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Abstract

The inability to maintain balance during varying postural control conditions can lead to falls, a 

significant cause of mortality and serious injury among older adults. However, our understanding 

of the underlying dynamical and stochastic processes in human postural control have not been 

fully explored. To further our understanding of the underlying dynamical processes, we examine a 

novel conceptual framework for studying human postural control using the center of pressure 

(COP) velocity autocorrelation function (COP-VAF) and compare its results to Stabilogram 

Diffusion Analysis (SDA). Eleven healthy young participants were studied under quiet unipedal or 

bipedal standing conditions with eyes either opened or closed. COP trajectories were analyzed 

using both the traditional posturographic measure SDA and the proposed COP-VAF. It is shown 

that the COP-VAF leads to repeatable, physiologically meaningful measures that distinguish 

postural control differences in unipedal versus bipedal stance trials with and without vision in 

healthy individuals. More specifically, both a unipedal stance and lack of visual feedback 

increased initial values of the COP-VAF, magnitude of the first minimum, and diffusion 

coefficient, particularly in contrast to bipedal stance trials with open eyes. Use of a stochastic 

postural control model, based on an Ornstein-Uhlenbeck process that accounts for natural weight-

shifts, suggests an increase in spring constant and decreased damping coefficient when fitted to 

experimental data. This work suggests that we can further extend our understanding of the 

underlying mechanisms behind postural control in quiet stance under varying stance conditions 

using the COP-VAF and provides a tool for quantifying future neurorehabilitative interventions.
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I. Introduction

FALLS are a major source of mortality and serious injury among older adults [1]–[3] and 

particularly in those with neurological disorders such as Parkinson’s disease [4]–[6]. Given 

the difficulty in treating balance dysfunction [6], [7], it is imperative to further our 

understanding of the mechanisms underlying postural control. Postural control is an integral 

component of daily living, which requires continuous sensorimotor integration (i.e., visual, 

vestibular, and proprioceptive) when maintaining balance during whole body movements 

under any self-induced or external perturbation. To maintain balance, continuous 

adjustments of the location of the center of pressure (COP) under the feet is required [8], 

particularly when visual feedback is inhibited, as when performing the Romberg test [9], 

[10].

Postural control is commonly evaluated using COP data collected on a force platform using 

summary measures of the anteroposterior and mediolateral displacement of the COP within 

the base of support that ignore the dynamic characteristics of the COP trajectory [11]–[13]. 

Several studies have introduced nonlinear time series analysis methods to study the 

stochastic and dynamic characteristics of human postural control [14]–[23]. Stochastic 

activity of the postural control system has been shown to be sensitive to altered visual 

conditions, aging, or neurological disorders [24]–[31]. Methods such as the Stabilogram 

Diffusion Analysis (SDA) [15], [24], [32], [33] assume that the COP during quiet stance can 

be modeled as a system of coupled, correlated random walks with short-term and long-term 

scaling exponents that do not change over time. However, this approach would be 

insufficient to capture temporal variations in stochastic properties and be susceptible to 

errors from voluntary weight shifts [23], [34]. In addition, SDA requires numerous long 

duration trials for reliable measures [35] that may be unfeasible for some clinical 

applications. In contrast to SDA, the COP velocity autocorrelation function (COP-VAF) may 

provide a more succinct evaluation of the dynamical and stochastic properties of the postural 

control system while using shorter duration trials [36].

The Ornstein-Uhlenbeck process has often been used to provide a simple model of 

stochastic behavior. In particular, the transition from a ballistic to diffusive behavior of the 

mean square displacement of the Ornstein-Uhlenbeck process has provided an excellent 

description of human postural sway [28], [37], [38]. Prior applications of stochastic models 

to postural control have often been based on the assumption that quiet standing is 

characterized by a two-process random-walk consisting of both short term and long term 

processes [15], [38], [39]. However, recent evidence suggests that a simple closed loop 

model or continuous diffusion process can reproduce characteristic mean square 

displacement trajectories in experimental human postural sway data [40]–[42].
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In the present study, we further extend the use of statistical mechanics principles in the study 

of human postural control [14], by reporting a novel measure of postural control: the COP 

velocity autocorrelation function (COP-VAF). This study examines the changes in the COP-

VAF due to alterations in visual and stance conditions and compare with prior findings based 

on SDA. Furthermore, we introduce a novel model of stochastic human postural control 

dynamics, based on an Ornstein-Uhlenbeck process incorporating damping, potential, 

