which 

were labeled as “seizure”:

(11)
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where Iseizure(si) indicates whether state si was hand-labeled as a seizure (1 if yes, 0 if no). 

Recall that data instances are defined on a 1.6-second window interval.

The second score calculates the estimated value function (i.e. discounted sum of rewards). 

Formally,

(12)

where Q̂ is the estimated Q-function calculated by the regression algorithm (Eq. (8)). For 

fixed stimulation strategies, which were in fact deployed during data collection, we use the 

empirical return (Eq. (1)) instead. This second score is considered because it reflects the 

expected long-term accumulated reward. Since our reward function is a linear combination 

of the amount of both stimulation and seizure, this is an aggregate measure of the 

optimization over these two components.

5. Results

Many in vitro studies have investigated effectiveness of low-frequency periodic pacing for 

suppressing ictal events. For the particular animal model we are considering, the most 

effective fixed stimulation frequency was identified to be 1.0–2.0 Hz.4,10 In this section, we 

evaluate the ability of our reinforcement learning framework to automatically acquire an 

adaptive strategy from the in vitro recordings. We analyze the behavior of the adaptive 

strategy in comparison with non-adaptive periodic stimulation strategies at low-frequencies 

as well as a control (no stimulation) strategy.

We first report on results characterizing the performance of the learning algorithm used to 

acquire the adaptive strategy. All error bars correspond to 1 standard error. In the case of the 

control and periodic strategies, this is due to variance between the four slices in the dataset. 

In the case of the adaptive strategy, the standard error includes both slice-to-slice variance 

and variance in the randomized tree regression algorithm.

Figure 3 compares the proportion of states in which epileptiform behavior is observed under 

each of the policies. This corresponds to the score calculated in Eq. (11). We first note that 

under control conditions, slices in the dataset exhibit a larger rate of ictal events than under 

any of the stimulation strategies. Next we observe that periodic pacing at either 1 Hz or 2 Hz 

achieves near-complete suppression, and that performance is slightly less effective when 

stimulating at 0.5 Hz. Finally, we note that the adaptive strategy is able to achieve similar 

performance as the 0.5 Hz strategy in terms of seizure suppression.

Figure 4 shows the estimated long-term return for each of the strategies considered. This 

corresponds to the score calculated in Eq. (11), which is an empirical approximation of Eq. 

(1). The results here show a better return for the adaptive policy, compared to the periodic 

stimulation and control cases. Given that all strategies (except Control) achieve similar 

suppression efficacy, it seems reasonable to conclude that this return gain is primarily 
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achieved through a reduction of the stimulation in the adaptive strategy (compared to the 

periodic strategies).

Figure 5 supports this by showing the proportion of time during which stimulation is turned 

on under each of the conditions. We also show how this proportion changes as we re-train 

the adaptive strategy for different values of the parameter penalizing each stimulation action 

(α in Eq. (9)). As expected, when the penalty for stimulating is increased, the amount of 

stimulation is automatically reduced. There is substantial variation here between the 

different slices; in some slices some amount of stimulation would be necessary throughout 

most of the life of the slice to achieve reasonable suppression; in other slices it is possible to 

turn off any stimulation for prolonged periods of time.

Lastly, it is worth considering how changes in the reward function impact the suppression 

efficacy. As shown in Fig. 6, the effect seems to be quite minimal.

We conclude our empirical evaluation by looking at some sample traces illustrating the 

behavior of the adaptive stimulation strategy in real-time. In this case, a new hippocampus-

EC slice was prepared as described in the Methods section. The slice was subject to a 

stimulation protocol consisting of four phases. First, we applied a period of recording with 

no stimulation (control). Then, stimulation was applied at 1.0 Hz for at least 3 times the 

mean observed interval of occurrence of ictal discharges. The slice was then allowed to 

recover for several minutes until epileptiform activity returned to baseline. Finally we 

applied the same adaptive stimulation protocol as evaluated throughout this section (with 

α=0.04). All other parameters were fixed as described in Secs. 2–4.

Figure 7 shows a typical excerpt from each of the recording conditions (control, 1.0 Hz 

stimulation, and two instances of adaptive stimulation, all taken from the same slice). The 

four phases were time-aligned to offer a better comparison. In Fig. 7(a) we see an ictal event 

typical of this in vitro model. Under control (no stimulation) conditions, such events usually 

appear every 150–200 seconds. As expected, the event is preceded by a few inter-ictal 

spikes. The post-ictal period is also quite characteristic of this acute in vitro model. In Fig. 

