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Purpose: In this paper, the authors propose a novel efficient method to segment ultrasound images
of the prostate with weak boundaries. Segmentation of the prostate from ultrasound images with
weak boundaries widely exists in clinical applications. One of the most typical examples is the
diagnosis and treatment of prostate cancer. Accurate segmentation of the prostate boundaries from
ultrasound images plays an important role in many prostate-related applications such as the accurate
placement of the biopsy needles, the assignment of the appropriate therapy in cancer treatment, and
the measurement of the prostate volume.
Methods: Ultrasound images of the prostate are usually corrupted with intensity inhomogeneities,
weak boundaries, and unwanted edges, which make the segmentation of the prostate an inherently
difficult task. Regarding to these difficulties, the authors introduce an active band term and an edge
descriptor term in the modified level set energy functional. The active band term is to deal with
intensity inhomogeneities and the edge descriptor term is to capture the weak boundaries or to
rule out unwanted boundaries. The level set function of the proposed model is updated in a band
region around the zero level set which the authors call it an active band. The active band restricts
the authors’ method to utilize the local image information in a banded region around the prostate
contour. Compared to traditional level set methods, the average intensities inside\outside the zero
level set are only computed in this banded region. Thus, only pixels in the active band have influence
on the evolution of the level set. For weak boundaries, they are hard to be distinguished by human
eyes, but in local patches in the band region around prostate boundaries, they are easier to be detected.
The authors incorporate an edge descriptor to calculate the total intensity variation in a local patch
paralleled to the normal direction of the zero level set, which can detect weak boundaries and avoid
unwanted edges in the ultrasound images.
Results: The efficiency of the proposed model is demonstrated by experiments on real 3D volume
images and 2D ultrasound images and comparisons with other approaches. Validation results on real
3D TRUS prostate images show that the authors’ model can obtain a Dice similarity coefficient (DSC)
of 94.03%±1.50% and a sensitivity of 93.16%±2.30%. Experiments on 100 typical 2D ultrasound
images show that the authors’ method can obtain a sensitivity of 94.87%±1.85% and a DSC of
95.82%±2.23%. A reproducibility experiment is done to evaluate the robustness of the proposed
model.
Conclusions: As far as the authors know, prostate segmentation from ultrasound images with weak
boundaries and unwanted edges is a difficult task. A novel method using level sets with active band
and the intensity variation across edges is proposed in this paper. Extensive experimental results
demonstrate that the proposed method is more efficient and accurate. C 2016 American Association
of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4950721]
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1. INTRODUCTION

In this paper, we propose a novel efficient method to segment
ultrasound images of the prostate with weak boundaries.

Accurate segmentation of the prostate from ultrasound images
plays an important role in many prostate-related applications
such as the accurate placement of the biopsy needles, the
assignment of the appropriate therapy in cancer treatment, and
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F. 1. An example of Bε(ϕ), ε = 0.1.

the measurement of the prostate gland volume. Prostate cancer
is the second most frequently diagnosed cancer (at 15% of all
male cancers)1 and the fifth most common cancer overall.2

Ultrasound imaging is the main modality for prostate cancer
diagnosis and treatment. For the purpose of prostate cancer
diagnosis and image-guided surgical planning and therapy,
segmentation of the prostate from 2D or 3D ultrasound images
is challenged. Although segmentation can be done manually,
it is time consuming and depends on the experience, skill, and
technique of the radiologists. Computer-aided segmentation
algorithms can reduce the inefficiency caused by manual
segmentation. However, in ultrasound images, the contrast
is low and the intensity is inhomogeneous. Also speckles and
weak edges make the ultrasound images inherently difficult to
be segmented. Segmentation of ultrasound prostate images
becomes a challenging work which is mainly due to the
following three characteristics of ultrasound prostate images.
First, the signal-to-noise ratio is low, thus algorithms relying
on the intensity of single pixel frequently fail to segment
this kind of images. Second, prostate boundaries are usually
weak and texture information between interior and exterior
of prostates is similar. Therefore, most of the segmentation
algorithms based on simple edge detector (e.g., canny edge
detector) could not get satisfying segmentation results. Third,
it is hard to get better segmentation results in apex and base
slices when segmenting 3D TRUS images. Apex and base are
the superior and inferior of a prostate. They are not always
visible in TRUS images.

Prostate segmentation methods can be roughly divided
into three categories: contour and shape based methods,
region based methods, and classification based methods
(supervised and unsupervised). Contour and shape based
methods use contour and shape information to segment the
prostate images. Nouranian et al.3 proposed a multiatlas
based fusion framework to automatically delineate prostate
boundaries in ultrasound images. A pairwise atlas agreement
factor is introduced in the atlas selection stage. Ladak et al.4

used a discrete dynamic contour (DDC)5 model with four
user selected points to segment the 2D prostate images.
The position of a contour is represented by discrete points

known as the vertices. The moving of the vertex points
is guided by two forces: external force and internal force.
External force is defined by image gradient and internal
force restricts the smoothness of the contour. Although DDC
is time saving, it fails to produce acceptable results in the
areas where the prostate boundaries are missing. Jendoubi
et al.6 used gradient vector flow as external force to drive the
evolving contour toward the prostate boundary. Chiu et al.7

used Mallat’s multiscale edge detection method to calculate
the image gradient and then utilized the image gradient as
external force of the DDC model. Yan et al.8,9 proposed a
statistical shape model to learn the shape statistics from TRUS
sequences. The learned shape statistics are then incorporated
into a deformable contour model. The contour evolution is not
only guided by internal and external forces but also by shape
constraints derived from the shape statistics. In Ref. 10, a
multiresolution based parametric deformable statistical model
of shape and appearance is used to segment the prostate TRUS
images. Local phase information is incorporated to build the
statistical model. Kim and Seo11 used Gabor texture features
and snake-like contour to extract the prostate boundary. In
Ref. 12, the authors proposed a variational formulation based
on deformable super-ellipses and region energy based on
the assumption of a Rayleigh distribution. However, in their
model, there are seven super-ellipse parameters needed to be
optimized which is time consuming and inconvenient.

