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Most pediatricians are attuned to their patients’ linear growth (height gain). At each visit, the 

child's height should be carefully measured and plotted. The clinician can then scrutinize the 

temporal pattern, and, if the linear growth appears abnormal, initiate an investigation to 

uncover the underlying problem. Despite this close interest in our patients’ statural gains, 

linear growth itself is often considered as a “black box”, a mysterious process regulated by 

nutrition, hormones, genetics, and overall health. Recently, there have been exciting 

advances in understanding the biological basis of linear growth. We have gained new 

insights as to why linear growth is rapid in infancy, then slows in childhood, accelerates in 

adolescence, then slows again and ceases by adulthood. We now understand much better the 

mechanisms by which hormones, nutrition, and systemic illness regulate linear growth. 

Perhaps most exciting, genome-wide association (GWA) studies and whole-exome 

sequencing have begun to identify numerous novel genes that regulate linear growth, and, 

when mutated, cause childhood growth disorders.

To understand these important new findings and their implications for our patients, we must 

look inside the black box of linear growth. Just as we can only understand children's 

respiratory physiology in terms of lung biology, so too we can only understand linear growth 

and growth disorders in terms of the underlying biological process, growth plate 

chondrogenesis.

Clinical vignette

A 6-year-old boy presents for evaluation of short stature. He was born at term with a length 

and weight appropriate for gestational age. By two years of age, his length percentile had 

dropped below the third percentile. Weight was less affected. He has been otherwise healthy. 
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His mother and father are both 160 cm (63 in) tall. On physical examination, the boy's height 

is below the first percentile at −2.2 SDS. His sitting to standing height ratio is at the 95th 

percentile for age. His father's sitting to standing height ratio is greater than the 95th 

percentile for age.

In this review we will discuss a variety of novel concepts which will aid in the assessment of 

children such as this. We will see now this child's condition altered body proportions 

indicate that the condition affects the growth plates in the lower extremities more than the 

growth plates of the vertebrae. This disproportion suggests a primary linear growth 

condition, i.e. an underlying mechanism that is intrinsic to the growth plate. The similar 

phenotype of the father suggests a dominant inheritance. Targeted sequencing by a 

commercial laboratory showed a mutation in SHOX, which encodes a transcription factor 

required for normal growth plate chondrocyte function. Heterozygous SHOX mutations 

account for approximately 2-5 % of children with formerly idiopathic short stature. SHOX 

lies on the X chromosomes, but, unlike most X-chromosome genes, a second copy is present 

on the Y chromosome in boys, and consequently SHOX mutations are inherited in a 

pseudoautosomal pattern.

Linear growth in children is driven by growth plate chondrogenesis

Children grow taller because their bones grow longer. This bone elongation occurs at the 

growth plate, a cartilaginous structure that is located near the ends of many bones in 

children, including long bones, the short tubular bones of the hands and feet, and the 

vertebrae. The growth plate comprises three distinct layers: the resting, proliferative and 

hypertrophic zones (Figure 1). Each zone has unique roles. The resting zone serves as a 

reservoir of progenitor chondrocytes (1). The proliferative zone, which contains 

chondrocytes arrayed in columns, is the site of rapid cell proliferation (Figure 1)(2). At the 

edge of the proliferative zone closest to the metaphysis, the cells stop dividing and become 

enlarged to form hypertrophic chondrocytes (Figure 1)(2). This cell proliferation and cell 

hypertrophy, combined with extracellular matrix secretion, result in chondrogenesis, that is, 

the production of more and more cartilage (2). In isolation, this chondrogenesis would cause 

the cartilaginous growth plate to become progressively wider with age. However, 

simultaneously, blood vessels, osteoclasts, and osteoblasts invade the hypertrophic zone and 

remodel the newly formed cartilage into bone (2). The net result is that new bone is formed 

at the boundary between the growth plate and the metaphysis, causing the bones to grow 

longer and the child to grow taller.