7(b) we see typical behavior under 1.0 Hz stimulation. In this case, while there appears to be 

an ictal onset, it is of short duration and does not lead to a full ictal event. In Fig. 7(c) we see 

the effects of the adaptive strategy. First, we note that through much of the recording, the 

adaptive strategy maintains a slow pace of stimulation (roughly 0.5 Hz), which it interleaves 

with faster stimulation (roughly 2.0 Hz) following an ictal onset. The adaptive strategy is 

able to suppress the ictal event. It is possible this event would have been suppressed with 

similar effectiveness using only periodic (0.5 Hz) stimulation. Given the high degree of 

effectiveness of the periodic strategies on this particular model (as shown in Fig. 3), it would 

be surprising to see an adaptive strategy do much better in terms of suppression of ictal 

events. The analysis in Fig. 5 rather suggests that most of the gains to be made in this 

particular in vitro acute model of epilepsy are in terms of reducing the amount of stimulation 

applied. The last trace, shown in Fig. 7(d), gives evidence in support of this. Here we see the 

same low-frequency (0.5 Hz) pacing being applied through an initial 35 seconds, followed 

by a period of faster stimulation (2.0 Hz) in reaction to an ictal onset. Once the seizure is 

successfully suppressed, the adaptive strategy chooses not to apply any stimulation for a 
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prolonged period. It is not yet known what are the key characteristics of the signal that 

caused the difference in behavior between the two adaptive traces; this needs to be further 

investigated.

Considering Fig. 7 again, it seems that the primary benefit of the adaptive strategy in this 

particular animal model is to reduce the overall number of pulses (and not so much improve 

seizure suppression, which is already achieved through period pulsing.) This raises the 

following question: if the objective is really is to reduce the number of pulses, couldn’t one 

use a simple feedback system to trigger stimulation upon seizure detection? Clearly, such a 

comparison would be very interesting. In the absence of such data, we remain skeptical that 

a detect-then-stimulate approach would perform as well as the reinforcement learning 

method, in terms of achieving an optimal balance between seizure suppression and low 

number of pulses. For this in vitro model in particular, current results suggest that delivering 

pulses between seizures has an important effect on suppression effectiveness, which would 

not necessarily be achieved with a detect-then-stimulate approach. It remains an interesting 

research question to verify this experimentally.

6. Discussion

The main contribution of this paper is to propose a new methodology for automatically 

learning adaptive neurostimulation strategies for the treatment of epilepsy. We have 

demonstrated that an adaptive stimulation policy can be learned through pre-recorded data of 

low-frequency single-pulse fixed stimulation, using a reinforcement learning methodology. 

Analysis of the learned adaptive strategy using pre-recorded data indicates a substantial 

reduction in the total amount of stimulation applied, compared to fixed stimulation 

strategies. Our analysis also indicates that the expected incidence of seizure under the 

adaptive policy is similar to that under periodic pacing strategies. It is worth emphasizing 

that suppression efficacy in this in vitro model is very high; in cases where suppression is 

not as effective, it may be possible for the adaptive strategy to outperform the periodic 

strategies in this respect. We have reported such results when using in vitro stimulation in 

the amygdala (with microelectrode recording in the perirhinal cortex).17

The results presented above suggest that reinforcement learning is a promising methodology 

for learning adaptive stimulation strategies online. One of the key advantages of this 

methodology is its ability to trade-off between minimizing incidence (and/or duration) of 

seizures, and the quantity of stimulation delivered.

Most of the evaluation presented on this paper is based on pre-recorded epileptiform 

behavior. Thus it is too early to draw conclusions regarding effectiveness of deploying this 

method in real-time. Evidence from the few experiments we were able to conduct in real-

time show good correspondence between the policy’s performance on pre-recorded data, and 

in the online setting. The results also show that the adaptive strategy does exploit 

information about the signal to determine when to increase (or turn off) stimulation. A full 

characterization of the adaptive strategy, in terms of understanding when and why it selects 

actions, is worthy of further investigation; this may shed some light into developing better 

seizure prediction mechanisms.
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The methodology we present is not limited to the particular stimulation protocol we 

investigated. The results presented in this paper were obtained using low-frequency single-

pulse patterns delivered to the subiculum. In previous work, we performed a similar analysis 

using stimulation of the amygdala.17 The algorithm outlined in Sec. 4 could be directly 

applied to learn an adaptive stimulation strategy for a variety of other cases, including:

• other animal models (e.g. high potassium,39 low calcium,2 low magnesium27),

• different placement of the stimulating electrode (e.g. CA1, EC-subiculum10),

• various patterns of stimulation (e.g. high-frequency electric fields6).

