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Abstract

Background: Various methods are currently used for the early detection of West Nile virus (WNV) but their
outputs are not quantitative and/or do not take into account all available information. Our study aimed to test a
multivariate syndromic surveillance system to evaluate if the sensitivity and the specificity of detection of WNV
could be improved.
Methods: Weekly time series data on nervous syndromes in horses and mortality in both horses and wild birds
were used. Baselines were fitted to the three time series and used to simulate 100 years of surveillance data.
WNV outbreaks were simulated and inserted into the baselines based on historical data and expert opinion.
Univariate and multivariate syndromic surveillance systems were tested to gauge how well they detected the
outbreaks; detection was based on an empirical Bayesian approach. The systems’ performances were compared
using measures of sensitivity, specificity, and area under receiver operating characteristic curve (AUC).
Results: When data sources were considered separately (i.e., univariate systems), the best detection perfor-
mance was obtained using the data set of nervous symptoms in horses compared to those of bird and horse
mortality (AUCs equal to 0.80, 0.75, and 0.50, respectively). A multivariate outbreak detection system that used
nervous symptoms in horses and bird mortality generated the best performance (AUC = 0.87).
Conclusions: The proposed approach is suitable for performing multivariate syndromic surveillance of WNV
outbreaks. This is particularly relevant, given that a multivariate surveillance system performed better than a
univariate approach. Such a surveillance system could be especially useful in serving as an alert for the
possibility of human viral infections. This approach can be also used for other diseases for which multiple
sources of evidence are available.
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Introduction

West Nile virus (WNV) is a zoonotic mosquito-borne
arbovirus, mainly transmitted by mosquitoes from the

genus Culex (family Culicidae). Main reservoir hosts are

birds, but the virus also affects various nonavian species,
including horses and humans, with dramatic consequences
for public health and for the equine industry, that is, poten-
tially fatal encephalitis in humans and horses (Campbell et al.
2002, Castillo-Olivares and Wood 2004). In Europe, and
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more specifically in France, WNV lineage I emerged in the
1960s and several outbreaks have been documented since that
time (Calistri et al. 2010). Even if this lineage is now con-
sidered endemic in a large part of Europe, the number of
reported outbreaks is presently increasing in Southern and
Eastern Europe, particularly, in Italy, Greece, and Bulgaria
(Di Sabatino et al. 2014).WNV lineage II has been introduced
in Europe in 2004 and spread in several parts of Europe. This
lineage induces more cases and more severe symptoms than
lineage I in humans, horses, and birds (Bakonyi et al. 2006,
Calzolari et al. 2013, Hernández-Triana et al. 2014). As an
example, in Greece, 197 neuroinvasive human cases and 35
deaths were reported in 2010 with lineage II (Danis et al.
2011). All these elements contribute to make WNV a grow-
ing concern in Europe. Currently, in France and in most
countries, the surveillance of WNV is mainly passive, that is,
based on the vigilance of owners and veterinary practitioners
who declare the cases. To improve early detection of WNV
outbreaks, the major challenge is to develop more integrated
and quantitative approaches (Beck et al. 2013, Bellini et al.
2014a).