Linear growth is rapid in infancy but subsequently slows due to 

programmed senescence of the growth plate

The human fetus grows rapidly. From 12 weeks of gestation until term, the length of the 

fetus increases from approximately 6 cm to 50 cm, an average growth velocity of 82 cm/year 

(3). If newborns were to maintain this growth rate after birth, the child would reach adult 

size before two years of age. However, the growth rate declines rapidly after birth. The 

decline is temporarily interrupted by the pubertal growth spurt but then resumes until the 

growth rate reaches zero (Figure 2)(4).
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The decline in the linear growth rate during childhood appears to be driven primarily by 

local mechanisms within the growth plate, rather than by systemic mechanisms. There are 

no growth-regulating hormones whose concentration changes in a pattern that would explain 

the decline in growth rate. For example, the concentration of IGF-I actually increases with 

age during childhood (5). Furthermore, growth plates have been transplanted between 

rabbits of different ages, and the growth rate of the transplanted growth plates depends on 

the age of the donor, not the recipient, suggesting that the decline in growth rate is due to a 

local, growth plate mechanism, rather than a systemic mechanism (6).

Recent studies have identified a developmental program intrinsic to the growth plate 

cartilage, termed “growth plate senescence”, which is responsible for the decline in growth 

rate with age. With increasing age, the growth plate gradually involutes, so that the number 

of cells in each zone diminishes (7-9). Concurrently, the rate of proliferation and the extent 

of cell hypertrophy diminish (7-8), causing the child's linear growth to slow. Eventually, 

proliferation ceases altogether, and the non-functional growth plate is resorbed and replaced 

by bone, an event termed epiphyseal fusion or growth plate closure (Figure 2)(10). Thus, 

epiphyseal fusion does not cause growth cessation, as is often assumed, but instead fusion is 

the result of growth cessation (11). Growth plate senescence appears to be driven by an 

extensive genetic program that involves the downregulation with age of many growth-

promoting genes (12). A related growth-limiting genetic program occurs in other tissues, 

causing somatic growth also to slow and eventually cease in other major organ systems 

(13-15).

In children, the progression of growth plate senescence can be indirectly assessed from a 

radiograph of the left hand and wrist. On these radiographs, the child's bone age is evaluated 

by observing the extent to which the cartilage skeletal elements have been converted into 

bone. The bone age appears to serve as a radiological marker for growth plate senescence in 

that it predicts the amount of linear growth remaining and therefore helps predict the adult 

height.

Variations in tempo of growth including catch-up growth

Importantly, growth plate senescence is not driven by time but rather by the process of 

growth itself (7, 16). Consequently, childhood malnutrition or systemic illness slows not just 

the rate of linear growth, but also the rate of growth plate senescence (7, 17). If the illness 

resolves, the growth plates do not just resume a normal growth rate normal. Instead, the 

growth plates, which are less senescent than normal for age, function at the more rapid rate 

that would be appropriate for a younger child, resulting in catch-up growth (7, 16-18). 

Previously, catch-up growth had been thought to result from a central nervous system 

mechanism (19), but recent studies favor this local mechanism (7, 16-18) involving delayed 

growth plate senescence, although it remains unclear if other mechanisms also contribute 

(20).

The pace of growth plate senescence also appears to vary among healthy children and to be 

associated with the child's overall tempo of maturation. For example, some otherwise 

healthy children show a slow overall tempo of maturation, with slower childhood growth, 
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delayed puberty, and continued growth into late adolescence. In this condition, termed 

constitutional delay of growth and puberty, the presence of prolonged growth and a delayed 

bone age, even prior to puberty, suggests that the pace of growth plate senescence is also 

slowed. This condition appears to be familial, suggesting a genetic basis. In some children, 

the delay in maturation appears to be driven by subtle undernutrition due to diminished 

appetite (21, 22).