Gaussian random noise, and a time-dependent center for the harmonic restoring force. In 

contrast to prior applications of the Ornstein-Uhlenbeck process [38]–[40], the model 

introduced in this study incorporates a time-dependent center for the harmonic restoring 

force that accounts for the natural weight shifts observed within and between the feet in a 

bipedal stance [17], [22], [23]. The model introduced in this study allows us to model both 

slow and fast components of human postural sway and to better understand the importance 

of neural control on the COP dynamics. This study explores the fidelity of the model to 

experimental data and provides an analysis of salient modeling parameters on stochastic and 

dynamic characteristics of the COP, as evaluated by the COP-VAF. In this study, we focus on 

the insights gained by our computational model to better understand the association between 

changes in COP-VAF measures and postural control characteristics. The present study 

furthers our hypothesis that when maintaining balance of an upright stance, the COP can be 

viewed as the collective movement of a system in a potential field with a preferred location, 

such as a location farthest from the boundary of the base of support, under the effect of some 

restorative force.

II. Methods

A. Participants and Protocol

Eleven healthy young participants were recruited for this study (mean ± SD age: 24.4 ± 5.4 

yrs, weight: 72.0 ± 16.5 kg, height: 173.9 ± 9.1 cm, 4 females). All participants were right-

side dominant with normal or corrected to normal vision. All participants signed an 

informed consent document approved by the human subjects Institutional Review Board of 

the University of California, San Diego.

Participants were first asked to stand as still as possible during 80 s trials with either eyes 

open or closed. Two blocks of four continuous trials with eyes open or closed were 

counterbalanced in each participant, so as to reduce confounding factors, such as fatigue or 

learning. Participants were instructed to fold their arms across their chest, and during trials 

with eyes open, to fixate on a cross (Fig 1). In a second experiment, participants were asked 

to stand as still as possible on a single leg with either their eyes open or closed and using 

either their dominant or non-dominant limb for up to twelve 30 s trials. Visual feedback 

conditions were counterbalanced while the use of dominant and non-dominant limbs was 

alternated to minimize fatigue and learning. Unipedal stance trials were completed once 

participants had to put their foot down to regain balance. In between trials, subjects were 

allowed to rest by standing with both feet, and in all trials, subjects were allowed to rest by 

sitting in between blocks. All experiments were performed in a single test session with 

bipedal trials always presented before unipedal stance trials, so as to provide a ramp-up in 

difficulty.
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B. Hardware

COP data were collected using a ground-level six-channel force plate (AccuGait, AMTI, 

Watertown, MA). Three-dimensional ground reaction forces and moments were sampled at 

100 Hz. A thin wooden platform mounted on top of the force plate was used to provide 

consistent foot placement on the force plate. Participants were instructed to position the 

front and sides of their shoes against the wooden platform at the start of each trial, so as to 

fix the initial stance width to 30.5 cm in all participants. Custom scripts (Vizard, WorldViz 

LLC, Santa Barbara, CA, USA) were developed to provide a 5-cm fixation target that was 

displayed on a monitor approximately one meter in front of the participant, at eye level, 

during eyes open conditions and to coordinate data collection. Participants were additionally 

fitted with a Neurocom harness (Neurocom, Natus, Clackamas, OR) to a custom ceiling 

mounted harness system for safety. In order to control for the shoe-floor interface during 

testing, participants wore standardized canvas shoes with a thin rubber sole. In addition, 

during this experiment, participants wore a full-body motion capture suit. Kinematic data 

were collected at a sampling rate of 100 Hz using a 24 camera 3D body motion tracking 

system (PhaseSpace, Inc., Impulse system, San Leandro, CA). Infrared light-emitting diodes 

were placed on the right and left leg, over the lateral malleolus, heel, and third 

metatarsophalangeal joint, femoral epicondyle, and greater trochanter, and left and right 

acromion.

C. Data Processing and Analysis

Custom Matlab (v7.4, Natick, MA) data processing software routines were written to 

process the data. Raw force plate data were processed with a 4th order, zero-lag, low-pass 

Butterworth filter with a 10 Hz cutoff frequency. COP position was calculated as follows: 

COPx = (−Fxzo − My)/Fz and COPy = (Mx − Fyzo)/Fz, with a correction for the geometric 

center of the force plate. The COP velocity was calculated using a Savitzky-Golay filter with 

a five point frame [43].