Syndromic surveillance is defined as ‘‘the (near) real-time
collection, analysis, interpretation and dissemination of
health-related data to enable the early identification of the
impact—or absence of impact—of potential threats. Syn-
dromic surveillance is based not on the laboratory-confirmed
diagnosis of a disease but on non-specific health indicators
including clinical signs, symptoms as well as proxy mea-
sures’’ (Triple S Project 2011). In Europe, the surveillance of
nervous syndromes in horses is considered as one of the most
cost-effective surveillance systems in the European context
(Chevalier et al. 2011) and has been shown to detect an
outbreak of WNV 3 weeks before laboratory identification in
the South of France (Leblond et al. 2007a; Saegerman et al.
2016). In the United States, instead, increased mortality in
wild birds is one of the most timely indicators of virus activity
(Brown 2012). Mortality in wild birds had rarely been re-
ported in Europe until the recent explosive spread of lineage
II in 2008–2009 in Hungary and Austria, which suggests that
this parameter could be also incorporated into future moni-
toring systems in Europe (Bakonyi et al. 2013). This is
consistent with recent experimental infections of European
wild birds with various WNV strains, which generated an
average mortality rate of 43% (Sotelo et al. 2011, Dridi et al.
2013, Ziegler et al. 2013, Del Amo et al. 2014a, 2014b).
Apart from mortality in wild birds and nervous symptoms in
horses, WNV is also associated with mortality in horses,
which could constitute another signal of a WNV outbreak.
Considering that horses and birds should be affected by WNV
before humans (Kulasekera et al. 2001, Leblond et al. 2007a),
a surveillance system based on the analysis of these data
could be especially useful in serving as early warning for
possible human viral infections.

Multivariate syndromic surveillance combines different
syndromic data sources available (Sonesson and Frisén 2005,
Frisén et al. 2010) and should give better results for outbreak
detection in terms of specificity and sensitivity than univar-
iate methods alone. However, at the time of writing, multi-
variate syndromic surveillance has never been implemented
for the detection of WNV outbreaks. The aim of our study
was to evaluate the performance of a multivariate syndromic
surveillance system in detecting WNV using three data sets:

nervous syndromes in horses, mortality in horses, and mor-
tality in wild birds. Mortality will be considered in our study
as a syndrome. We focused on the French Mediterranean
coast, which is a particularly high-risk area for WNV out-
breaks. Indeed, in France, WNV has only ever been identified
in this area according to the last outbreaks occurring in 2000,
2004, 2006, and 2015 (Murgue et al. 2001, Autorino et al.
2002, Anonymous 2007, Leblond et al. 2007a, Kutasi et al.
2011, Lecollinet et al. 2016). This French region is especially
at risk because mammalian and avian hosts, bridging vectors,
and large protected wetlands with numerous migratory birds
are all present.

Materials and Methods

Data sources

Nervous syndromes in horses. Data on nervous syn-
dromes in horses are collected through the passive surveillance
system ‘‘Réseau d’Epidémio-Surveillance en Pathologie Equine
(RESPE).’’ This French network for the surveillance of equine
diseases (www.respe.net/) collects standardized declarations
from veterinary practitioners registered as sentinels. In the
RESPE database, nervous symptoms in horses are defined
as any signs of impairment of the central nervous system,
that is, ataxia, paresis, paralysis and/or recumbency, and/or
behavioral disorder. Nervous disorders with evidence of
traumatic or congenital origins are excluded. All the sam-
ples sent for laboratory diagnosis are systematically tested
for two diseases, WNV and equine herpes virus-1, and the
results are registered in the RESPE database. Currently, the
collected data are mainly used to produce alerts when cases
with positive laboratory diagnoses are identified. To obtain
an outbreak-free baseline data set, we used data from 2006
to 2013 that included only the 44 declarations without
positive laboratory test results from the region of the
French Mediterranean coast. The time series of nervous
syndromes in horses is designated NervSy in subsequent
sections.

Mortality in horses. Data on mortality in horses have been
centralized since 2011 in the ‘‘EDI-SPAN’’ database, man-
aged by all the French fallen stock companies and the French
Ministry of Agriculture (Perrin et al. 2012). As WNV does
not produce perinatal mortality, we only considered the 8742
dead adult horses collected around the French Mediterranean
coast between 2011 and 2014. The time series of mortality in
adult horses is designated DeadHorse in subsequent sections.