The pubertal growth spurt

As reviewed above, a local developmental program termed growth plate senescence causes 

the linear growth velocity in children to decline through infancy and childhood, reaching 5 

cm/per year just before the onset of puberty (Figure 2)(4). However, with puberty, the 

gonads increase production of sex steroids which exert strong positive effects on linear 

growth (Figure 2). Estrogen contributes to the linear growth acceleration, in part by 

stimulating secretion of growth hormone by the pituitary gland (23). Androgen, either from 

the adrenal glands or gonads, appears to contribute to the pubertal growth spurt in part 

through conversion to estrogens by the enzyme aromatase, but androgen also appears to have 

a stimulatory effect on the growth plate which is not mediated by conversion to estrogen or 

by increased growth hormone (24). This effect may explain the growth-stimulating effect of 

androgens that cannot be converted to estrogens, for example, oxandrolone treatment in 

Turner syndrome (25).

Estrogen exerts another important effect on the growth plate; it accelerates growth plate 

senescence apparently by depleting the pool of chondrocyte progenitor cells (8). This 

phenomenon has important clinical implications. Early exposure to estrogen, in children 

with precocious puberty, causes not only accelerated growth, but also accelerated growth 

plate senescence (reflected by an advanced bone age) and consequently early cessation of 

growth, early epiphyseal fusion, and a diminished adult stature (26). Conversely, delayed 

puberty slows growth plate senescence (reflected by a delayed bone age), causing delayed 

growth cessation, delayed epiphyseal fusion, and an augmented adult stature (27). Similar 

effects are seen in men with either estrogen resistance due to mutations in the estrogen 

receptor ER-α or with estrogen deficiency due to mutations in the enzyme aromatase, which 

is required for estrogen synthesis by converting androgen to estrogen, both of whom 

continue to grow gradually well into adulthood, resulting in marked tall stature (28-29). The 

recognition of this effect of estrogen on the growth plate has given rise to a new 

experimental treatment for short stature in boys, using aromatase inhibitors (30) although the 

long term efficacy and safety are not yet established.

Short and tall stature are caused by altered rates of growth plate 

chondrogenesis

Because linear growth in children is primarily driven by growth plate chondrogenesis, short 

stature is essentially always caused by decreased chondrogenesis in the growth plate and tall 

stature by increased chondrogenesis. The primary causes of short or tall stature can lie either 

in the growth plate itself (primary linear growth condition) or can lie outside the growth 

plate but affect chondrocytes through abnormal concentrations of hormones, cytokines, 
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nutrients, and other molecules necessary for normal chondrocyte function (secondary linear 

growth condition).

Regulation of linear growth

The rate of growth plate chondrogenesis, and therefore the rate of linear growth in children, 

is subject to extensive regulation by nutritional intake, hormones, inflammatory cytokines, 

paracrine growth factors, extracellular matrix factors, and intracellular proteins.

Nutritional intake

Both inadequate and excessive nutritional intake alter longitudinal bone growth. In 

nutritional deficiency, much of the effect appears to be mediated by endocrine factors: 

decreased IGF-I, sex steroids, and thyroid hormone and increased glucocorticoids, as may be 

observed in children with anorexia nervosa (31). In nutritional excess causing obesity, linear 

growth may be accelerated, resulting in tall stature and advanced bone age, but the adult 

height is not substantially affected (32). The underlying mechanisms remain poorly 

understood.

Hormones

Thyroid hormone, growth hormone, insulin-like growth factor-I (IGF-I), androgen, and 

estrogen all positively regulate linear growth. Consequently, deficiency of these hormones 

can present clinically with decreased linear growth (33-35). In contrast, glucocorticoid in 

excess negatively regulates linear growth, accounting for the poor linear growth of children 

with endogenous or exogenous Cushing syndrome (36). Each of these hormones acts in part 

through a direct, local effect on growth plate chondrogenesis (37-40), although there are also 

complex interactions among these systems; for example, thyroid hormone and estrogen 

positively regulate growth hormone secretion (23, 40-41).

