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Purpose: To develop and evaluate a fast and simple tool called d (Dynamic PET Simulator of
Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo
(MC), useful for educational purposes and evaluation of the effects of the clinical environment,
postprocessing choices, etc., on dynamic and parametric images.
Methods: The tool was developed in  using both new and previously reported modules of
 (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for
each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise,
scatters, randoms, and attenuation are simulated for each frame. Each frame is then reconstructed into
images according to the user specified method, settings, and corrections. Reconstructed images were
compared to MC data, and simple Gaussian noised time activity curves (GAUSS).
Results: d was 8000 times faster than MC. Dynamic images from d had a root mean
square error that was within 4% on average of that of MC images, whereas the GAUSS images were
within 11%. The average bias in d and MC images was the same, while GAUSS differed by 3%
points. Noise profiles in d images conformed well to MC images, confirmed visually by scatter
plot histograms, and statistically by tumor region of interest histogram comparisons that showed no
significant differences (p < 0.01). Compared to GAUSS, d images and noise properties agreed
better with MC.
Conclusions: The authors have developed a fast and easy one-stop solution for simulations
of dynamic PET and parametric images, and demonstrated that it generates both images and
subsequent parametric images with very similar noise properties to those of MC images, in a
fraction of the time. They believe d to be very useful for generating fast, simple, and
realistic results, however since it uses simple scatter and random models it may not be suitable
for studies investigating these phenomena. d can be downloaded free of cost from https://
github.com/CRossSchmidtlein/dPETSTEP. C 2016 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4950883]
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1. INTRODUCTION

Dynamic positron emission tomography (PET) plays an
important role in in-vivo quantification of physiological
processes in organs and tissues. In the field of oncology,
the estimation of model based physiological parameters can
provide a more accurate diagnosis, and aid in the screening,
prediction, staging, treatment planning, and segmentation of
cancerous tumors, as well as enable better treatment follow-
up.1–5 Parameters estimated for tumor regions of interest
(ROIs), as well as full parametric images have proved
to be efficient aids in tumor delineation6–8 and treatment
monitoring.6,9,10 However, in order to obtain reliable and
actionable kinetic parameters one has to have knowledge about
sources and magnitude of bias and uncertainty associated
with these derived parameters, and how they are affected
by the acquisition environment and reconstruction parameter

choices. In this study we introduce a fast dynamic PET
simulator, based on the  (PET Simulator of Tracers via
Emission Projection) platform,11 that will allow researchers to
better understand the bias and uncertainty tradeoffs as a func-
tion of the clinical environment and various postprocessing
choices, such as reconstruction parameters, postfiltering, and
parameter fitting models.

There are a number of methods to provide insight in the
different aspects of dynamic PET and kinetic modeling, and
the three main approaches are:

1. Image approach. Data from real patients or phantom
PET scans is used.

2. Plain sinogram or time activity curve (TAC) simulation.
Ideal sinograms or TACs are simulated and different
amounts of variability and noise are added to mimic
real PET data. The added noise comes from a known
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distribution, typically Poisson in projection space or
Gaussian in image space.

3. Monte Carlo (MC) simulations. Simulates a digital
patient or phantom undergoing a complete PET scan
and reconstruction process, with sources of noise and
variability coming from accurate modeling of the
physical decay, photon transport in matter, and image
reconstruction method of noisy data.

Some of the image approaches use phantoms. However, at
present even state-of-the-art phantoms are limited since they
do not support full dynamics with known kinetic parameters.
As a result, they cannot be used to estimate, e.g., the optimal
time weights to use for model fitting.

The second alternative, plain sinogram or TAC simulations,
solves part of this problem, since the “true” or reference values
are known. However, a major issue with this approach is that
the TACs are generally simulated independently from one
another. This is not realistic due to correlations introduced
during the reconstruction process. This is especially true
for nonlinear iterative reconstruction algorithms such as
ordered-subset expectation maximization (OSEM),12 in which
the convergence of the method is heavily object-dependent,
making noise properties vary across the image.13–16 As a result,
the plain sinogram/TAC approach is better suited for ROI
analysis where individual voxel kinetics is of less interest.
Another issue with the plain simulation approach is that noise
properties in reconstructed images, and hence image-derived
TACs, are typically not easily described as a simple Gaussian
or Poisson distribution, but are instead more complex and
not easily computed.13,17,18 Therefore, adding noise using
simple distributions does not as accurately represent the bias
and variance compared to image-derived TACs. Nonetheless,
simulations of these kinds are readily used in nuclear medicine.