Mortality in wild birds. Data on mortality in wild birds are
collected through the event-based surveillance system
‘‘SAGIR,’’ the national French surveillance network of dis-
eases in wild birds and mammals, which collects declarations
from field workers (e.g., hunters, technicians from depart-
mental hunting federations, and environmental inspectors
from the French National Hunting and Wildlife Agency
[ONCFS]). Surveillance relies on diagnosis at a local veter-
inary laboratory (Decors et al. 2014). Between 2007 and
2013, 292 dead wild birds were collected and necropsied
around the French Mediterranean coast. The time series of the
number of necropsied wild birds is designated DeadBird in
subsequent sections.
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Data modeling and simulation

Baselines modeling. All time series were aggregated
weekly. Using visual examination, abnormal peaks were ob-
served only in DeadBird due to health troubles occurring in the
wild bird population (i.e., intoxication). These extreme values
were removed based on a method adapted from Tsui et al. (Tsui
et al. 2001): the entire data set was first fitted to a negative
binomial (NB) distribution (Supplementary Table S1; Supple-
mentary Data are available online at www.liebertpub.com/vbz),
and then, values above the 95% confidence interval were deleted
and replaced with the average value of the four previous weeks.

To calibrate the models, we used NervSy data from 2006 to
2010, DeadHorse data from 2011 to 2013, and DeadBird data
from 2007 to 2011. Instead, to validate the quality of pre-
dictions, we used NervSy data from 2011 to 2013, DeadHorse
data from 2014, and DeadBird data from 2012 to 2013. To
define the background noise of the time series without out-
breaks, we fitted alternative regression models based on
Poisson and NB distributions (Supplementary Table S2).
Models were implemented in R x64 version 3.0.2. Dynamic
regression was performed with the functions glm (package
{stats}) and glm.nb (package {MASS}). The expected
number of counts at time t was estimated with the predict
functions of the respective packages.

Models were evaluated using the Akaike information cri-
terion (Bozdogan 1987), and the adjusted deviance (deviance/
degree of freedom) was used as a measure of goodness-of-fit
(GOF). The agreement between predicted and observed values
was assessed according to the root-mean-squared error
(RMSE) (Chai and Draxler 2014). The criterion was assessed
within the calibration period (RMSEc) and within the valida-
tion period (RMSEv). In either case, the lower the value, the
better the predictive performance of the model.

Baseline simulation. For each time series, the best re-
gression model was used to predict the expected value of each
week of the next simulated year. Distribution of cases for
each week was defined as a Poisson distribution with lambda
equals to equaling the predicted value for the same week.
Weekly samples from 100 fictive years were generated by
random sampling from the previous distributions as proposed
by Dórea et al. (2013).

WNV outbreaks modeling. The weekly counts of cases of
five real European WNV outbreaks (Murgue et al. 2001,
Autorino et al. 2002, Anonymous 2007, Leblond et al. 2007a;
Kutasi et al. 2011) were fitted to the NB distribution, and the
resulting distribution of the additional number of nervous
cases due to WNV during an outbreak was NB (mu = 3.12,
theta = 1.150). The mortality among horses clinically affected
by WNV was fitted to a normal distribution (mean = 0.384,
standard deviation = 0.128) based on the studies by Murgue
et al. 2001, Autorino et al. 2002, Ward et al. 2006, and Le-
blond et al. 2007a. The NervSy data set did not provide the
real number of clinically affected horses, so we assumed that
only 50% of horses with nervous symptoms were declared to
Réseau d’Epidémio-Surveillance en Pathologie Equine
(RESPE). To estimate the real number of clinically affected
horses, we simulated RESPE declarations of nervous symp-
toms associated with 100 WNV outbreaks and doubled the
counts of horses obtained. The related weekly count of dead

adult horses was then deduced and fitted to the NB distri-
bution NB (mu = 3, theta = 2.005). The distribution of the
weekly number of dead birds was estimated by expert’s
opinions to be NB (mean = 2.23, theta = 3.34). Experts were
European diplomates in equine internal medicine and persons
involved in SAGIR network, RESPE network, and reference
laboratories. They based their estimation on data available in
the literature (Bakonyi et al. 2013); (Sotelo et al. 2011, Dridi
et al. 2013, Ziegler et al. 2013, Del Amo et al. 2014a, 2014b),
their personal knowledge acquired during the observation of
real WNV outbreaks in Hungary, France, Italy, and Spain
during the last decade, and their knowledge of equine and
wild birds diseases in general.