Region based methods use local intensity or statistics
like mean and standard deviation in the energy minimization
frameworks. Ding et al.13 described a slice-based 3D prostate
segmentation method based on a continuity constraint, im-
plemented as an autoregressive model. Fan et al.14 proposed
a region based level set framework to segment prostate
contours from ultrasound images. Yu et al.15 proposed a slice-
based method for 3D ultrasound image segmentation. The
initial prostate boundaries are automatically determined by
the radial bas-relief method. Then a region-based level set
framework is applied to deform the initial contours. Finally,
the segmented contours on initial frames are propagated to
the adjacent frames as their initial contours until all the
frames are segmented. In Ref. 16, Qiu et al. incorporated
an inherent geometric/axial symmetry shape prior into a
3-D prostate segmentation model. A coherent continuous
max-flow method is used to solve the segmentation model. In
Ref. 17, the symmetry of prostate is incorporated into a level
set framework for 3D end-firing TRUS segmentation. The
segmentation result of one 2D-slice is propagated to assist in
segmenting its surrounding slices. In Ref. 18, the authors built
a coarse-to-fine graph partition scheme to segment the prostate
from 2D ultrasound images. The initial contour obtained by
graph cut segmentation is further refined in a fuzzy inference
framework. The membership of a pixel is determined by the
region statistics.

Classification based methods use a set of training data
with labeled objects as prior information to build a predictor
to assign labels to unlabeled observations. Zhan and Shen19

trained both a Gabor filter based support vector machine
(G-SVM) and a 3D mean-shape model to obtain the texture
and shape information in the images. For a new patient TRUS
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F. 2. Ẽx and ˜Eedge. (a) An example of the edge descriptor. (b) The image intensity extracted from a patch along the normal direction of the prostate boundary
as a 1-D signal. Note that only when x is located on the red point, the edge profile energy achieves its maximum. (c) A simplifying case. Patches are along the
normal directions of the level sets. For fixed patch size, ˜max(Ex) is achieved on the boundary.

sequence, the prior information will guide a 3D deformable
model to the prostate boundaries. Instead of using Gabor filter
bank to extract the prostate feature, Akbari and Fei20 used
wavelet transform for prostate feature extraction. In Ref. 21,
a 3D prostate US segmentation algorithm using patch-based
anatomical features and support vector machines had been
presented and has potential for extension to intrafraction
motion estimation. Ghose et al.22 proposed an algorithm
for automatic prostate segmentation that can be applicable
for prostate brachytherapy. Their approach is based on three
independent 2-D active shape and appearance models that are
generated for central, apex, and base zones. There are many
other algorithms for ultrasound image segmentation; more
related studies can be found in Refs. 23–28.

Various ultrasound prostate segmentation methods have
been proposed in recent years. As we know, it is hard for
existing algorithms to get satisfying segmentation results
while segmenting images with weak boundaries and unwanted
edges. Some of these methods are devoted to incorporate
edge information to get promising segmentation results
(Refs. 6, 7, and 11). However, due to the poor quality of
ultrasound images, they are more sensitive to noise, intensity
inhomogeneities, etc. The prostate contours obtained by those
methods are often incomplete. In this paper, we introduce an
active band term and an edge descriptor term in the modified
level set energy functional. The active band term is to deal
with intensity inhomogeneities in ultrasound images and the
edge descriptor term is to capture the weak boundaries or
to rule out unwanted boundaries. Ultrasound images usually

suffer from intensity inhomogeneities. If one only uses global
image intensity information, it is usually difficult to get desired
prostate boundaries. However, if we focus on the local region
around a prostate boundary, the image intensity around the
prostate boundary is less inhomogeneous and the intensity
difference between the regions inside and outside the prostate
is more significant. Based on this observation, we propose
the active band energy term. Compared to traditional level
set methods, the average intensities inside\outside the zero
level set are only computed in the band region. Thus, only
pixels in the active band have influence on the evolution of the
level set. The active band restricts our method to utilize the
local image information around the prostate contour (in the
band region around the prostate contour). There are always
visually invisible edges and unwanted edges between the
prostate and its surrounding tissues in ultrasound images. As
we know, it is difficult for existing deformable algorithms
to segment images with weak boundaries and unwanted
edges. In our paper, an edge descriptor, which incorporates
edge-based information, is constructed to utilize the intensity
variation in patches along the normal directions of the evolving
contour. It can capture faint details of a prostate boundary
and discriminate the unwanted edges around the prostate
region. Weak boundaries are hard to be distinguished by
human eyes, but they are easier to be detected by our
edge descriptor in local patches in the band region around
prostate boundaries. The edge descriptor calculates the total
intensity variation in local patches paralleled to the normal
directions of the zero level set. When the center points

F. 3. Segmentation result on 2D images. The red contours are done manually by ultrasound experts and the yellow ones are our segmentation results. (See
color online version.)
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F. 4. (a) The segmentation result of the RSF model. (b) The segmentation result of our algorithm.

locate on a prostate boundary, the energy defined by the
edge descriptor achieves its maximum. In order to illustrate
the effectiveness of our proposed method which is capable
of segmenting ultrasound images of the prostate with weak
boundaries and unwanted edges, we carry out experiments
on two kinds of images: 3D TRUS volume images and 2D
images. Three-dimensional image data include 136 2D images
from 13 patients and 2D image data have 100 typical 2D
images with intensity inhomogeneities, weak boundaries, and
unwanted edges. For 3D image data, one difficult task is to
segment apex and base slices of the prostate images. We
provide an initialization strategy to segment apex and base
slices which is based on statistics of the shapes and normal-
ized cross-correlation (NCC). The validation results on these
two kinds of data show the efficiency of the proposed method
in segmentation of images with weak boundaries and un-
wanted edges. For 3D TRUS prostate images, our model can
obtain a Dice similarity coefficient (DSC) of 94.25%±1.02%
and a sensitivity of 93.14%± 2.06%. Experiments on 100
typical 2D ultrasound images show that our method can obtain
a DSC of 95.82%±2.23% and a sensitivity of 94.87%±1.85%.
A reproducibility experiment is done to evaluate the robustness
of the proposed model.