Traditional posturographic measures consisted of both the anteroposterior (AP) and 

mediolateral (ML) COP root-mean-square (RMS) displacement, and magnitude of COP 

velocity. SDA measures were calculated separately for anteroposterior (y), mediolateral (x), 

and radial (r) directions as described by Collins and De Luca [15]. The diffusion coefficient 

(D) is an average measure of the stochastic activity of a random walker, while the scaling or 

Hurst exponent (H) describes the relationship between past and future positions and is 

calculated using one half of the slope of a log-log plot of the radial mean square 

displacement (MSD), 〈Δr2〉, as a function of a time delay, τ. The critical point C was defined 

as the intersection between short (s) and long-term (l) regions of the linear-linear plots, and 

provides measures of the critical time interval (τc) and critical value [15].

The velocity autocorrelation function is a time dependent function that can be used to reveal 

the underlying nature of the dynamical processes in a system. Given both components of the 

planar COP velocity  at a given origin, we can consider the COP-VAF,

(1)
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where the average of the dot products is carried out over time, using a range of relevant time 

scales, such as 0.01–10.0 seconds. The COP-VAF can provide further insight into the 

dynamics of the postural control system through the characteristic velocity correlation decay 

described by the initial value, time to zero, and first minimum (Fig. 2). In the human 

postural control system, the initial value of the COP-VAF provides a measure of the 

potential used in the system to maintain balance, and is expected to increase in value as 

balance demands increase. The time to zero and minimum, provide a measure of the time-

scales of compensatory postural responses, as the zero-crossing time may indicate the time 

span over which the direction of the centripetal COP acceleration changes by 90-degrees, 

while the value of the first minimum provides a measure of the magnitude of corrective COP 

responses.

Furthermore, as the VAF decays to zero at a long time, it can be integrated over time to 

calculate the planar diffusion coefficient D:

(2)

given a special case of the Green-Kubo relation [44]. A direct approximation of the planar 

diffusion coefficient, D, can then be calculated by taking the integral from zero to 10 

seconds, D0. The measured planar diffusion coefficient, D0, provides an analogous measure 

to the diffusion coefficient calculated by SDA. Furthermore, as the decay of the COP-VAF 

should provide a measure of the time-scales of compensatory postural responses, the 

velocity power spectral density (PSD) can be calculated using a fast Fourier transform of the 

COP-VAF to extract additional information about dominant time scales in the postural 

control system. Using a cumulative velocity PSD, we can assess changes in power 

distribution across a narrow physiological range [45].

To compare between stance and visual conditions, a linear mixed model was performed with 

p < 0.05 used for statistical significance. Furthermore, the reliability of COP-VAF measures 

over the four bipedal stance trials with differing trial durations was assessed using intraclass 

correlation coefficients (ICCs) with a oneway random effects model [46]. All statistical 

analysis was carried out using R version 3.0.1 [47], using lme version 1.1–5 and lmerTest 

version 2.0–6 to carry out linear mixed-effects models.

D. Mathematical model

The center of pressure trajectories, as shown in Figure 1, generally take on the appearance of 

a random walk as previously noted [15], [24], [32], [33]. One important difference between 

pure Brownian motion and the COP trajectories is that people are attempting to remain 

stationary: they have a driving force returning toward a preferred position, i.e., the center of 

the foot. Thus, ignoring for now the separation of the feet, the simplest possible model is an 

Ornstein-Uhlenbeck process with a harmonic restoring force. We present the one 

dimensional case, but the results generalize to 2 dimensions without any change. The 

starting point is the equation of motion for a particle in a harmonic well, which is linearly 

damped and driven by a random force.
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(3)

Here x(t) is the position of the particle of mass m, k is a spring constant, γ is a damping 

coefficient, ξ(t) is a random force with zero mean and standard deviation 1, and T is a 

constant setting the scale of the random force. Since there is a coefficient on all the terms, 

we set the mass m = 1 in the remainder.

To calculate the velocity autocorrelation, we take the standard approach of finding the power 

spectrum and applying the Wiener-Khinchin theorem to relate the Fourier transform of the 

power spectrum to the autocorrelation. The power spectrum has the form:

(4)

Assuming the random force is independent of the position, then its power spectrum is simply 

1 on average by construction, and the random driving force is entirely represented by its 

magnitude T. Further, since the power spectrum is linear in T2, so is its Fourier transform 

(the autocorrelation), and the only effect of increasing noise in the system is to scale the 

autocorrelation. The remaining Fourier transform is standard, and we concentrate on the 

solution with poles with nonzero real parts (both damping and ringing, 4k > γ2). Defining 

, the velocity autocorrelation is

(5)

In practice we divide Cv(τ) by Cv(0) to normalize for the variable noise levels. Thus, using 

this analytical solution, we can identify initial values for γ and k for fitting to the COP-VAF 

of experimental data.