The golden standard simulation method today is MC.
The effects of, e.g., positron range, camera system blurring,
image reconstruction process and so on can be included. This
fact makes MC simulations a suitable choice for studies of
tumor heterogeneity, time sampling scheme, time weighting
factors for kinetic model fitting, and image reconstruction
algorithm, where both the image and plain sinogram/TAC
approach often fail. However, there are drawbacks, the major
one being the very long computing times; demanding both
considering computing power (storage and memory) and user
expertise.

A faster alternative to MC simulations is to use the
PET scanner’s system matrix/operator to forward project a
reference image set, and add the appropriate noise to the
forward projected data in projection space. In the case of
dynamic PET a set of reference time activity curves (one
for each voxel) can be used to create the reference images.
This methodology can be much faster than MC because it
assumes that all of the physics (and biology) is adequately
modeled by the system matrix, noise model, kinetics model,
and other associated terms in the image generation process.
Because of this, some care should be exercised as this model
is implicitly consistent with the data and noise assumptions
made that created it.

The  software (PMOD Technologies Ltd., Zürich,
Switzerland) is a popular commercial tool for analyzing
and fitting of dynamic PET data, whether it be simulated
or clinical. However, this tool does not simulate the actual
scans. Other popular software tools include 19 and
 II (SAAM Institute, Seattle, WA). While both  and
 II come at a licensing cost,  is freely available for
academic use. All three software tools can be used to solve
the model equations and generate pristine TACs, as well as for
model fitting (parameter estimation). Neither simulates noisy
PET-like image data however.

Other researchers have used MC to study parametric
imaging. Karakatsanis et al.20 used  and the realistic
XCAT torso phantom to simulate dynamic 18F-FDG studies.
The results were used to optimize clinical whole-body
parametric imaging protocols.

There are a few nonMC tools developed to simulate
dynamic PET scans. A tool called ASIM was developed
by Comtat et al.,21 that includes counting noise, noise from
true, scattered and random events, detector efficiencies and
resolution, noise from transmission scans, and more. The tool
was developed for static PET scans and is not easily adapted
for dynamic scans and parametric imaging.

Kotasidis et al.22 recently presented a five-dimensional
(5D) computational phantom based on magnetic resonance
(MR) data to simulate kinetic studies in dynamic PET. This
tool supports most any kinetic model and input function,
time sampling and phantom motion. This only models the
phantom geometry however, requiring external software for
the physics and imaging process simulation, as well as image
reconstruction.

Another example is Wang and Qi23 who simulated dynamic
PET scans of a head phantom with regional TACs. Poisson
noise was added to pristine sinograms, and scatter counts
were simulated using the SimSET package. Random counts
were added as a uniform background, and different image
reconstruction algorithms were implemented and used in
.

Karakatsanis et al.24 used a human phantom together with
packages in the reconstruction software 25 to simulate
scatters (single scatter simulation (SSS) algorithm), randoms,
and Poisson counting noise.  was further used for
image reconstruction. The downside is the simulation time,
however. The authors did not report on total simulation
time, but we previously26 used  with the SSS implemen-
tation and experienced scatter estimate computation times
of around 2 h for a single frame (OSEM 12 subsets, five
iterations).  can be used to simulate realistic static and
dynamic PET scans, including camera properties, acquisi-
tion, and reconstruction process. However, the user has to
handle a lot of individual functions separately since there
is no composite function for these kinds of simulations
to date, making it rather cumbersome and time consum-
ing.

We note that in a previous publication we devel-
oped a simplified PET simulator called 11 (https://
github.com/CRossSchmidtlein/PETSTEP), for use when a
certain level of simulation detail can be omitted in favor of
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ease of use and simulation speed. In that paper we showed
that  was able to generate static PET images of
comparable quality and accuracy as both real PET scans
and MC simulations. Furthermore,  requires only a
tiny fraction of the time required in comparison with MC
simulations.

Finally, there is no tool available today that is simple and
fast enough to be used for educational purposes when training
medical physicists, radiologists, and other clinical staff in, e.g.,
impact of noise and ROI drawing on parametric images. We
believe dynamic  can fill this gap, providing an easy to
use and fast dynamic PET simulator.

The aim of this study was to build a fast and complete
dynamic PET simulator, incorporated in the framework of
. In the list presented in the beginning of this section,
this approach would fall in-between item 2 and 3, as a
more detailed and potentially accurate simulation method
compared to the plain sinogram/TAC approach, but less so
than a full MC simulation. As such, d is designed to be
useful for educational purposes, understanding effects of the
clinical environment, image reconstruction and postfiltering,
parameter fitting settings, and to provide insight into the
kinetic modeling of a user-defined system. To verify the
d simulations, comparisons to full MC simulations are
done.