The rest of this paper is organized as follows. In Sec. 2,
we review some related models. Our segmentation model is
formulated in Sec. 3. Then we describe implementation details
of the proposed segmentation algorithm in Sec. 4. In Sec. 4,
we show our experiment results on ultrasound prostate images.
Finally, in Sec. 5, we conclude the paper.

2. REGION BASED ACTIVE CONTOUR MODELS

Chan and Vese29 proposed an active contour model based
on Mumford-Shah30 and level set method.31 Let I :Ω→ R be
the input image and C a closed contour presented by a level set
function ϕ(x), x ∈Ω, that is, CB {x ∈Ω|ϕ(x)= 0}. The region
inside the contour is represented asΩin= {x ∈Ω|ϕ(x)> 0} and
the region outside the contour isΩout= {x ∈Ω|ϕ(x)< 0}. Then
the energy functional of the C-V model can be reformulated
by the level set function

ECV(ϕ,u1,u2) = λ1


Ω

(I−u1)2Hε(ϕ(x))dx

+λ2


Ω

(I−u2)2(1−Hε(ϕ(x)))dx

+µ


Ω

δε(ϕ(x))|∇ϕ(x)|dx, (1)

where µ,λ1,λ2 are fixed positive constants. The first term is the
regularization term, imposing a smoothness constraint on the
geometry of the contour. u1, u2 are two constants that represent
the average intensities inside and outside the contour. Hε(ϕ(x))
is the regularized approximation of the Heaviside function
defined in (Ref. 29)

Hε(ϕ(x))=



1 ϕ(x)> ε,

0 ϕ(x)<−ε,
1
2


1+

ϕ

ε
+

1
π

sin
(
πϕ

ε

)
otherwise.

(2)

F. 5. Segmentation results of 12 ultrasound prostate images. Manual segmentation results are shown in red, and our segmentation results are shown in yellow.
(See color online version.)
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The derivative of Hε(ϕ(x)) is

δε(ϕ(x))=



0 |ϕ(x)| > ε,

1
2ε


1+cos

(
πϕ(x)
ε

)
|ϕ(x)| ≤ ε. (3)

The C-V model is based on the assumption that image
intensity is homogeneous. When the intensity of an image
is inhomogeneous, the C-V model fails to produce acceptable
segmentation results (Ref. 32). Li et al.32 proposed the region-
scalable fitting (RSF) model, which is able to deal with
intensity inhomogeneities in the image due to the use of
local intensity information. By introducing a Gaussian kernel
function, the RSF model draws upon intensity information
in spatially varying local regions depending on the scale
parameter of the Gaussian function.

3. PROPOSED APPROACH

In order to develop an efficient method to segment
ultrasound images of prostates with weak boundaries, we
propose a modified level set model by introducing active band
term and edge descriptor term in the energy functional. The
energy functional of the proposed model consists of three
terms as follows:

E = α1Elocal+α2Eedge+γR(ϕ), (4)

where α1,α2,γ are positive constants. Elocal is an active band
based energy which incorporates local image information in a
banded region around the evolving contours which is described
in Sec. 3.A. Eedge uses intensity information along the normal
directions of the evolving contours which is illustrated in
Sec. 3.B. R(ϕ) is a regularization term keeping the evolving
contours smooth defined by

R(ϕ)=

Ω

δε(ϕ(x))|∇ϕ(x)|dx. (5)

3.A. Definition of Elocal

Ultrasound images usually suffer from intensity inhomoge-
neities. From the experiments on ultrasound prostate images,
we observe that algorithms based on global image information
usually produce oversegmentation results. This is because
all the pixels in an image have influence on the evolution
of the evolving contour. It is difficult for these algorithms
to distinguish tissues having similar intensities with prostate
region. However, if we focus on the local region around the
prostate boundary, the image intensity is less inhomogeneous
and the intensity difference between regions inside and outside
the prostate is more significant. Inspired by Refs. 32 and 33,
we use local intensity information around the evolving contour
in our model. For each point x in a banded region around the

F. 6. Column 1: the segmentation results of two ultrasound images. Column 2: zooming in on details. The red contours are drawn by radiologist, the blue
contours are the segmentation result without the edge descriptor, and the yellow contours are the segmentation result with the edge descriptor. (See color online
version.)
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contour C, we define a local energy functional

Ex =


y∈Px

(I−u(x))2Hε(ϕ(y))dy

+


y∈Px

(I− v(x))2(1−Hε(ϕ(y)))dy, (6)

where the patch Px denotes a neighborhood of x. u(x) and
v(x) are the average intensities of the pixels in a patch inside
and outside the contour, respectively. In order to specify the
tubular region around the contour and analyze our model
rigorously, for a fixed ε, we define a function Bε(ϕ) as follows
(Fig. 1):

Bε(ϕ)=




1 |ϕ| < ε,

1
2


1+

ϕ+2ε
ε
+

1
π

sin
(
π(ϕ+2ε)

ε

)
−3ε < ϕ ≤ −ε,

1
2


1− ϕ−2ε

ε
+

1
π

sin
(
−π(ϕ−2ε)

ε

)
ε ≤ ϕ < 3ε,

0 otherwise.