E. Computational Model

While the simple Ornstein-Uhlenbeck model is a reasonable starting point, we expect it to 

only be an approximation of what actually goes on during stance. Among other things, 

analytically incorporating the shifting of weight within and between the feet is challenging. 

Thus, we turn to some straightforward modeling of the data. To that end, we modeled stance 

as a random two dimensional walker whose position is updated as a sum of three terms: a 

damping, potential, and Gaussian random noise term. The model discretizes the problem 

into time steps δt and updates the velocity, , and position, , from time step n − 1 to n as

(6)
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The  and  terms are the damping and potential as before; however, the spring force 

has a time dependent center, , to allow for variable centers of the spring. Below, the 

variable center mimics subjects shifting their weight within and between the feet by 

assigning  where s is a separation, and  shifts from (−s, 0) → (+s, 0), or vice 

versa, with a fixed probability q. The shift probability is chosen so that there are infrequent 

shifts, usually 6 per 104 trial steps (i.e. q = 6/104), so as to mimic the observed frequency of 

weight shifts in the participants of this study. The selected weight shift frequency selected in 

this study is higher than previously reported frequencies of large weight shifts in relaxed 

sway of 0.013 Hz [23], but preliminary sensitivity analysis suggests that COP-VAF outcome 

measures are insensitive to to weight shift frequencies ranging from 2 to 7 shifts per trial. 

The random variable in equation 6, , is Gaussian distributed in each dimension with 

standard deviation , where the factor of  insures that the dynamics, e.g. the 

size of an excursion, remain unchanged when we vary the scale of δt. Considering nominal 

values of T = 1.0, δt = 0.01, γ = 1.5, and k = 4 our computational model yielded 

physiologically consistent COP excursions, mean square displacements, and velocity 

autocorrelations (Fig. 3). As seen in prior postural control studies, oscillatory behavior of the 

mean square displacement in the long-term region (i.e., time delays of 5 or more seconds in 

Fig. 3) is observed in simulations with nonzero separations [15], [24], [32], [33].

Using the computational model outlined above, estimates for the damping coefficient and 

spring constant, γ and k respectively, that best fit the experimental data were obtained by 

fitting the COP-VAF from the computational model to the experimental data. Initial values 

for γ and k were obtained from equation 5 for use in non-linear curve fitting in MATLAB 

(Mathworks, Natuck, MA), using a trust region reflective algorithm (lsqcurvefit). Time steps 

and T were fixed at 0.01 and 1, respectively, while the separation distance and simulation 

duration were fixed to experimentally relevant values of 2cm and 30s for unipedal stance 

trials, and 20cm and 80s for bipedal stance trials. To account for the variability in the 

modeled postural sway, the non-linear curve fitting was performed over 10 independent 

trials. Furthermore, the effect of varying damping, stiffness, and separation on stochastic and 

dynamic characteristics of the COP, as evaluated by the COP-VAF can be assessed using 

numerical simulation output defined by equation 6.

III. Results

A. Experimental Results

Generally, moving from a bipedal to unipedal stance greatly increased the size of the 

resulting COP distribution and modestly decreased the temporal scale of the motions (i.e., 

sped them up), as seen in Table I. Closing the eyes had similar noise injection characteristics 

as switching stance, as observed in representative COP-VAF and MSD trajectories during 

bipedal and unipedal stance trials with eyes open or closed (Fig. 2). In contrast to 

unnormalized trajectories of the SDA and COP-VAF, normalizing the SDA and COP-VAF 

trajectories by dividing by the MSD endpoint and COP-VAF initial value resolves many of 

the differences observed among differing stance and visual conditions (Fig. 4). Thus, 
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normalized data provides an essential data set for further validation of our novel stochastic 

postural control model.