WNV outbreaks simulation. Data on real WNV outbreaks
are scarce, so we used simulated outbreaks to evaluate our
detection system. For each syndrome, the distribution of the
number of cases during an outbreak was estimated with the
fitdist function of the package {fitdistrplus}. Time series for
each syndrome during 100 fictive outbreaks of 8 weeks was
simulated by randomly sampling the corresponding distribu-
tion. All the weeks within an epidemic time period have thus
the same probability to have a high (or low) number of cases.

Simulated WNV outbreaks insertion in simulated base-
lines. One simulated outbreak was inserted in each year of
simulated baseline. The outbreaks related to nervous cases in
horses were randomly inserted, followed by the corre-
sponding outbreaks related to wild bird mortality, such that
the time lag between the first dead bird and the first nervous
case in horses due to WNV was 0, 1, or 2 weeks according to
Kulasekera et al. 2001. The corresponding horse mortality
outbreaks were inserted such that half of the affected horses
died the week of onset of clinical signs and half died the week
after (Cantile et al. 2000, Trock et al. 2001, Bunning et al.
2002, Ward et al. 2006). A summary of time lag between
nervous symptoms in horses, horse mortality, and wild bird
mortality is available in Supplementary Figure S1.

Outbreak detection

Bayesian framework. Bayesian hypothesis testing is
based on two mutually exclusive hypotheses, which can be
expressed in the syndromic surveillance context as H1, ‘‘there
is an ongoing outbreak of WNV (or another event with
similar symptoms),’’ and H0, ‘‘there is no ongoing outbreak
(Andersson et al. 2014). The relative probability of the two
hypotheses can be expressed as a ratio (Opri) that represents
our a priori belief about the disease status:

Opri =
P(H1)

P(H0)
Eq: 1

When evidence in favor (or not) of each hypothesis is
observed, we can build the a posteriori belief about the dis-
ease status (Opost):

Opost =
P(H1jEx)

P(H0jEx)
Eq: 2

where P(H1jEx) is the probability of H1 given the evidence E
observed in time series x, and P(H0 jEx) is the probability of
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H0 given the evidence E observed in time series x in a par-
ticular week.

Using this general framework with the application of
Bayes’ theorem, Opost can be calculated as follows:

Opost = Vx · Opri =
P(ExjH1)

P(ExjH0)
·

P(H1)

P(H0)
Eq: 3

where Vx is the value of evidence, P(ExjH1) is the probability
of observing the number of reported cases of syndrome x in a
particular week, given that H1 is true, and P(ExjH0) is the
probability of observing the number of reported cases of
syndrome x in a particular week given that H0 is true.

To estimate P(ExjH1) and P(ExjH0), information on the
probability distribution for the number of reported cases in
non-outbreak and outbreak situations is used. The probability
of Ex (observation of n cases in time series x) during an
outbreak is calculated as follows:

P(EjH1) = +
n

i = 0

Pbase(i) · Pout(n - i)½ � Eq: 4

where Pbase(i) is the probability of drawing i cases from the
baseline distribution in time series x, and Pout(i) is the
probability of drawing i cases from the outbreak distribution
in time series x based on the shape of the outbreak, as pre-
viously simulated.

To detect outbreaks, several values for Opost were tested to
serve as alarm thresholds.