2. MATERIALS AND METHODS
2.A. Compartment models

There are numerous models with different numbers of
compartments described in the literature. These should be
selected based on the particular tracer in question and limiting
the number of parameters as the data allow. Common examples
are the use of a 1-tissue compartment model for 15O-water
or a 2-tissue model for 18F-FDG.27 The models currently
implemented in dynamic  (d) are shown in
Fig. 1, where the denotation is F for free, NS for nonspecific,
and S for specifically bound tracer in tissue.28 The k’s are rate
constants describing the rate of tracer exchange between the
compartments, Vp is the fraction of arterial plasma appearing
in tissue, and Cp is the tracer activity concentration in arterial
plasma. The measured signal CPET will be the sum of the
comprising compartments. The blood volume is accounted
for by a spillover term governed by Vp,29

CPET,p =
�
1−Vp

�
CPET+VpCp. (1)

If Vp is nonzero, Eqs. (2), (3), and (9) will include spillover
according to Eq. (1).

2.A.1. 1-tissue model

The 1-tissue model is depicted in Fig. 1(a). The solution to
the measured PET signal in tissue is30

CPET=K1e−k2t ∗Cp, (2)

where “∗” denotes temporal convolution.

F. 1. Kinetic models implemented in d: (a) 1-tissue model, (b)
2-tissue model, (c) full reference tissue compartment model (FRTM), (d) sim-
plified reference tissue model (SRTM), and (e) general sum of exponentials
model. F = free tracer, NS = nonspecifically bound tracer, S = specifically
bound tracer, p = arterial plasma.

2.A.2. 2-tissue model

Depicted in Fig. 1(b), the solution to the PET signal is30

CPET =
K1

α2−α1

(k3+ k4−α1)e−α1t

+ (α2− k3− k4)e−α2t

∗Cp, (3)

where

α1,2=
k2+ k3+ k4∓

(k2+ k3+ k4)2−4k2k4

2
. (4)

The macroparameter referred to as the influx rate constant or
metabolic flux constant Ki is calculated as31

Ki =
K1k3

k2+ k3
. (5)

2.A.3. Full reference tissue compartment
model (FRTM)

Reference tissue models are an alternative to using a known
input function and instead use a reference region with no
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specific ligand binding. Figure 1(c) describes the FRTM.32

The constraints necessary for successful use of this model are:

(i) The reference region should have no specific binding.
(ii) The distribution volume in the tissue of interest equals

that in the reference tissue (K1/k2=K ′1/k ′2).

The signal measured by the PET camera is32

CPET= R1
�
Cref+aCref∗e−α1t+bCref∗e−α2t

�
, (6)

with

a =
(k3+ k4−α1)(α1− k2/R1)(k2+ k3+ k4)2−4k2k4

,

b =
(α2− k3− k4)(α2− k2/R1)(k2+ k3+ k4)2−4k2k4

, (7)

where Cref is the reference region TAC, α1,2 are determined by
Eq. (4), and the tracer delivery ratio R1= K1/K ′1= k2/k ′2. The
four fit parameters are R1, k2, k3, and the binding potential
BPND= k3/k4.

2.A.4. Simplified reference tissue model (SRTM)

The SRTM33 in Fig. 1(d) is a development of the FRTM.
Apart from the two constraints in FRTM, it has one further
constraint that reduces the number of fit parameters from four
to three:

(iii) Specific and nonspecific compartments should be
difficult to distinguish, i.e., the measured TAC can
successfully be fitted to the 1-tissue model. Note that
the two tissue compartments in FRTM [Fig. 1(c)] are
approximated with a single tissue compartment in
SRTM [Fig. 1(d)], with a new clearance rate constant
k2a = k2/(1+BPND).

The measured PET signal is calculated as33

CPET= R1Cref+ (k2−R1k2a)Cref∗e−k2at, (8)

with the three fit parameters R1, k2, and BPND.

2.A.5. Sum of exponentials

Also implemented in d is a very general kinetic
model seen in Fig. 1(e), which comprises a sum of an arbitrary
number of exponentials

CPET=

N
i=1

aie−bit ∗Cp, (9)

where the number of exponentials N is decided by the user,
and the constants a and b are also set by the user.

2.B. Dynamic PETSTEP

2.B.1. Simulation

The  software takes a pristine input image and the
corresponding CT image, adds effects of attenuation, random
and scattered events, counting noise, system blurring, and then

reconstructs it to produce a PET-like image.11 In this paper we
only briefly describe the major characteristics associated to
, and refer the reader to the original paper for more
details. A schematic view of d is seen in Fig. 2. The
items marked “*” in the list below indicate the process of
. The major steps of d are as follows:

1. The user inputs are: a parametric 4D image (3-spatial,
1-kinetic), the kinetic model, the desired time sampling
scheme, an input function, a CT or µ-map of the object,
and simulation and reconstruction settings (voxel sizes,
average activity, etc.). The fourth parametric image
dimension represents the model parameter.