Consistent with traditional posturographic and SDA measures, the COP-VAF demonstrated 

significantly different dynamics when participants maintained a quiet stance on a single leg 

versus both, with eyes closed (Table I). In contrast to a bipedal stance, a unipedal stance led 

to a 32-fold increase in the initial value of the COP-VAF (χ2 = 40.8, p < 0.00001, Fig. 5), 

magnitude of the first minimum (χ2 = 16.9, p < 0.00005), and eight-fold increase in the 

diffusion coefficient (χ2 = 19.0, p < 0.00005), while leading to more than a 50% decrease in 

both the time to minimum (χ2 = 29.0, p < 0.00001) and time to zero (χ2 = 35.3, p < 

0.00001). A lack of visual feedback led to more than a six-fold increase in the initial COP-

VAF value (χ2 = 27.2, p < 0.00001) and magnitude of the first minimum (χ2 = 12.3, p < 

0.0005), and three-fold increase in the diffusion coefficient (χ2 = 10.1, p < 0.005). 

Additionally, a Vision x Stance interaction effect was found in the initial value of the COP-

VAF (χ2 = 131.3, p < 0.00001), the minimum value (χ2 = 56.8, p < 0.00001), the diffusion 

coefficient (χ2 = 131.3, p < 0.00001), and time to minimum (χ2 = 4.6, p < 0.05).

Overall, the velocity power spectra demonstrates an increase in power at lower frequencies 

with eyes closed during a quiet stance (Fig. 6A). Furthermore, as observed from the 

normalized cumulative velocity power spectra (Fig. 6B), in comparison to standing on both 

legs, standing on one leg results in a slower rise to the full area of the velocity power spectra, 

and increased differences due to vision, consistent with the primary outcome measures of the 

COP-VAF.

In contrast to SDA measures during a bipedal stance, COP-VAF measures provided more 

consistently reliable measures in 80 s trials. Intraclass Correlation Coefficients (ICCs) 

ranged from 0.57–0.93 in COP-VAF measures versus 0.36–0.83 in SDA measures in the 

eyes open condition. In the eyes closed condition, ICCs were more varied and ranged from 

0.35–0.61 in COP-VAF measures versus 0.02–0.73 in SDA measures. Furthermore, 

considering the effect of trial duration (30–80 s) on the reliability of COP-VAF and SDA 

measures, considering up to 10 s time delays, we find COP-VAF measures to be, on average, 

more reliable than SDA measures (Fig. 7). The median ICC of COP-VAF measures 

demonstrated a 74% increase over SDA measures during eyes open trials, and 13% increase 

when eyes are closed.

B. Simulation Results

Figure 8 shows how the numerical model, with a nonzero separation distance, replicates the 

experimental data’s normalized velocity autocorrelation function in terms of minimum 

value, time to minimum value, and time to zero, in a range of visual and stance conditions. 

In addition, the radial mean square displacement of the model displays a similar pattern as 

experimental data (Fig. 8). Based on the non-linear fitting of the numerical simulation’s 

normalized COP-VAF to individual experimental trials, the fitted spring constant increased 

nearly two-fold (i.e., 1.8x) when going from a bipedal to unipedal stance (χ2 = 141.2, p < 

0.00001, Fig. 9). Closed eyes led to increased spring constants in unipedal stance trials 

relative to bipedal stance trials (i.e., stance and vision interaction, χ2 = 10.2, p < 0.005). 

Furthermore, a lack of visual feedback led to a 12% decrease in the fitted damping 
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coefficient in bipedal stance trials, while resulting in a 5% increase in unipedal stance trials 

(i.e., stance and vision interaction, χ2 = 16.4, p < 0.0001).

A parameter analysis of the numerical simulation was performed to quantify the effect of the 

separation distance, damping, and stiffness on COP-VAF outcome measures (Fig. 10). From 

the model results, it is clear that the sensitivity of outcome measures to separation distance 

decreases with increases in values for damping coefficient or spring constant. In addition, 

the sensitivity of outcome measures to these parameters is dependent on the separation 

magnitude, for experimentally relevant parameter ranges of γ = 9.4 – 11.5 and k = 74.3 

−135.9. If the separation distance relative to the COP excursions without a weight shift is 

very small, < 0.5 cm, or very large, > 3 – 5 cm, the sensitivity to the parameters is lower, as 

the noise and separation terms respectively dominate these conditions. Between these 

conditions the similar scale of the separation allows for interactions, increasing the 

sensitivity to γ and k within this range. Further examination of the interaction between a 

varying spring constant and damping coefficient in models with a 2 cm or 20 cm separation 

distance demonstrate the largely consistent responses to changes in damping and potential 

under these two different conditions (Fig. 11).