Combining time series. When the three time series were
combined, Vtot incorporated evidence from NervSy, Dead-
Horse, and DeadBird, respectively, denoted as ENervSy,
EDeadHorse, and EDeadBird. Assuming that the three sources of
evidence were conditionally independent, given outbreak
status and seasonality of baselines, Vtot was calculated as

Vtot =
P(ENervSy, EDeadHorse, EDeadBirdjH1)

P(ENervSy, EDeadHorse, EDeadBirdjH0)

= VNervSy · VDeadHorse · VDeadBird

Eq: 5

and Opost_tot was calculated as

Opost - tot =
P(H1jENervSy, EDeadHorse, EDeadBird)

P(H0jENervSy, EDeadHorse, EDeadBird)
= Vtot ·

P(H1)

P(H0)

Eq: 6

Performance assessment

Sensitivity (Se) and specificity (Sp) were calculated as
follows:

Se = TP=(TP + FN) Eq: 7

Sp = TN=(TN + FP) Eq: 8

where TP is the number of true positive alarms, TN the
number of true negative alarms, FP the number of false
positive alarms, and FN the number of false negative alarms.

Table 1. Models and Model Parameters Obtained for the Three Time Series

Negative binomial distribution

AIC GOF RMSEc RMSEvFormulae Theta Mean

NervSy~ sin (2p(t - 4)=18:33) + sin (2pt=26:5) 0.413 0.077 143 0.279 0.30 0.39
DeadHorse~4 · (t - 4)=52 + t + sin (2p(t - 12)=53) 176 40.3 1063 1.016 7.06 8.57
DeadBird~4 · (t - 4)=52 + sin (2pt=26:5) 0.373 0.520 497 0.675 1.03 1.05

Theta is the dispersion parameter as defined in the function glm.nb (package {MASS}) in R x64 version 3.0.2.
AIC, Akaike information criterion; GOF, goodness-of-fit; RMSE, root-mean-squared error.

FIG. 1. Three time series considered. NervSy: number of declaration of nervous syndrome in horses without a positive
laboratory result. DeadHorse: number of dead adult horses collected by French fallen stock companies. DeadBird: number
of dead wild birds autopsied with values above the 95% confidence interval deleted. Dotted lines, training data; solid black
lines, test data; solid blue lines, predicted value; solid red lines, 95% confidence interval. Color images available online at
www.liebertpub.com/vbz
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The receiver operating characteristic (ROC) curve was
generated in R by testing various alarm thresholds, and the
area under ROC curve (AUC) was calculated with the auc
function of the package {flux}. A larger AUC represented a
better detection performance.

Results

Modeling time series and simulating data

For all time series, the best fits were obtained for NB
distributions. The resulting model parameters are summa-

rized in Table 1, and corresponding baselines and predictions
are shown in Figure 1. The probabilities of observing n cases
and the resulting value of V (P(EjH1)/P(EjH0)) during a non-
outbreak (P(EjH0)) and an outbreak (P(EjH1)) situation for
each time series are summarized in Figure 2.

Outbreak detection

We estimated the respective performance of each univar-
iate system (NervSy, DeadHorse, and DeadBird) in detecting
WNV outbreaks without considering any a priori values for

FIG. 2. Value of evidence and prob-
abilities of observing n cases during a
non-outbreak (Base) and an outbreak
(Out) situation. Base, distribution of
cases distribution into the baseline; Out,
distribution of cases related to a WNV
outbreak; Tot, distribution of cases dur-
ing an outbreak (Base+Out); Log(V) =
log10(P(njoutbreak)/P(njbaseline)). Out
was estimated with fitdistr function of the
package {fitdistrplus} and was based for
NervSy on NB (mu = 3.12, theta = 1.150),
for DeadHorse on NB (mu = 3, the-
ta = 2.005), and for DeadBird on NB
(mean = 2.23, theta = 3.34). NB, nega-
tive binomial; WNV, West Nile virus.
Color images available online at www
.liebertpub.com/vbz
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disease status (Opri = 1). Examples of simulated baselines
with inserted outbreaks and associated variations in log10(V)
are presented in Supplementary Figure S2.

The best results for univariate outbreak detection were ob-
tained for NervSy, which outperformed analyses using Dead-
Horse and DeadBird (Fig. 3 and Table 2). DeadBird models
yielded intermediary detection performances, whereas models
using DeadHorse were not able to discriminate between out-
break and non-outbreak situations (AUC &0.50).