Inflammatory cytokines

TGF-β, IL-1β, and IL-6 all negatively regulate growth plate chondrogenesis. There is 

evidence for both direct, local actions on growth plate chondrocytes as well as indirect 

actions, involving IGF-I suppression (42). These adverse effects of circulating 

proinflammatory cytokines likely contribute to the linear growth impairment in children with 

inflammatory bowel disease or juvenile idiopathic arthritis (42-43).

Paracrine growth factors

Multiple paracrine growth factors are produced locally in the growth plate, and these 

paracrine growth factors, including IGFs, C-natriuretic peptide (CNP), bone morphogenetic 

proteins (BMPs) and fibroblast growth factors (FGFs), affect adjacent chondrocytes by 

acting on specific cell-surface receptors (44-47). Consequently, patients with mutations in 

genes involved in these signaling systems can present with linear growth failure or 

overgrowth (Table). For example, homozygous inactivating mutations in NPR2, the receptor 

for CNP, cause a skeletal dysplasia with severe short stature (48), whereas heterozygous 

inactivating mutations present as idiopathic short stature (49-50) and activating mutations 

produce tall stature (51-52).
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Extracellular matrix

The extracellular matrix of growth plate cartilage is composed of collagens (including 

collagen II and X), proteoglycans (including aggrecan and perlecan) and non-collagenous 

proteins (including cartilaginous oligomeric matrix protein)(53). Mutations affecting these 

proteins can present clinically either as short stature with minimal bone deformity, as seen in 

heterozygous aggrecan mutations, or as a skeletal dysplasia as seen in collagen type 10 or 

cartilaginous oligomeric matrix protein (Table)(54-55).

Intracellular proteins

Transcription factors such as RUNX2, SOX9 and SHOX play major roles in growth plate 

chondrogenesis. For example, mutations in RUNX2 cause cleidocranial dysplasia and 

mutations in SOX-9 cause campomelic dysplasia (56-57). Homozygous mutations in SHOX 

cause severe short stature in Langer mesomelic dysplasia, whereas heterozygous mutations 

can present as a milder skeletal dysplasia, Leri-Weill dyschondrosteosis, or more commonly 

as “idiopathic” short stature with or without disproportion (58). Heterozygous SHOX 

deficiency is also the principal cause of short stature in Turner syndrome because the SHOX 

gene is located in the pseudoautosomal region of the X-chromosome. Genes that affect 

epigenetic modifications have emerged as a cause of overgrowth syndromes (59). For 

example, mutations in histone methyltransferases EZH2 and NSD1 cause Weaver syndrome 

and Sotos syndrome respectively (60-61).

Short stature can result from numerous genetic defects affecting growth 

plate chondrogenesis

As discussed above, growth plate chondrogenesis is under complex regulation at multiple 

levels, including nutritional, endocrine, cytokine, paracrine, extracellular matrix, and 

intracellular protein factors. Consequently, mutations in genes that participate in any of these 

levels of regulation can result in short stature. Even a mutation that diminishes growth plate 

chonodrogenesis by only 10% will produce clinically-significant short stature. The Table 

provides examples of the genetic causes of short stature that affect growth plate 

chondrogenesis locally. Depending on the nature of the gene involved, the number of alleles 

affected, and the severity of the mutation, the short stature can be proportionate or 

disproportionate, syndromic or non-syndromic, prenatal or postnatal in onset, and associated 

with skeletal malformation (a chondrodysplasia) or not. Often, specific manifestations of the 

genetic defect can aid in clinical diagnosis, for example, dysmorphic facies in Noonan 

syndrome, increased sitting/standing height ratio in SHOX deficiency (62) or 

hypochondroplasia (63), short 4th and 5th metacarpal bones in Albright hereditary 

osteodystrophy (64), or early-onset osteoarthritis due to aggrecan mutations (54). Specific 

genetic testing has become increasingly available at commercial diagnostic laboratories. 