IV. Discussion

The COP-VAF demonstrated repeatable, physiologically meaningful measures that can 

distinguish postural control differences in the quiet standing of healthy young individuals in 

unipedal and bipedal stances with and without vision. Consistent with prior studies [32], 

[48], postural sway variance increased while the temporal scale of motions decreased when 

the postural control system is challenged by a lack of visual feedback or unipedal stance. 

Distinct differences in the COP-VAF trajectories were observed due to visual condition, 

particularly during unipedal stance trials. In unipedal stance trials the initial value and 

magnitude of the minimum value of the COP-VAF were significantly higher with eyes 

closed than open, suggesting the presence of a stronger restorative force under more 

demanding postural stances. Furthermore, the increased delays observed in the time to 

minimum of bipedal stance trials with eyes open, relative to unipedal stance trials, suggests a 

decrease in damping or stiffness (Fig. 10). In addition to revealing dynamical properties of 

the human postural control system, the COP-VAF can be integrated over time to calculate 

the planar diffusion coefficient via a special case of the Green-Kubo relation [44], to reveal 

an average measure of the stochastic activity of the COP trajectory. The calculated diffusion 

coefficients significantly increased in a unipedal stance, particularly with eyes closed, which 

suggests that participants used visual feedback to reduce the stiffness of their 

musculoskeletal system via a reduction in muscular activity or co-contraction across 

stabilizing joints at the ankle, knee, hip, and trunk in a one-legged stance. A reduction in 

muscular activity and/or synchrony of muscle activation would then explain the decrease in 

diffusion coefficient, as it would be expected to reduce the magnitude of force fluctuations 

[49]–[53], consistent with prior work [32].

In addition, the COP-VAF has another interesting property when a Fourier transform is 

applied, as it can provide further insight into the underlying frequencies dominating human 

postural control processes. Our power spectral density analysis (Fig. 6) demonstrates an 
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increase in lower frequency processes when eyes are closed, and particularly in unipedal 

stance. Given the broad peak around low frequencies observed in the power spectra, these 

results provide additional evidence that human postural sway may be characterized by 

changes in low frequency movements as postural control demands increase when eyes are 

closed or standing on one leg. Low frequency processes of sway, assumed to arise from 

neural control, have been found to account for a major contribution of sway variance during 

quiet stance, while also providing a universal index of postural control capacity [54]–[57].

The COP-VAF provides a more succinct evaluation of the dynamical and stochastic 

properties of the postural control system, as compared to SDA, and has five salient 

measures: a single diffusion coefficient (D0), two time scales (time to zero and time to 

minimum), and the initial and minimum COP-VAF values. As demonstrated by interclass 

correlation coefficients (ICC) analysis relative to SDA measures, COP-VAF measures 

demonstrated increased reliability in trial of up to 80 seconds in duration. However, further 

work remains to identify the preferred number of trials and durations, as previously 

identified for SDA measures [35].

Our novel model of stochastic postural control dynamics suggests a significant modulation 

of ankle stiffness due to stance condition changes when eyes are closed given the increase of 

the fitted spring constant under a unipedal stance condition, particularly under eyes close 

conditions. This is consistent with prior inverted pendulum models [58], [59] and our 

experimental data. In contrast with two-process models of postural control [15], [60], our 

model considers the influence of shifting weight within and between the feet, which can 

result in significant differences in COP dynamics [17], [22]. The proposed model can 

qualitatively reproduce the main COP-VAF and MSD characteristics observed in our 

empirical data, and further shows the importance of incorporating a physiologically relevant 

separation distance between weight shifts. As observed in a representative trial in Figure 8, a 

non-zero separation plays a key role in reproducing experimental quiet standing data under 

both unipedal and bipedal stances, but a more exact formulation based on subject-specific 

anatomy may be required in further work with a unipedal stance. Furthermore, within the 

higher end of physiologically-relevant ranges of the separation distance in human unipedal 

or bipedal stance (i.e., 4–20 cm), COP-VAF measures of the time to zero, time to minimum, 

and minimum value were relatively insensitive to variations in separation distance, 

consistent with recent experimental studies of volitional COP control [61], where visual 

feedback had a stronger effect on the structure of the COP than changes in center of mass 

excursion.