(7)

We denote by Rε the region where Bε(ϕ(x)) > 0, which is
a banded region around the zero level set of ϕ. Since this
banded region changes during the level set evolving, we call it
an active band. Our local region energy functional is obtained
by calculating Ex on all the points in Rε. Then the energy
functional is

Elocal =


Ω

Bε(ϕ(x))Exdx

=


Ω

Bε(ϕ(x))(


y∈Px

(I−u(x))2Hε(ϕ(y))dy

+


y∈Px

(I− v(x))2(1−Hε(ϕ(y)))dy)dx. (8)

For a fixed level set function ϕ, u(x) and v(x) can be updated
by

u(x)=


y∈Px

Hε(ϕ(y))I(y)dy
y∈Px

Hε(ϕ(y))dy ,

v(x)=


y∈Px

(1−Hε(ϕ(y)))I(y)dy
y∈Px

(1−Hε(ϕ(y)))dy . (9)

3.B. Edge descriptor

Due to the poor quality of ultrasound images, some
parts of a prostate boundary are often not clear. Also
there are unwanted edges between the prostate and its
surrounding areas. Most of the traditional methods fail
in segmentation of the prostate from ultrasound images.
In order to detect weak boundaries and avoid unwanted
edges, we incorporate edge-based information into our energy
functional.

The normal prostate gland has a homogenous, low-level
uniform echo pattern. In ultrasound prostate images, the
prostate regions are usually darker than their surrounding

areas. Therefore, the intensity of pixels inside a prostate region
is smaller than that of the pixels surrounding it. The intensity
transition from inside to outside a prostate is from dark to
bright. For each ϕ, at any point x on ϕ= 0, we introduce the
following energy function:

Ẽx =


y∈P̃x

H(ϕ(y))( ˜v(x)− ˜u(x))dy,

which is taken as an edge descriptor. Here P̃x is a patch
along the normal direction of ϕ and centered at x. The size of
P̃x is (2m+1)×3,(m > 1). m is a positive integer chosen by
users. ˜u(x) and ˜v(x) are the average intensities in P̃x∩Ωin and
P̃x ∩Ωout, respectively. Ẽx describes the average intensities
difference between P̃x∩Ωin and P̃x∩Ωout. We summate Ẽx on
all the points on ϕ= 0 to get an energy functional to describe
boundary intensity difference, which has the following form:

˜Eedge = −


ϕ=0

Ẽxdx

= −


ϕ=0


y∈P̃x

H(ϕ(y))( ˜v(x)− ˜u(x))dydx. (10)

Since we need to minimize the total energy functional, a minus
sign is added.

In order to establish a variational framework, we extend the
˜Eedge on ϕ= 0 to an energy on Rε which is defined by

Eedge = −

Rε

Ẽxdx

= −

Ω

Bε(ϕ(x))


y∈P̃x

H(ϕ(y))( ˜v(x)− ˜u(x))dydx. (11)

Note that lim
ε→0

Eedge= ˜Eedge. As ϕ is evolving to the true prostate
boundary, Eedge approaches to its minimum. In other words,
when the zero level set of ϕ is on the prostate boundary,
Eedge achieves its minimum. We use Fig. 2 to illustrate Ẽx

and ˜Eedge. In Fig. 2(a), we extract one column of the image

Medical Physics, Vol. 43, No. 6, June 2016
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F. 7. The blue dots are the selected initial points. (See color online version.)

intensity in P̃x and show it as a 1-D signal in Fig. 2(b). There
is an obvious intensity gap at the prostate boundary. Thus
Ẽx achieves its maximum when x locates on the prostate
boundary. Minimizing Eedge drives the level set approaching
to the prostate boundary. Figure 2(c) shows a simplifying
situation. The blue line is the true prostate boundary. The
red and yellow lines are two different zero level sets. There
are four patches with center points on these lines. x2 and x4
are on the prostate boundary. Suppose that x1 and x3 move to
x2 and x4, respectively, during the contour evolution. It can be
seen that Ẽx1 < Ẽx2 and Ẽx3 < Ẽx4. So the maximum of Ẽx is
achieved when x is on the boundary. Thus the minimum of
Eedge is achieved when zero level set of ϕ coincides with the
prostate boundary.

3.C. Total variation level set formulation

With the above defined energy terms Elocal and Eedge, we
define the total energy functional in our model as

E = α1Elocal+α2Eedge+γR(ϕ)
= α1


Ω

Bε(ϕ(x))(


y∈Px

(I−u(x))2Hε(ϕ(y))dy

+


y∈Px

(I− v(x))2(1−Hε(ϕ(y)))dy)dx

−α2


Ω

Bε(ϕ(x))


y∈P̃x

H(ϕ(y))( ˜v(x)− ˜u(x))dydx

+γ


Ω

δε(ϕ)|∇ϕ|dx. (12)

By taking the first variation of the energy functional with
respect to ϕ, we can get the updating equation of ϕ (see the
Appendix),

∂ϕ

∂t
= Bε(ϕ(x))(−α1


y∈Px

δε(ϕ(y))(I(y)−u(x))2

−(I(y)− v(x))2dy
+α2


y∈P̃x

δε(ϕ(y))( ˜v(x)− ˜u(x))dy)

+γδεϕ(x)div
(
∇ϕ(x)
|∇ϕ(x)|

)
. (13)

Here B′ε(ϕ(x)) denotes the derivative of Bε(ϕ(x)). B′ε(ϕ(x))
is equal to zero in the banded area, so it does not affect the
evolution of the contour.

It is worth noting that without the second term, Eq. (13)
has the same form with updating equation of ϕ in Ref. 33.
In this case, our model can be seen as a smooth version of
Eq. (6) in Ref. 33. By introducing the function Bε(ϕ(x)),
our method only focuses on the pixels in the tubular region:
{x ∈Ω,| |ϕ(x)| ≤ ε}.