Recently whole-exome sequencing has emerged as a powerful new approach to identify 

novel genetic causes of growth disorders. Exome sequencing employs high-throughput 

sequencing techniques to detect mutations in exons (65). Over the 5-year period since its 

first application, exome sequencing has identified novel mutations in known genes to cause 

growth disorders and also discovered mutations in genes not previously implicated in 
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childhood growth, either in subjects with syndromic short stature such as CEP152 mutations 

in Seckel syndrome (66) and CCDC8 mutations in 3M syndrome (67) or patients presenting 

with non-syndromic short stature, such as ACAN mutations (54).

Normal variation in height and polygenic short stature

Recent GWA studies have provided important new insights into the genetic determinants of 

stature. Large meta-analyses of GWA studies have identified more than 400 loci scattered 

throughout the genome that are associated with adult height in the general population (68). 

Although the precise gene that affects height at each locus cannot always be pinpointed, 

bioinformatics analyses indicate that a large subset of these genes affect height because of a 

role in growth plate cartilage (68-69). Although these genes were identified because they 

modulate height within the normal range, it seems likely that polymorphisms in these genes 

may also result in polygenic short stature (70).

Conclusion

Growth plate chondrogenesis is the fundamental biological process that drives linear growth 

in children and therefore determines stature. Recently, a complex cartilage developmental 

program, termed growth plate senescence, has been elucidated which is responsible for the 

normal deceleration and eventual cessation of linear growth. Recent laboratory and clinical 

studies have revealed that estrogen accelerates growth plate senescence, thus explaining the 

clinical growth patterns seen in patients with precocious and delayed puberty and patients 

treated with aromatase inhibitors to prolong linear growth. Powerful new genetic 

approaches, including whole-exome sequencing and GWA studies, have helped identify new 

genes that regulate growth plate chondrogenesis. Polymorphisms in these genes modulate 

height within the normal range and likely contribute to polygenic short stature, whereas 

more severe mutations in these genes may present as isolated short stature, syndromic short 

stature, or skeletal dysplasia.

Understanding the biology of stature provides the clinician with a broad framework to 

conceptual the myriad of conditions that present with short and tall stature. In the near 

future, it seems likely that the diagnostic approach to children with severe short or tall 

stature will include whole-exome or whole-genome sequencing. By conceptualizing linear 

growth in terms of the underlying growth plate biology, the clinician will be better equipped 

to interpret the resultant genetic findings.
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Figure 1. Growth plate chondrogenesis diagram
A. Growth plate (light blue) lies near the end of a long bone B. Enlarged view of the growth 

plate illustrating its 3 constituent zones, each containing chondrocytes. C. Over time, the 

proliferative zone chondrocytes, which are arranged in columns, undergo cell divisions 

(yellow bars trace a single cell over time). D. When chondrocytes reach the border of the 

proliferative zone closest to the metaphysis, they cease proliferating and instead 

hypertrophy. Proliferation, hypertrophy, and extracellular matrix secretion contribute to 

chondrogenesis (cartilage formation). At the boundary of the growth plate and the 

metaphysis, the newly formed cartilage is remodeled into bone (not shown).
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Figure 2. Changes in linear growth velocity with age
The linear growth velocity (change in body length per year) is rapid in infancy, declines in 

childhood, accelerates in adolescence, and then declines again and ceases by adulthood. The 

principal mechanisms responsible for these changes are shown. The Figure represents the 

typical growth pattern for a boy. Girls usually show an earlier growth spurt and earlier 

cessation of growth. The timing of the pubertal growth spurt and the cessation of growth are 

often shifted to the right in malnutrition, chronic systemic disease, and in healthy children 

with a slow developmental tempo. Conversely, a shift to the left occurs in children with a 

rapid developmental tempo.
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