2. Biologic variability can be added to the parametric
image, in the form of Gaussian noise of the model’s
parameters with standard deviation (SD) proportional
to the parameter values. The noise model and SD
proportionally constant can be adjusted by the user.

3. Identical TAC recalculation is avoided by checking the
uniqueness of the parametric image voxels. Each set of
unique voxels is calculated only once, e.g., an image
containing ten different kinetic regions requires only
ten TAC calculations, regardless of image matrix size.
3.1. The TACs of each unique voxel are calculated

using the user specified kinetic model, input
function, and time sampling, according to Eqs. (2)
and (3), or (9) [with or w/o Eq. (1)], or Eq. (6), or
(8). The input function and time vectors are first
upsampled to small equidistant vectors according
to a user defined time step dt and interpolation
method (default linear). The TACs are convolved
and then interpolated back to the user set time
sampling.

3.2. Physical decay can be simulated according to the
specified nuclide halflife. Decay factors for the
ith frame are calculated as

di =
e−λti,start−e−λti,end

λ∆ti
, (10)

where ∆ti is the frame duration, λ is the decay
constant, ti,start the start, and ti,end the end time of
the frame. Calculated TACs are multiplied by the
decay factors.

4*. If the user supplied a CT of the object (Hounsfield
units), it is converted to the corresponding linear
attenuation coefficient map (µ-map, unit cm−1) for
PET photons. The µ-map is blurred by the system’s
point spread function (PSF) and converted to forward
projected attenuation factors (FWAF).

5. A conventional  simulation is performed
sequentially on each frame (3D image) of the
calculated pristine dynamic (4D) image.
5.1*. The pristine 3D image is blurred with the

imaging system’s PSF to mimic the effect of
a real PET system, and forward projected to
produce noise-free sinogram data.

5.2*. The user specified scatter fraction (SF) and
random fraction (RF) are used to properly scale
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F. 2. Flowchart of the major steps of the simulation and model fitting processes in d.

the scatter and random counts (see the Appendix
of the  paper11).

5.3*. The forward projected trues sinogram is atten-
uated by the calculated factors FWAF. The
sinogram counts are scaled according to user set
values. The triangular axial sensitivity is taken
into account (lower counts toward end slices).

5.4*. The attenuated true, random, and scatter sino-
grams are added to form a prompt sinogram, to
which Poisson counting noise is included.

5.5*. The noisy realizations of the sinogram data are
reconstructed by FBP, OSEM, or OSEM with
PSF correction, with optional postfiltering.

6. If physical decay was simulated, each reconstructed
frame is decay corrected by multiplication with the
inverse of the decay factor in Eq. (10).

7. The individually reconstructed frames are joined to
form a single dynamic PET image.

2.B.2. Model fitting

After simulating a realistic dynamic PET data set with
d, the data can be used with any external model fitting
tool, such as the previously mentioned . To simplify
the use of d, we also included a basic fitting option
however. The user can fit the data to a kinetic model either
on an ROI basis, or voxel-wise to obtain parametric images.
Weighted nonlinear least squares (WNLS) is used to fit image
TACs to the chosen model. Below are the model fitting steps:

1. The user inputs a 4D PET image, kinetic model, input
function, time sampling, initial guess, and optionally
also an ROI mask. Lower and upper bounds for the
estimates can be specified (default all zeros and 100
times the initial guess, respectively), and desired solver
algorithm (default trust-region-reflective, see the
documentation for available solvers).

Medical Physics, Vol. 43, No. 6, June 2016
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F. 3. The voxelized brain phantom used in the simulations, consisting of
nine regions with realistic TACs. Specifically, the blood region was assigned
the input function Cp and all tumor regions were each assigned the same
CPET. The spherical regions are labeled with their respective diameter in mm.

2. Frame weights are either provided by the user or
calculated according to a model. Available models are:

w1, i = 1,

w2, i =
1
s2 ,

w3, i = d2
i ,

w4, i =
di

∆tiCi
,

w5, i =
∆tie−λti

Ci
,

w6, i = ∆tie−λti, (11)

where i denotes frame number, ti is the midframe time,
s2 the estimated (or known) frame variance, Ci the
TAC value, and di the decay factor of the frame given
by Eq. (10). The calculated weight vector is finally
normalized to one.

3. The dynamic data, input function, and weight vectors are
upsampled via linear interpolation to a small equidistant
sampling dt, determined as the smallest time step in the
provided time sampling. TAC values earlier than the
first data time point are set to zero. Interpolated data
time points that precisely overlap the original points
retain the value of the original data point’s weight.
For noncoincidental interpolated points, the weights
are linearly interpolated by the surrounding original
points.