4. EXPERIMENT RESULTS

In order to illustrate the effectiveness of our proposed
method, that is, the proposed method can segment ultrasound
images of prostates with weak boundaries and unwanted
edges, we carry out experiments on two kinds of images: 2D
single images and 3D volume images. We choose 100 typical
2D ultrasound images with intensity inhomogeneities, weak
boundaries, and unwanted edges to evaluate the performance

F. 8. Ultrasound image of the prostate apex and base slice. (a) The boundary of the prostate is visually invisible. (b) The prostate base is influenced by the
seminal vesicle and bladder. Regions with red arrows are the bladder and seminal vesicle. (See color online version.)
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F. 9. (a) The prostate ROI detected by normalized cross-correlation between previous slice and current slice. (b) The segmentation result of mean-shape
initialization on a new apex slice. The red contour is the manual segmentation result and the blue contour is our segmentation result. (See color online version.)

of our method. The proposed segmentation method has also
been tested on 13 3D TRUS sequences from 13 different
patients from Brigham Women’s Hospital. Each 3D volume
consists of 10–14 2D images, totally 136 2D images. The
size of each 2D image is 512× 512 with a pixel size of
0.3125× 0.3125 mm. All the experiments are implemented
with  R2011a on the PC of CPU 2.5 GHz, RAM
6.00G.

4.A. Single image segmentation

Figure 3 shows the evaluation of our segmentation results
on 2D prostate ultrasound images. As we can see in Fig. 4,
segmentation results of RSF model32 and our model on the
same prostate ultrasound images are displayed. The RSF
model has a good performance on inhomogeneous images
like MRI. But for ultrasound images, the RSF model cannot
produce acceptable segmentation results due to the charac-
teristic artifacts of ultrasound images: attenuation, speckles,
shadows, signal dropout, visually invisible boundaries, etc.
Although the RSF model considers the local area at each pixel
x, the evolution of the level sets still uses the information of
all the image pixels. For the prostate ultrasound images in
our experiments, the imaging areas are fan-shaped regions.
Outside these regions, the values of pixels are equal to zero.
If we directly compute the region scalable fitting energy,
the pixels outside a fan-shaped region are also calculated

as mean intensity outside the contour. These pixels greatly
affect the final segmentation results. In our experiments, the
RSF model produces oversegmentation results. In contrast,
in our algorithm, only the pixels in Rε have contribution to
the evolution of the contour. When the contour is evolving
toward the true boundary of the prostate, the average intensities
inside and outside the contour will converge to the local mean
intensities inside and outside the prostate, respectively.

In order to evaluate the performance of our algorithm,
we select 100 typical 2D ultrasound prostate images from
our data set and test our algorithm on them. The 100
typical 2D ultrasound images are usually corrupted with
intensity inhomogeneities, weak boundaries, and unwanted
edges. For each image, the size is 512× 512. The mean
segmentation time of 100 ultrasound images of our method
is about 30 s. We compute the DSC and sensitivity (Se) of
the 100 prostate ultrasound images. The validation results
show that our method can obtain a sensitivity of 94.87%
±1.85% and a DSC of 95.82%±2.23%. The sensitivity and
DSC are computed as follows:

DSC:

DSC= 2(Vm∩Va)/(Vm+Va),
sensitivity:

Se=Vm∩Va/Vm.

F. 10. Segmentation results compared with the manual delineations. The red contours are drawn by radiologist, the blue contours are the segmentation results
using algorithm mentioned in Ref. 6, and the yellow contours are our segmentation results. (See color online version.)
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F. 11. Segmentation results of one TRUS volume sequence, from apex to base. Manual segmentation results are shown in red, and our segmentation results
are shown in yellow. (See color online version.)

As an example, in Fig. 5, we select 12 images from the
100 typical images and show their segmentation results.
Red contours are manually delineated and yellow contours
are our segmentation results. We also compare segmentation
results on the same image with and without Eedge described
in Sec. 3.C. In Fig. 6, the first column shows segmentation
results on two different images. The red contours are delin-
eated by a radiologist. The blue contours are segmentation
results without the edge descriptor. The yellow contours are
segmentation results with the edge descriptor. The second
column shows the details in zoom. Due to the insertion of the
ultrasound probe, there are strong edges between fan-shaped
imaging areas and the probe. Top right shows how the probe
affects the final segmentation results. If the initial contour is
close to the probe, the final contour may stuck into the strong
edges. By properly setting the size of the edge descriptor, we
can avoid this situation.

4.B. Volume segmentation

For volume image segmentation, the proposed method
can be divided into four steps: (1) the midgland, apex,
and base slices are first selected. On the midgland slice,
we select five to eight initial points to generate the initial
contour. (2) The proposed segmentation method is used to
get fine segmentation of the midgland slice by deforming
the initial contours. (3) The segmented results of midgland
slices are then propagated to their adjacent slices and used
as their initial contours. We adopt step (2) to segment these
slices. This procedure is repeated until all the 2D slices
of the 3D volume image are segmented but the apex, base
slices. (4) For any apex or base slice to be segmented, we
use normalized cross-correlation based template matching
method to estimate the position of the prostate in the slice.
Then we use mean-shapes calculated from our data set
as initial contours. Step (2) is also used to segment these
slices.

A 3D ultrasound prostate volume consists of a set of 2D
prostate image slices. Selection of midgland, apex, and base

slices is the first step in our algorithm. In our experiments, we
just take the middle slice as midgland slice and the first and last
slices as apex and base, respectively, in each volume image.
We initialize the proposed algorithm by manually selecting
five to eight points in the midgland slice. The initial points
are located in the following regions of the prostate: anterior,
posterior, right, left, right-posterior, and left-posterior. The
initial points are not required to be located exactly on the
prostate boundary. Actually in our experiments, it is enough to
mark initial points in the near region of the prostate boundary.
Figure 7 shows one example of the initial points.