In those cases, the Fitted Q-learning algorithm would be the same as described above, 

however the action set (and possibly the state set also) would have to be changed to reflect 

the new model.

We are now planning a series of experiments, whereby the adaptive stimulation strategy 

learned using the batch data will be evaluated online, using live in vitro slices which match 

the conditions under which the data used so far has been recorded. Performing such 

experiments is very time-consuming and expensive. This highlights the value of developing 

good computational models of dynamical diseases. Such models exist for some diseases, 

such as HIV/AIDS and cancer. However to date there are few good generative models of 

temporal-lobe epilepsy, and many of the existing state-of-the-art models, e.g.,29 do not 

include spontaneous transition into, and out of, seizures, nor do they include mechanisms for 

applying electrical stimulation. Other recent models40,8 seem to provide more flexibility for 

investigating control of epileptic seizures and will be the subject of future empirical studies.

A final important question is whether the methodology outlined in this paper will carry over 

to in vivo models of epilepsy. From a technical perspective, we do not anticipate any major 

technical obstacles. The reinforcement learning framework is well suited to handling larger 

state representations, as would be necessary in cases where there are multiple sensing 

electrodes, placed at different (possibly unknown) locations. The framework is also able to 

deal with a larger set of possible stimulation parameters (intensity, duration, higher 

frequencies). However we do foresee two major practical challenges. First, it may be 

necessary to collect larger amounts of data to accurately learn the Q-function. Second, it is 

imperative to ensure that the action strategy used during the data collection (i.e. before the 

learning) is “safe.” Neither of these issues arises when working with in silico or even in vitro 
models of epilepsy, but they are of definite concern when dealing with in vivo subjects. It is 

worth noting that there are substantial ongoing efforts in the computer science community to 

address precisely those problems, namely in developing algorithms that can efficiently learn 

from very small data sets, and in providing formal guarantees regarding the safety (or worst-

case performance) of the system during the data collection process. We hope to leverage 

such results as they become available.
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Fig. 1. 
Schematic of the hippocampus-EC slice. Relevant substructures are labeled.
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Fig. 2. 
Trace example recorded in the entorhinal cortex. Stimulation is applied to the subiculum at 

0.5 Hz. An ictal event appears in the first half, lasting approximately 45 seconds. Periodic 

stimulation artifacts are observed at 2-second intervals. Interictal spikes are also observed.
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Fig. 3. 
Proportion of seizure steps (compared to non-seizure) under the following strategies: 

Control (no stimulation), Periodic pacing at 0.5 Hz, 1.0 Hz, 2.0 Hz, and Adaptive 

stimulation. The proportion of seizure/non-seizure for the Adaptive stimulation is estimated 

from Eq. (11). Proportions of seizure/non-seizure for the other strategies is calculated 

through hand-annotations of the EEG trace by an expert.
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Fig. 4. 
Estimated long-term return under the following strategies: Control (no stimulation), Periodic 

pacing at 0.5 Hz, 1.0 Hz, 2.0 Hz, and Adaptive stimulation.
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Fig. 5. 
Proportion of time under stimulation. All periodic strategies assume stimulation is on 

continuously. The proportion for the adaptive strategies is evaluated for different reward 

parameters.

PINEAU et al. Page 22

Int J Neural Syst. Author manuscript; available in PMC 2016 May 27.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Fig. 6. 
Proportion of seizure steps as a function of the stimulation penalty. The result for α = 0.04 is 

the same as shown in Fig. 3.
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Fig. 7. 
Sample data traces comparing (a) epileptiform behavior under control conditions, (b) 

epileptiform behavior under periodic pacing conditions, (c) epileptiform behavior under 

adaptive stimulation (Example 1), and (d) epileptiform behavior under adaptive stimulation 

(Example 2). The four phases were time-aligned to offer a better comparison.
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