An additional benefit of the computational model lies in its ability to provide an insight into 

how postural control characteristics are changed with larger or smaller values of a given 

COP-VAF measure. Decreases in both the time to zero and minimum are associated with 

increased damping and stiffness (Fig. 10), consistent with a decreased time span over which 

the direction of the centripetal COP acceleration changes by 90-degrees. Decreases in the 

minimum value are associated with increases in stiffness, and may be associated with an 

increased magnitude of corrective COP responses, which is consistent with the increased 

stiffness in unipedal stance trials with eyes closed observed in our study (Fig. 9). Increases 
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in the diffusion coefficient, D0, are associated with decreases in damping and stiffness, 

consistent with a biomechanical framework.

The mechanism underlying slow sway COP dynamics has not yet been defined. Recent 

findings in the postural control literature [23], [62]–[64] are consistent with a hypothesis of 

intermittent control of the inverted pendulum [65]–[67]. However, the double-power law 

behavior at low frequencies may also be due to the switching between open-loop and closed-

loop dynamics, or intermittency in delay feedback control [15], [68]. Assuming that 

intermittent control of the COP is an independent process from the control of ankle stiffness, 

then the COP-VAF should provide a new tool for detection of this process, through the 

observation of variance in long time scale processes in unison with surrogate data.

The weight-shifting process introduced in our model (i.e., the extra term in the 

computational model or additional exponential curve in the simulated COP-VAF trajectory) 

is akin to a slowly migrating reference point defined by a central command, as suggested by 

Zatsiorsky and Duarte [19]. Furthermore, our weight-shifting process is consistent with 

intermittency, as individuals are not standing perfectly still and intermittently move their 

‘desired’ center of mass location around in a conscious or subconscious manner. This 

process is similar to the constant speed paradigm observed by Doeringer and Hogan [69], 

where participants intermittently change their desired speed around a fixed average. If 

intermittent control and the weight-shifting process introduced in our model are indeed the 

same phenomenon, then we can infer that the characteristic time of choosing new centers of 

mass is longer than that of the system’s own response, or in other words, that intermittency 

is slower than balance. Thus, together with findings of variations in the scale-invariant 

structure of COP trajectories that are dependent on center of mass movements [23], further 

analysis of the power spectral density of the COP-VAF trajectory and role of weight-shifting 

frequency on the COP-VAF may provide significant insight into the quantification of 

intermittency in human postural control.

The present study has a few limitations, including a limited sample of healthy young 

individuals, which restrict generalizability, and no direct measure of the center of mass, 

which may be used alternatively in a measure of postural control dynamics, such as the 

center of mass velocity autocorrelation function. This study did not examine the effect of age 

or musculoskeletal and neurological disorders on COP-VAF measures. In contrast to other 

recent postural control models [70]–[72], we did not examine the effect of delays in the 

system but acknowledge that further work is merited in this topic, as feedback delays could 

induce further postural instability that would limit our ability to perform a parameter fitting. 

Furthermore, the normalized model parameters reported in this study need further 

examination to verify if they are physiologically plausible. The present study introduced a 

postural control model with a weight shift probability, q, that if zero or frequent, would 

provide altered dynamics of postural sway that could be extended to different behaviors like 

relaxed standing or reciprocal movements. Thus, identifying trial-specific values of q may be 

beneficial in future studies. This study did not explicitly incorporate the role of brain 

function in executing the motor control and modulating the stability in a bipedal or unipedal 

stance. Thus, the empirical study of stiffness and damping parameters, as a dynamical 

system abstraction of such motor control processes in the cortex, can be complemented with 
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theory and experiments using EEG or other brain physiological signals. Further work should 

examine how older adults with and without balance dysfunction vary in their COP 

dynamics, as evaluated by the COP-VAF, to further our understanding of the aging process 

and progression of neurodegenerative disorders.

V. Conclusion

In summary, this study demonstrated that the COP-VAF may provide repeatable, 

physiologically meaningful measures of the COP dynamics, consistent with SDA and 

traditional posturographic measures, that may further our understanding of the underlying 

mechanisms behind the maintenance of balance in human upright stance. Based on a novel 

model of stochastic postural control dynamics, we show the importance of incorporating a 

parameter for natural weight shifts in upright stance and evidence for stiffness modulation 

when going from a bipedal to unipedal stance. Given the ability of COP-VAF measures to 

detect postural control differences due to vision and stance in healthy young adults and the 

underlying model to explore mechanistic differences, this work provides a novel tool for 

quantifying postural control changes due to aging and neurological impairment, and 

assessing the result of neurorehabilitative interventions aimed at improving balance.
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Fig. 1. 
A) Schematic of experimental setup, demonstrating platform used for foot placement, 

approximate position of fixation target, harness setup, and force plate. B) Representative 