4.B.1. Initialization and segmentation of apex
and base of the prostate

As we can see in Fig. 8, the prostate is usually invisible in
the apex slices. In the base slices, the prostate boundaries
are often corrupted by other organs like seminal vesicle
and bladder. After finishing step (3), if we directly use the
segmentation results of their adjacent slices as initialization
on apex and base slices, it is very difficult to get correct
prostate boundaries. To solve this, we utilize normalized
cross-correlation based template matching to detect the region
of interest (ROI) in apex and base slices. After we get
the prostate ROI, the initialization strategy is to calculate
the mean shapes of apex and base of the prostate from
our data set, then to align the derived mean shapes to the
ROIs.

Since we have the prostate contours from adjacent slices,
we can use these contours to construct templates which
contain the whole prostate region. Our goal is to find the
best matching patches in the apex and base slices. The best

T I. Coefficients in the proposed algorithm.

Coefficients Patch size Edge descriptor

α1 α2 ε γ P M

Values 0.5 0.5 1.5 1.2 6 User defined
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T II. Comparison of segmentation results in apex of our algorithm and algorithm in Refs. 6 and 7 in three metrics.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Err
Our 6.78 5.53 6.47 9.89 6.44 7.61 10.02 6.84 13.50 9.06 11.21 9.84 11.27

Reference 6 18.25 10.00 19.90 12.57 19.08 18.29 18.21 20.50 23.43 18.50 19.33 17.86 20.03
Reference 7 20.05 13.03 20.96 13.80 20.04 22.00 24.99 23.72 25.68 20.45 22.30 19.28 24.23

Diff
Our 11.31 1.02 5.58 8.4 7.02 6.89 3.27 6.17 9.15 5.83 16.16 4.28 10.20

Reference 6 27.23 17.80 24.72 14.55 43.02 44.53 37.37 26.82 27.37 18.46 39.89 20.01 24.42
Reference 7 30.47 19.64 22.14 16.28 50.04 56.40 44.65 30.71 38.14 20.18 49.20 24.75 29.58

HD
Our 2.44 1.98 2.19 2.80 2.14 2.10 2.22 1.82 4.00 1.87 2.83 2.37 2.80

Reference 6 5.63 4.94 4.61 4.34 4.20 4.38 4.07 5.22 4.01 4.79 5.23 5.03 4.70
Reference 7 7.64 5.03 6.33 5.09 6.73 7.34 6.04 7.35 7.48 7.26 7.90 8.02 7.00

matching patches are the patches having the best displacement
defined in Eq. (14).

The normalized cross-correlation has been commonly used
as a metric to evaluate the similarity (dissimilarity) between
two images. The normalized cross-correlation between the
image I and a template T in the discrete image domain with
a displacement d = (di,d j) can be defined as the point product
of two vectors,

(I,T)(d)=

i, j



δI(i, j),δT(i+di, j+d j)�,

where δI(i, j) is defined as I(i, j) − I(i, j)/∥I(i, j) − I(i, j)∥,
∥ · ∥ is the L2 norm, and δT(i, j) has the same form with
δI(i, j).

For a given image and a template, the best displacement
which corresponds to the maximum of the normal cross-
correlation function is

dbest= argmax
d

(I,T)(d), (14)

where dbest is the best displacement that the template will
move.

Because apex and base of a prostate are not always visible,
we use manual segmentation results of apex slices and base
slices in this stage. While segmenting one image, we randomly
choose six contours of apex and base slices in our data set to
calculate the mean shapes of apex and base. Compared with
statistical shape methods, this is a preprocessing stage. We
only need one mean shape as an initial contour. The mean
shape is computed as follows:

1. Align all the binary shapes. We just take the first
image as reference and simply align other images to the first
one.

2. Computing the mean shape. If {S1,. . .,SN} is a set of
manual segmentation results of apex slices, the mean shape of
apex slice of the ith image is

Mi =
1
N

N
j,i

Sj, i = 1,. . .,N, (15)

where Si,i = 1,. . .,N denote the manual segmentation results of
the apex slices. Mean shapes of the base slices can be obtained
in the same way. After we get the prostate ROI, we can use the
average shape to initialize the segmentation method in step (2).
This step is indicated in Fig. 9.

4.B.2. Experiments on volume images

Figure 10 compares the segmentation results of our method
and the method described in Ref. 6 on the midgland slices. In
Ref. 6, the authors used the gradient vector field (GVF) of the
prostate ultrasound images as external force of a parametric
active contour model. We test their method and the proposed
algorithm on the same slices with the same initializations. The
first row shows a better segmentation result near the midgland
of a prostate. Both algorithms can get the prostate boundary.
But our algorithm performance is better than that of the method
in Ref. 6 compared with the manual segmentation results. For
a slice near the base, the method in Ref. 6 fails to capture the

T III. Comparison of segmentation results in base of our algorithm and algorithm in Refs. 6 and 7 in three metrics.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Err
Our 6.40 8.31 5.00 7.66 9.26 5.44 4.6 10.97 6.53 3.97 9.51 7.68 11.43

Reference 6 14.34 12.96 11.86 13.53 19.27 9.67 12.61 13.45 9.44 14.15 15.26 14.49. 13.00
Reference 7 16.54 17.02 15.09 19.15 19.98 13.11 14.14 15.23 15.86 16.35 18.20 19.44 20.77

Diff
Our 7.05 10.60 5.88 12.06 14.28 4.91 3.02 4.60 5.35 6.81 6.50 12.20 9.82

Reference 6 21.95 25.74 25.02 27.37 47.32 16.29 21.18 22.35 27.46 17.28 22.64 22.00 25.22
Reference 7 27.74 26.01 26.34 28.80 48.23 26.71 29.49 26.75 28.14 26.71 29.22 22.79 26.80

HD
Our 2.33 3.53 3.11 2.37 2.83 2.56 2.31 4.05 2.70 1.98 2.19 2.67 3.33

Reference 6 4.85 6.73 6.20 6.13 8.20 4.91 6.25 5.03 4.91 5.82 5.74 6.88 6.90
Reference 7 5.93 8.33 6.94 6.59 8.64 5.26 6.37 6.55 7.37 8.20 7.95 8.62 9.00
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T IV. Comparison of segmentation results in midgland of our algorithm and algorithm in Refs. 6 and 7 in three metrics.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13