4. The upsampled 4D data are WNLS fitted according
Eqs. (2) and (3), or (9) [with or w/o Eq. (1)], or Eq. (6)
or (8), with calculated or supplied weights. The result
is one parameter set per ROI or per voxel (parametric
image).

2.C. Simulation experiments

2.C.1. Monte Carlo simulation

The MC software  (4 Application for Tomo-
graphic Emission, v5.0)34 was used to perform 15 replicates
of a complete dynamic 3D brain PET scan with a previously
validated35 GE Discovery LS PET (DLS) camera (18 detection
rings, 672 BGO crystals per ring, crystal size 4×8×30 mm,
transaxial FOV 550 mm, axial FOV 152 mm).

The digital BrainWeb head phantom36 was used, and
since we have described TAC generation and dynamic 

T I. Kinetic parameter values of inserted tumors (Ref. 38).

K1 k2 k3 k4 Vp Ki
a

(ml ·g−1 ·min−1) (min−1) (min−1) (min−1) (ml·g−1) (ml ·g−1 ·min−1)

0.071 0.091 0.047 0.018 0.086 0.024

aValue calculated by Eq. (5).

simulations with this phantom in previous studies,26,37 they
will only briefly be described here. The phantom consisted of
nine materials as presented in Fig. 3, with seven homogenous
spherical tumors of diameters from 3 to 30 mm distributed in
both the right and left hemisphere (14 tumors in total), and a
central 25 mm spherical blood region. The blood region was
assigned a realistic input function Cp which was generated
using  (v.8.1.0, The MathWorks, Inc., MA, USA). All
other tissues in the head were also assigned realistic tissue
TACs (TTACs) CPET, generated according to the 2-tissue
model. Specifically, the TTAC applied to all tumor regions was
generated with realistic parameters for gliomas studied with
18F-FLT PET.38 The values are seen in Table I. This noiseless,
nondecayed 4D image set will be referred to as TRUE.

Fifteen simulation replicates of the setup were performed
with a PET acquisition time of 60 min. Obtained true counts,
SF, and RF are seen in Table II.

One previous  simulation data set for normalization and
one for calibration were also used, as described in previous
publications.26,37

2.C.1.a. Image reconstruction. The list-mode true+scat-
tered coincidences from were binned into 3D sinograms35

and reconstructed using one-step-late OSEM as implemented
in  (v.2.1).25 Reconstruction settings and postfilter are
seen in Table II. The OSEM settings were chosen to
make sure that the tumor ROI values had converged, and
corrections were made for normalization, decay, attenuation,
and scatter.

For the AC, the BrainWeb phantom was converted to
a µ-map for 511 keV photons in the respective phantom
materials. The normalization sinogram was created from

T II. Values obtained from the MC simulation and used as input in
d, plus shared reconstruction settings.

Item Value

True counts 0–7 ·106/frame
SF 0.289
RF 0.020
Radial bins 283
Projection angles 336
OSEM iterations 5
OSEM subsets 12
Postfilter XY 6 mm Gaussian
Postfilter Z [1 2 1]/4
Frames 6 × 5 s, 3 × 10 s, 3 × 20 s, 2 × 30 s,

2 × 60 s, 2 × 150 s, 10 × 300 s
Reconstructed matrix 165 × 165 × 35
Reconstructed voxel size 2 × 2 × 4.25 mm
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the normalization simulation data which were binned into a
sinogram,11 and the scatter estimation sinogram was created
in , using the implemented SSS algorithm.

The dynamic PET data were reconstructed into dynamic
image sets with 28 frames according to Table II, making
a total of 60 min, and all images were finally calibrated to
Bq ·ml-1.

2.C.2. dPETSTEP simulation

Fifteen replicates of the dynamic PET scan performed
in  were simulated in d according to the steps
described in Sec. 2.B.1. The phantom used as a dynamic image
input in  (Fig. 3) was used as the corresponding parametric
image input in d, resulting in the intermediate pristine
image TRUE with decay. The phantom’s transaxial dimen-
sions were padded with zeros to make it a square 331×331
matrix (resulting in a reconstructed 165× 165 matrix with
2×2 mm voxels). The axial dimension was resampled from a
175 (slice width 1 mm) to a 35 matrix (slice width 4.25 mm),
according to the DLS axial sampling.

The µ-map used in was used in d for attenuation
and its correction. Simulation and reconstruction settings
were set to the same as the MC simulation (Table II)
with a few additional settings seen in Table III according
to the measured DLS camera properties.35 Note that the
reported camera sensitivity was 6.44 cps·kBq−1·ml, for a
maximum allowed ring difference of 18 (324 2D sinograms).
Here we used a maximum ring difference of 11 (265
2D sinograms), decreasing the sensitivity to 6.44 · 265/324
= 5.27 cps·kBq−1·ml.