COP excursion. The figure demonstrates the COP excursion from a representative 

participant with either eyes open (top) or eyes closed (bottom) during bipedal stance.
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Fig. 2. 
Representative mean square displacement (MSD) in the radial direction, 〈Δr2〉, and COP 

velocity autocorrelation function (COP-VAF) during bipedal stance (A) and unipedal stance 

(B). The top figures present the MSD as a function of the time delay from a representative 

participant with eyes open (gray line) or closed (black line) and characteristic measures of 

the Hurst exponent in the short-term, Hrs, and long-term region, Hrl. The bottom figures 

present the COP-VAF from a representative participant with eyes open (black line) or closed 

(gray line) and characteristic measures of initial value, time to zero, and first minimum.
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Fig. 3. 
A) Schematic of physical system model considering a single (left) or a dual base of support 

(right). B) Simulated COP excursion from model using a separation distance of 0 cm (left) 

or 3 cm (right). C) Representative stabilogram diffusion analysis curves, and D) COP 

velocity autocorrelation function from model.
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Fig. 4. 
Normalized Stabilogram Diffusion Analysis (SDA) and COP-VAF curves of experimental 

data. A) Effect of vision and stance conditions on the mean (± standard error) radial mean 

square displacement (MSD) curve of all participants, normalized by dividing by the MSD 

endpoint. B) Mean (± standard error) COP-VAF curve of all participants, normalized by 

dividing by the initial value of the COP-VAF.
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Fig. 5. 
Boxplots of characteristic COP-VAF measures, demonstrating the median (in white line) and 

outliers (in dots) of A) the logarithm transform of the initial value, log10(Cv(0)), B) diffusion 

coefficient, C) minimum value, D) time to zero, E) normalized diffusion coefficient, and F) 

time to minimum value during eyes open (gray) and eyes closed (black) conditions in 

bipedal and unipedal stance conditions. All COP-VAF measures demonstrated statistically 

significant differences between unipedal and bipedal stance conditions, while measures A-C 

demonstrated significant differences between eyes open and closed conditions.
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Fig. 6. 
Analysis of velocity measurements. A) Log-log plot of the mean (± standard error) COP-

VAF power spectral density (PSD) and B) semilogarithmic plot of the mean (± standard 

error) normalized cumulative COP-VAF PSD for eyes open (gray) and eyes closed (black) 

trials during bipedal and unipedal stance trials.

Hernandez et al. Page 21

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Reliability of COP-VAF (dark grey) and SDA measures (light grey), as evaluated by the 

maximum, minimum, and median (dashed line) intraclass correlation coefficient (ICC), 

using trial durations ranging from 30–80 s in quiet bipedal stance with eyes open and closed.
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Fig. 8. 
Left) Numerical simulation results for a representative eyes open, bipedal stance trial. Top 

Left) Normalized Mean Square Displacement (MSD) of experimental data from a single trial 

(black line) is compared with model results using a separation distance of 0 cm (light grey 

dashed line) or 20 cm (dark grey dashed line), using an experimentally relevant weight shift 

probability of 6 shifts per 80 seconds, γ = 7.2, and k = 77. Bottom Left) Normalized COP 

velocity autocorrelation function (COP-VAF) trajectory of experimental data (black line) 

and mean (± standard error) numerical simulation results using a separation distance of 20 

cm (dark grey) or no separation (light gray). Right) Model results for a representative eyes 

closed, unipedal stance trial, using a weight shift probability of 6 per 21.7 seconds, 

separation distance of 0 (light gray) or 2 cm (dark gray), γ = 10.3, and k = 107.4 compared 

Hernandez et al. Page 23

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to experimental data from a single trial (black line). The Normalized MSD is shown on top 

right, while normalized COP-VAF is shown on bottom right.
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Fig. 9. 
Mean ± standard error of the spring constant (left) and damping coefficient (right) numerical 

model parameters used to fit experimental data.
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Fig. 10. 
A) Effect of varying damping coefficient values on mean ± standard error of primary COP-

VAF outcome measures (i.e., time to zero, time to minimum, minimum value, and diffusion 

coefficient), and B) Effect of varying spring constant on mean ± standard error of primary 

COP-VAF outcome measures from numerical simulation results.
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Fig. 11. 
A) Effect of varying damping coefficient and spring constant values on primary COP-VAF 

outcome measures for a separation distance of 2 cm, and B) 20 cm.
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