The best results for multivariate outbreak detection were
obtained for analyses that combined NervSy with DeadBird
data, which gave similar results to a combination of the three
time series (Fig. 3 and Table 2). The results of using NervSy
combined with DeadBird were also better than those obtained
with each time series alone. For example, for a specificity set
at 0.80, the sensitivity of the detection reached 0.80 with the
combined NervSy and DeadBird series, whereas it was 0.67
with NervSy and 0.60 with DeadBird alone.

Discussion

This is the first time that a real assessment of sensitivity
and specificity has been implemented for WNV syndromic
surveillance. Previous early warning systems developed for
WNV only identified risk factors of WNV outbreaks, but did
not evaluate the detection performances of those systems
(Gosselin et al. 2005, Shuai et al. 2006, El Adlouni et al.
2007, Brown 2012, Chaskopoulou et al. 2013, Bellini et al.

2014b; Rosà et al. 2014, Valiakos et al. 2014). Only two
attempts to assess the sensitivity and specificity of surveil-
lance have been made (Leblond et al. 2007a, Andersson et al.
2014), but the parameters of interest were only evaluated
based on a limited number of outbreaks, which did not allow
any conclusions to be drawn regarding the overall system
performance. Timeliness has occasionally been evaluated,
but only based on a limited number of real WNV outbreaks,
and has not been associated with a further evaluation of
system performance (Eidson et al. 2001, Mostashari et al.
2003, Johnson et al. 2006, Veksler et al. 2009, Calzolari et al.
2013, Chaintoutis et al. 2014). In our study, we have refrained
from assessing timeliness as there is currently little or no data
to support assumptions on the temporal course on WNV
outbreak in Europe, especially, in wild birds. Indeed, we are
currently only able to estimate the number of cases expected
during an epidemic time period, but not the difference be-
tween the number of expected cases at the start of an outbreak
and later on. All the weeks within an epidemic time period are
thus independent and have the same probability to have a
high (or low) number of cases. In this situation, assessing
which one is detected first would be not informative about the
timeliness of our detection. However, further studies should
be conducted on that point to rule on the efficiency of such
surveillance in serving as an early warning system for pos-
sible human viral infections.

Our results indicated that when using a univariate detec-
tion method, NervSy was the best indicator of WNV out-
breaks. This is consistent with the number of expected cases
during an outbreak compared to the baseline of each time
series considered (i.e., high number of cases for NervSy,
moderate number of cases for DeadBird, and low number of
cases for DeadHorse). Indeed, models based only on the
DeadHorse data resulted in poor detection performance at the
regional level, because mortality in horses is mainly due to
causes other than WNV. To implement such a surveillance
system on the field, it would be necessary to assess the cost-
effectiveness of the system to define, in close collaboration
with decision-makers, the best balance between sensitivity
and specificity. In addition, the real representativeness of data
sets is still unknown and should be assessed as they might
have a great impact on system performances. However, it is
hoped that our promising results will promote the timely
collection and analysis of relevant data and the im-
plementation of such studies.

The best detection performance was obtained using mul-
tivariate syndromic surveillance based on reports of nervous
symptoms in horses (NervSy) and wild bird mortality
(DeadBird). It is complicated to know how different data sets
complement one another. However, we can expect that dead
birds would be mainly used to signal the start of an outbreak

FIG. 3. Receiver operating characteristic curves for uni-
variate and multivariate outbreak detection using NervSy,
DeadHorse, and DeadBird. Color images available online at
www.liebertpub.com/vbz

Table 2. Area Under the ROC Curve and Standard Error for Univariate

and Multivariate Outbreak Detection Using NervSy, DeadHorse, and DeadBird

NervSy DeadHorse DeadBird
NervSy &
DeadBird

NervSy &
DeadHorse

DeadHorse &
DeadBird Total

AUC 0.80 0.50 0.75 0.87 0.80 0.75 0.87
Standard error 0.0082 0.0097 0.0089 0.0068 0.0081 0.0089 0.0068