2.C.3. Plain TAC simulation

As mentioned in the Introduction, a common way to
simulate dynamic PET is by simply adding Gaussian noise to
a pristine TAC, or adding Poisson noise to a pristine sinogram.
As a test of the added value of d compared to the plain
TAC approach, 15 replicates of Gaussian-noised dynamic
images were simulated. Each voxel TAC C∗ of TRUE was
Gaussian-noised individually by adding the noise distribution
η to C∗,39

ηi = S ·rand ·


C∗i e−λti

∆ti
,

Ci = C∗i +eλtiηi. (12)

The variable rand is a random number from a Gaussian
distribution with zero mean and variance equal to one. The
scale factor S determines the magnitude of the noise, and was

T III. Additional settings for d (Ref. 35).

Item Value

Sensitivity 5.27 cps·kBq−1·ml
PSF 5.1 mm
dt (convolution time step) 0.5 s

here set to 370. The value was found by first doing a coarse
estimate of suitable noise level by visual inspection of the
images and noise properties, followed by stepping it from
320 to 430 in steps of 10. The histogram of noise properties
(Sec. 3, Fig. 8) was compared by the root mean squared error
(RMSE). The scale factor was chosen to yield the minimum
RMSE between the GAUSS and MC histograms. Again,
15 replicates were simulated and the individually noised
TACs were joined to dynamic images which were postfiltered
like all other simulations. The set will be referred to as
GAUSS.

2.D. Kinetic parameter estimation

For both the MC as well as the d simulations,
the input function Cp was image-derived from a spherical,
25 mm diameter ROI covering the true blood region. TTACs
were derived from each voxel of the dynamic image. Kinetic
parameters were estimated by WNLS fitting of each of the
TTACs to the compartment model as implemented in d
(Sec. 2.B.2), with frame weights w6 according to Eq. (11).40

All five kinetic parameters values were initialized as 0.01, for
both MC and d. Ki was calculated according to Eq. (5).

2.E. Evaluating simulations

For all analyses, the zero background was masked off and
omitted, as well as three end slices due to known end slice
issues in  ( user’s guide v.2.1). The RMSE of the ith
frame for the MC, d or GAUSS simulations, compared
to TRUE, are calculated as

RMSEi =

 n
j=1

�
SIMi, j−TRUEi, j

�2

n
, (13)

where SIM is the replicate average of the simulated data, j is
the voxel, and n is the total number of voxels studied.

Normalized difference maps D are calculated as

Di, j =

�
SIMi, j−REFi, j

�

REFi, j
, (14)

where REF is any reference image, here either TRUE or the
average (15 replicates) of the MC data. The nonparametric
two-sample Kolmogorov–Smirnov (KS) test41 can be used to
compare two sampled histograms of unknown distributions. It
uses a measure of the distance between the two histograms to
reject or keep the null hypothesis that the samples come from
the same distribution, depending on how different they are in
shape and location.

3. RESULTS

The time required to perform 15 replicate d simula-
tions of the 331×331×35-sized input parametric image of size
1×1×4.25 mm, 28 frames, was 36 min (of which 1.4 s for the
pristine 4D image calculation, and 19 s overhead time) on ten
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F. 4. Reconstructed early, middle, and last frame from both MC (left
column) and d (right column) simulations.

2.9 GHz CPUs with the settings shown in Table II. For a single
replicate, this corresponds to roughly 24 min/core computation
time. In contrast, one replicate of the  MC simulation
required about 3300 h/core on the computer cluster Akka
(Intel Xeon quad-core L5420 CPUs), HPC2N collaboration,
Umeå University.

The reconstructed frame numbers 2, 14, and 28 of 28 (early
at 5–10 s, middle at 2.5–3 min, and last at 55–60 min) from
one of the 15 MC and d simulations are seen in Fig. 4.
The relative RMSE per frame calculated by Eq. (13) is shown
in Fig. 5. As seen, the RMSE of d conforms better
with MC compared to GAUSS, indicating more similar noise
properties. The frame average RMSE of d images was
within 4% of the MC images, while the RMSE of GAUSS
images was within 11% of MC.