Err
Our 4.71 3.26 3.33 2.36 2.51 2.15 2.31 3.21 2.36 3.97 5.46 4.76 8.83

Reference 6 10.46 9.70 11.86 6.26 10.5 8.43 6.20 10.24 8.55 9.82 10.06 10.27 12.00
Reference 7 12.17 10.71 6.61 8.47 11.9 9.64 9.68 11.35 9.89 11.20 12.23 12.79 14.85

Diff
Our 0.47 1.61 2.31 1.07 2.10 0.43 0.79 1.20 1.26 1.38 2.26 2.57 4.10

Reference 6 17.56 20.02 9.00 9.02 20.17 14.91 12.56 10.06 9.90 11.42 18.83 19.81 22.26
Reference 7 20.92 21.24 13.58 14.23 22.01 16.34 16.65 15.75 13.99 14.82 20.69 20.11 24.58

HD
Our 2.57 2.18 1.56 1.25 0.99 1.88 1.13 1.82 1.25 1.33 2.67 1.77 2.67

Reference 6 5.30 4.69 4.58 4.34 3.22 3.91 3.38 4.04 4.88 3.29 5.90 3.86 6.02
Reference 7 5.32 5.20 3.80 5.09 4.86 4.06 3.95 5.51 5.85 5.00 6.11 4.95 7.91

prostate boundary when the nonprostate area appears similar
texture information with the prostate area.

Segmentation results of the proposed method on one 3D
volume sequence are shown slice by slice in Fig. 11. Table I
indicates the values of parameters in our algorithm. The length
of the edge descriptor m is defined by a user. We can choose
large m to deal with fake boundaries. Smaller m is more
efficient for weak boundaries. During our experiments, we
have found that m = 6 can get good segmentation results
for most of our images. For quantitatively evaluating the
performance of the proposed segmentation method, the
following metrics are used.

Error: the absolute magnitude of the nonoverlapping
regions between two delineated prostates is defined as

Err=
|Aa+ Ab− Aa∩b |

Aa+ Ab
×100%.

Difference: the difference between two delineated prostates is
defined as

Diff=
Aa− Ab

Ab
×100%.

Hausdorff distance:

HD=max(supinf d(Ca,Cb),supinf d(Cb,Ca)).
Volume difference:

VD= |Va−Vb |.
Here Aa,Ab,Va,Vb are the areas and volumes of two

contours a and b. d(Ca,Cb) is the distance between two
contours a and b. We compare our algorithm with the method
in Refs. 6 and 7 using the metrics above. Tables II and III
show accuracy comparison in apex and base slices. Both
Refs. 6 and 7 are based on the edge information. Reference
7 needs initial points very close to the prostate boundaries.
In our experiments, the initial points are not strict. Thus,

T V. Comparison with other 3D TRUS segmentation methods.

Reference 16 Reference 17 Reference 20 Our

DSC (%) 93.2 ± 2.0 93.1 ± 1.6 90.3 ± 2.3 94.03 ± 1.50
SE (%) — 93.0 ± 2.0 87.7 ± 4.9 93.16 ± 2.30
VD (cm3) 2.4 ± 1.6 2.6 ± 1.9 — 2.61 ± 0.63

their methods could not get promising segmentation results,
especially in the apex and base slices using our initialization.
Table IV compares accuracy of segmentation of our algorithm
and algorithms in Refs. 6 and 7 in midgland slices.

Also we compute DSC and sensitive (Se) on the whole data
set. The validation results show that our method can obtain a
sensitivity of 93.16%±2.30, a DSC of 94.03±1.5%, and a Vd
of 2.61±0.63 cm3.

It is difficult to compare our results to other results from
segmentation algorithms using 3D TRUS images due to the
differences of data sets used and evaluation metrics. However,
the DSC and sensitivity (Se) of our algorithm are compared
with the best segmentation accuracy reported in Refs. 16, 17,
and 20 (Table V). The mean sensitivity of 93.16%±2.30%
obtained by our algorithm is better than 87.7%±4.9% obtained
in Ref. 17. The mean DSC of 94.03%±1.5% of our method
is comparable to a sensitivity of 93.2%± 2.0% obtained in
Ref. 16. The mean volume difference of 2.61±0.63 cm3 is
comparable to a volume difference of 2.6±1.9 cm3 obtained
by Ref. 17. Our method shows advantage of accuracy in some
sense.

Five images are randomly selected for evaluating the
reproducibility and initialization robustness of the proposed
algorithm. Each image is segmented five times with different
initializations. Figure 12 shows the DSC for five repeated
segmentations. This experiment shows that the DSC values

F. 12. DSC of each image with different initializations.
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F. 13. Segmentation results of the ultrasound thyroid nodule images. Yellow contours are delineated by a radiologist. Red contours are segmentation results
of our model.

are consistent and show very small variations across different
initializations.

Our segmentation model can also segment tissues having
similar sonographic appearance with the prostate (e.g., cysts
and thyroid nodules). We apply our model to segment the
ultrasound thyroid nodule images. Figure 13 shows the
segmentation results.