AUC, area under ROC curve; ROC, receiver operating characteristic.
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and that horses confirm the occurrence. To our knowledge,
this is the first time that multivariate syndromic surveillance
has been implemented for WNV detection. Our results not
only offer a wide range of opportunities but also raise ques-
tions regarding practical implementation on the field of such
multivariate system. In the model, the value of evidence
compares the probability of observing syndromes under
baseline conditions and during a WNV outbreak, and the
calculation of specificity refers to false alarms from random
aberrations. Consequently, peaks in the syndromic data
streams due to other causes, such as equine herpes virus-1 for
NervSy or Avian Influenza or intoxication for DeadBird, will
be presented as evidence in favor of WNV. The Bayesian
framework offers the possibility to include differential di-
agnoses and specifies the prior probability and expected
impact on the distribution of counts in each data stream.
Doing so would enable us to estimate the posterior proba-
bility and evidence in favor of a WNV outbreak. However,
such a model would be very complicated and hard to support
with data. Instead, we explicitly define our hypothesis of
interest. When the model triggers an alarm, the distinction
between WNV and other diagnoses will be made using field
investigations.

The Bayesian framework is a comprehensive and logical
way to combine syndromic data from several data streams
and it seems well adapted for multivariate WNV detection
using three indicators for WNV outbreak detection. This
framework provides a means of weighting the results from
syndromic surveillance, and thus, additional information can
be easily added. Then, a next step in the early detection of
WNV outbreaks should be to test the efficiency of the method
with other data, such as the predicted abundance of mos-
quitoes (Calistri et al. 2014, Rosà et al. 2014), environmental
risk factors (Tran et al. 2014), and risk of introduction
(Brown et al. 2012, Bessell et al. 2014). In addition, the
Bayesian approach could be easily adapted to spatiotemporal
analysis. Such approach could be especially relevant for
WNV surveillance as there are strong links between envi-
ronment and WNV outbreaks, and as we expect local clusters
of cases (Mostashari et al. 2003, Leblond et al. 2007b).
Without integrating a spatiotemporal approach, the useful-
ness of a multivariate syndromic approach could be limited,
especially for vector-borne disease surveillance, and thus, the
next step would be to develop and test a spatiotemporal
model. However, the quality of geographical information of
reported cases used in our study is currently insufficient to
implement spatiotemporal analysis. In future studies, it
would be interesting to improve data quality to test if spa-
tiotemporal analysis could also improve WNV detection and
to rule on the usefulness of DeadHorse time series. Indeed,
using another spatiotemporal scale, local clusters of deaths in
horses might be used as a signal of a WNV outbreak.

Conclusion

The proposed approach gives promising results for im-
proving surveillance of WNV in France and maybe also more
generally in Europe. It offers a comprehensive and logical
way to combine syndromic data from several data streams,
which can be relevant to improve the surveillance of many
other diseases (e.g., Bluetongue virus combining data from
milk yield and stillbirths, or Japanese encephalitis combining

data on nervous symptoms in horses, and reproductive losses
in swine). However, questions remain on the practical im-
plementation on the field of such multivariate system, espe-
cially regarding interpretation of combined signals, and on
the detection’s timeliness to serve as an early signal for
possible human WNV infections in Europe. It is hoped that
our results will support the implementation of further studies
to solve these questions and that they will contribute to de-
velop more collaborative work between existing surveillance
networks.
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West-Nile. Direction générale de l’alimentation; 2007. Report
No.: DGAL/SDSPA/N2007-8136. Available at http://agriculture
.gouv.fr/IMG/pdf/dgaln20078136z.pdf (in French)

Autorino GL, Battisti A, Deubel V, Ferrari G, et al. West Nile
virus epidemic in horses, Tuscany Region, Italy. Emerg Infect
Dis 2002; 8:1372–1378.
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