Difference maps by Eq. (14) of d and GAUSS
relative MC are shown in Fig. 6. As can be seen for d,

F. 5. RMSE relative TRUE of all frames of the three simulation sets.

F. 6. Difference maps for early, middle, and last frame, relative the respec-
tive MC images.

the differences appear to be mostly homogeneously noisy
throughout the phantom, increasing somewhat toward the
edge. For GAUSS, the difference map is less homogenous
and shows more traces of the underlying image structures.
Figure 7 shows the relative differences between the estimated
values and the TRUE values [Eq. (14)] for all voxels of the
2nd, 14th, and 28th frame. The average relative difference
over all frames was 24%, 24%, and 21% for MC, d,
and GAUSS, respectively. All three medians were zero. Thus,
the bias in d images matched that of MC, whereas
GAUSS differed by 3% points. The image noise profile in
d images compared to MC images was very similar,
which can be seen in the scatter plot histograms of Fig. 8,
where 2D histograms (size 50×50) of the voxel SD are shown
as a function of voxel mean value for the three frames, as well
as all frames (0–60 min). The SD and mean were calculated
across the 15 simulation replicates. The histogram differences

F. 7. Differences relative TRUE for three frames. Boxes represent one SD,
whiskers the 25th and 75th percentile, the full line is the mean, and the dashed
line the median.
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F. 8. Logarithmic 2D histograms of scatter plots of voxel SD vs average activity (across 15 replicates), for early, middle, last, and all frames of all voxels of
reconstructed images. Top row: MC, middle row: d, bottom row: GAUSS.

between MC and d and MC and GAUSS are seen
in Fig. 9. The properties of the noise in d appear
very similar to those found in the MC images. It was found
that the noise profiles of GAUSS deviated more noticeably
from the MC simulation, as can clearly be seen in Fig. 9.
Similarly to the dynamic image analysis, Fig. 10 depicts the
noise profiles in fitted parametric images, where data outside
the 1st–99th percentile were omitted to keep the histograms
more dense.

Figure 11 shows the average (across the 15 replicates)
histograms of an ROI covering the largest two 30 mm tumors,
for both MC and d, indicating similar noise profiles.
The ROI was eroded by three voxels to avoid regions with
high partial volume effects. The optimal number of bins
used was calculated using the Freedman–Diaconis rule.42

Comparisons of the d to the MC histograms using
the KS test concluded that they did not differ significantly
for any frame (p < 0.01). Figure 12 shows the tumor ROI

F. 9. Logarithmic 2D histogram difference of voxel SD vs average activity (across 15 replicates), for early, middle, last, and all frames of all voxels of
reconstructed images. Top row: d-MC, bottom row: GAUSS-MC.
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F. 10. Logarithmic 2D histograms of scatter plot of voxel SD vs mean value (across 15 replicates) of parametric images from both MC and d
simulations. Parameter units are found in Table I. Top row: MC, middle row: d, bottom row: d-MC.

histograms of parametric images with optimal number of bins.
Again, KS tests for the six histogram pairs found no significant
differences between d and MC (p < 0.01).

The fitting implemented in d was verified against
, where simulated tumor ROI data were also fitted, using
the same input. The fitted parameters agreed well despite
using different estimators with resulting parameter estimates
that were within each other’s error bars (figures not shown).
Furthermore, the solving of the model equations was verified
by  II, where the same input generated consistent TACs
for d and  II within round-off errors (figures not
shown).

F. 11. Average tumor ROI histogram for three different frames (early,
middle, and last) for MC (left column) and d (right column).

4. DISCUSSION

As we have shown, both by tumor ROI histograms and
as well as voxel-wise scatter plot histograms, image noise
properties originating from d are very similar to those
obtained from MC simulations. Going one step further and
fitting the data to a compartment model also yields very similar
results to MC.

The total computation time of d was around
24 min/core (per replicate), compared to the equivalent
MC simulation requiring about 3300 h/core (excluding the
reconstruction time of another couple of hours). d is
thus more than 8000 times faster. One further note on timing
is that OSEM takes more time compared to FBP. The same
d simulation with FBP instead of OSEM required less
than 3 min/core per replicate (results not presented). However,
we emphasize that d uses simplified approximations of
camera system properties, scatters, randoms, etc., and does
not feature true photon transport. As a result, d is
appropriate only when these details or a high level of accuracy
are unnecessary. Furthermore, neither  nor d
simulates full 3D data. This is accounted for by adjusting
the number of counts from the 2D projection data to obtain
similar noise equivalent counts as measured in 3D. However,
slice correlations found in real PET data are not present in
d data. This effect is however very reduced in real data
when applying axial postfiltering.