5. CONCLUSION

In this paper, a novel efficient segmentation method for
ultrasound images of prostates with weak boundaries is
proposed. As we know, most of the existing methods cannot
get promising prostate contours when segmenting ultrasound
images with weak boundaries and unwanted edges. The energy
functional of the proposed model is mainly composed of a
local region based energy and an edge-based energy. Our
method can capture local image information in an active
band around the zero level set. The local region based
energy is determined by local image intensity in an active
band. Furthermore, we incorporate edge-based information
to exploit the intensity variation in patches along the normal
directions of the evolving contour, which is helpful in detecting
of weak boundary and avoiding unwanted edges in the
ultrasound images. Also an initialization strategy based on
the mean shapes and the normalized cross-correlation for
apex and base slices is given. In order to illustrate that the
proposed method can segment ultrasound images of prostates
with weak boundaries and unwanted edges, we have carried
out experiments on both 3D volume images and 2D images.
Comparisons with other approaches have been performed
to show the effectiveness and advantages of the proposed
method. Our method has the potential to be extended to other
applications where the objects to be segmented have similar
sonographic appearance with the prostate. Since we do not use
any acceleration or any fast algorithm in our method, the mean
segmentation time of the proposed method is unsatisfactory
in some sense. We would like to explore the possibilities of

accelerating our algorithm with GPU based programming to
assist in TRUS guided biopsies in the future.
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APPENDIX: DERIVATION OF THE GRADIENT FLOW

The total energy functional in our model is

E = α1Elocal+α2Eedge+γR(ϕ)
= α1


Ω

Bε(ϕ(x))(


y∈Px

(I−u(x))2Hε(ϕ(y))dy

+λ2


y∈Px

(I− v(x))2(1−Hε(ϕ(x)))dy)dx

−α2


Ω

Bε(ϕ(x))


y∈P̃x

H(ϕ(y))( ˜v(x)− ˜u(x))dydx

+γ


Ω

δε(ϕ)|∇ϕ|dx. (A1)

By taking the first variation of the energy functional with
respect to ϕ, we can get the updating equation of ϕ,

∂ϕ

∂t
= −{α1Bε(ϕ(x))(


y∈Px

δε(ϕ(y))(I(y)−u(x))2
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−(I(y)− v(x))2dy
+α1B′ε(ϕ(x))(


y∈Px

Hε(ϕ(y))(I(y)−u(x))2dy

+


y∈Px

(1−Hε(ϕ(y)))(I(y)− v(x))2dy

−α2Bε(ϕ(x))(


y∈P̃x

δε(ϕ(y))( ˜v(x)− ˜u(x))dy)

+α2B′ε(ϕ(x))(


y∈P̃x

Hε(ϕ(y))( ˜v(x)− ˜u(x))dy))}

+γδεϕ(x)div
(
∇ϕ(x)
|∇ϕ(x)|

)
, (A2)

where B′ε(ϕ(x)) denotes the derivative of Bε(ϕ(x)). B′ε(ϕ(x))
is equal to zero in the banded area, so it does not affect the
evolution of the contour. Then the updating equation of ϕ
becomes

∂ϕ

∂t
= Bε(ϕ(x))(−α1


y∈Px

δε(ϕ(y))(I(y)−u(x))2

−(I(y)− v(x))2dy
+α2


y∈P̃x

δε(ϕ(y))( ˜v(x)− ˜u(x))dy)

+γδεϕ(x)div
(
∇ϕ(x)
|∇ϕ(x)|

)
.

The partial differential equation (13) can be implemented with
finite difference scheme. All the spatial partial derivatives
∂ϕ/∂x and ∂ϕ/∂ y in our model are approximated by the
central difference. The temporal partial derivative ∂ϕ/∂t
is approximated by the forward difference. The level set
evolution equation can be discretized by the following
difference equation:

ϕn+1
i, j −ϕ

n
i, j

∆t
= F(ϕn

i, j)+R(ϕn
i, j), (A3)

where F(ϕn
i, j) and R(ϕn

i, j) are the numerical approximation
of the first two terms and last term of the right hand side in
Eq. (13). ∆t is the time step. By the Courant–Friedrichs–Lewy
(CFL) condition,34 ∆t is given by ∆t = 0.5/[max(F+R)+ε].
The space step h= 1 for the digital images. The second-order
central differences are defined as follows:

ϕx =
ϕn
i+1, j−ϕ

n
i−1, j

2h
,

ϕy =
ϕn
i, j+1−ϕ

n
i, j−1

2h
,

ϕxx =
ϕn
i+1, j+ϕ

n
i−1, j−2ϕn

i, j

h2 ,

ϕy y =
ϕn
i, j+1+ϕ

n
i, j−1−2ϕn

i, j

h2 ,

ϕxy =
ϕn
i+1, j+1+ϕ

n
i−1, j−1−ϕ

n
i−1, j+1−ϕ

n
i+1, j−1

h2 . (A4)

F. 14. Banded region defined by Bε(ϕ(x)) and patches in it.

The corresponding curvature div(∇ϕ(x)/|∇ϕ(x)|) in the regu-
larization term R(ϕn

i, j) is calculated by

κ = div
(
∇ϕ(x)
|∇ϕ(x)|

)
=
ϕxxϕ

2
y−2ϕx, yϕxϕy+ϕy yϕ

2
x

(ϕ2
x+ϕ

2
y) 3

2
. (A5)

We adopt the narrow band method proposed by Adalsteins-
son and Sethian35 to solve Eq. (A1). Bε(ϕ(x)) defines a banded
region,

Rε = {x ∈Ω,d(x,C) ≤ ε},
where d is the distance between point x and contour C.
Figure 14 shows the banded region and patches in it.

After getting the banded region around the contour C,
patches P and P̃x can be extracted. The local interior and
exterior mean intensity values u and v in each patch P and the
interior and exterior mean intensity values ũ and ṽ in P̃x can
be calculated. Then F(ϕn

i, j) is

F(ϕn
i, j) = α2


y∈P̃x

δεϕ
n
i, j(y)(ṽ (ϕ

n
i, j

)− ũ(ϕn
i, j

))dy

+Bεϕ
n
i, j(x)(−α1


y∈Px

δεϕ
n
i, j(y)(I(y)−u(ϕn

i, j))2

−(I(y)− v(ϕn
i, j))2dy). (A6)

We normalize Fn = F/max(F) during implementation. To
prevent the level set function from becoming over flat, we use
the reinitialization technique suggested by Sussman et al.36
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