The obtained noise properties (Fig. 8) indicate that the
Gaussian approach yields results that deviate, at times to
a rather large extent, from MC. Furthermore, the difference
maps between any simulation method and MC should ideally
be uniformly noisy, indicating that all regions of the phantom,
regardless of level of uptake and location, get realistic noise
and uptake properties and hence are unbiased. The difference
maps clearly show that GAUSS results in images that are
more biased compared to d. The differences are more
noticeably dependent on the underlying object structures,
meaning that although the total RMSE or other measures
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F. 12. Average tumor ROI histograms for the six kinetic parameters for
MC (left column) and d (right column). Parameter units are found in
Table I.

of the total image results may be rather good, the bias and
noise can differ a lot throughout the image. For example, the
simulated image can have realistic properties in one region
of the phantom, and rather unrealistic in another. It is worth
noting again that all images have been postfiltered by the
same filter. A smaller transaxial filter than the 6 mm used
here would likely result in difference maps with even more
pronounced underlying structures showing, since there would
be less smearing of the image.

The differences from TRUE were on average nonzero
(Fig. 7), implying that the simulation plus reconstruction
process introduces bias. The bias throughout the frames
is of similar shape and size for d and GAUSS as

MC however, indicating that the introduced bias is realistic
and expected. Postfiltering followed by background masking
discarded some individual voxels which caused a small bias,
and the nonnegativity constraint for all images also introduces
bias. We thus present Fig. 6 relative MC and not TRUE,
because we are interested in producing PET-like images that
include realistic adverse effects (i.e., count noise, resolution
loss, etc., as found in MC) rather than unrealistic ideal images
(i.e., TRUE).

The Gaussian approach did not produce as realistic
noise properties as d, which should be taken into
consideration when deciding on simulation method for the
intended use. The computation time for GAUSS was about 7
s/core however, compared to the d simulation which
required about 24 min/core (per replicate).

Some peculiar patterns were found in the parametric
image scatter plots in Fig. 10. It is reassuring, however,
that odd clusters are visible in both the MC and d
simulations. When studying the absolute parameter values
in the histograms of Fig. 12, one notices that some values
are rather far from the true values (Table I). The parameter
estimations are sensitive to the initial guesses, frame weights,
fitting method, constraints, and more. Here we used start
guesses of 0.01 for all parameters. Other guesses could likely
result in better estimations. Moreover, since the parameters
are correlated, heavy over/underestimation of one parameter
coupled with another being largely over/underestimated, may
still produce an overall good fit. The aim of this study was not
to develop/evaluate fitting algorithms or use the estimates, but
to evaluate the properties of simulated d images. Thus,
the values of parameter estimates were not of interest and not
investigated.

Although only five kinetic models are currently imple-
mented in d, addition of more models is easy due to
the modular nature of the d code. We also note that the
sum of exponentials model [Eq. (9)] can be used to represent
a vast range of kinetic models, by appropriate translation of
model parameters.

There are many sources of uncertainty and bias that compli-
cate the estimation of the “true” kinetic parameters of a tumor
and its surrounding tissue. These can be roughly broken down
by origin into physical and biological sources of uncertainty.
A few of the more prevalent examples of physical origin are
spatial data sampling (i.e., partial volume effect, temporal
data sampling, injected activity, and data postprocessing, such
as image reconstruction and tracer kinetics model selection.
Examples of biological origin are tumor heterogeneity (i.e., the
length scale of the variation of the tumor’s uptake), nonspecific
uptake, involuntary patient motion, abnormal or variable
patient physiology and metabolism, receptor saturation, and
tracer binding/stability. To reduce the uncertainty of the
estimates of the kinetics parameters the researcher has some
control over the data acquisition process. For example, the
data sampling, image reconstruction, compartment model, and
fitting strategies can be altered to improve (or worsen) the
parameter estimates.43 However, the judicious choice of these
parameters often requires knowledge of that same underlying
biology that they are seeking to estimate. To put it simply,
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it is the modeler’s job to choose these parameters that best
reduce the uncertainty and bias of the final estimates. A tool
like d can be a great aid when tackling these questions.
A tool such as d allows researchers to investigate both
physical and biological phenomena such as those mentioned
above, and their effect on dynamic and parametric PET
images. Furthermore, d could also be useful in fields
such as dosimetry for improved dose estimation from new
tracers, and in system performance evaluation to help in study
design.

5. CONCLUSION

We have demonstrated that d is able to simulate
realistic 4D PET scans in a fraction of the time taken with a
commonly used MC tool, where noise properties in both the
dynamic images and subsequent parametric images conform
very well to MC data.

We believe d to be very useful for purposes requiring
fast, simple, and realistic results but are less dependent on
highly accurate scatter and random events representation. This
tool is a one-stop solution offering all tools necessary for
complete dynamic PET simulations including solving model
equations, system response, count noise, scatters and randoms,
image reconstruction methods, and parameter/parametric
image estimation. d can be downloaded for no cost
from https://github.com/CRossSchmidtlein/dPETSTEP.
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