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Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system
stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T andNK cells, tumor
microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-
derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-
1, TGF-𝛽, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For
this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against
glioblastoma.

1. Current Status of GBM

Gliomas are the most frequent primary brain tumors in the
Central Nervous System (CNS), with glioblastoma (GBM)
being the most malignant tumor [1]. This tumor is char-
acterized by great cellular heterogeneity, high invasiveness
because of a large network of blood vessels, and ability to
infiltrate healthy tissues. The National Institute of Neurology
and Neurosurgery in Mexico reports that GBM represents
9% of all brain tumors and about 45.7% of gliomas [2,
3]. Current therapy may combine several and different
approaches as surgery, radiotherapy, and chemotherapy, with
alkylant agent temozolomide (TMZ) being used as standard
treatment for GBM [4]. Despite this, the prognosis is still
unfavorable with a median survival about 14.6 months [5,
6]. Diverse disciplines are developing strategies to improve
current treatments; one of them involves immunological
approach. This discipline represents an attractive alternative
of therapeutic due to its less adverse effects, high selectivity,
and ability to induce an effective immune response against the
tumor.

2. Immune Response against GBM

Tumoral cells could be eliminated by the immune system in a
process called immunological surveillance [7]. At the begin-
ning, the thought was that brain tumors were separated from
immunosurveillance, because they reside in an anatomical
compartment lacking a normal lymphatic drainage system, so
the CNS had been considered an immunological privileged
organ with a very low level of T lymphocytes infiltration;
however in pathological states, the lymphocyte trafficking
increases because of the high permeability of a disrupted
blood-brain barrier (BBB) [8–10]. During an infection, it
was thought that adaptive immune response starts in the
periphery stimulating T cells which are able to recognize
any antigen, and, then, they migrated into CNS through
cerebrospinal fluid [11]. Nowadays, a long-term resident
population of CD8 T cells persisting in the brain though
infection is over has been described. These cells remain in
the tissue supporting themselves; this means that they do
not require an antigen to avoid apoptosis by T cell selection
process. So they are similar to other resident memory
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T cells in other tissues and also they do not return to systemic
circulation [11].

It was initially reported the presence of T lymphocytes
(CD4+ and CD8+) in both rat brain tumors induced by N-
methyl-N-nitrosourea and human gliomas [12–14]. Brain
tumors are characterized by immune infiltrate of dendritic
cells (DC), macrophages, microglia and natural killer cells
(NK), besides T lymphocytes, which are associate with
tumoral elimination [14–18].

The most effective immune response against tumoral
cells, is the cytotoxic response, being the main component,
T-lymphocytes (CD8+). These cells are also called cyto-
toxic T-lymphocytes (CTL), which have an important role
inducing the lysis of cancer cells [19]. CTL are able to
recognize antigenic peptides through their T-Cell Receptors
(TCR), being the response amplified by interaction with
other immune cells, such as antigen presenting cells (APCs).
These APCs process peptides and tumor-associated proteins,
which are presenting to T lymphocytes viaHuman Leukocyte
Antigen (HLA) molecules class I and II; besides, cancer cells
could present through HLA class 1 on their surface [20].
This interaction as well as the presence of co-stimulatory
molecules such as B7-1/2 induce the release of perforin and
granzyme proteins and other cytokines such as 𝛾 interferon
(IFN-𝛾) and tumor necrosis factor 𝛼/𝛽 (TNF-𝛼/𝛽) by CTL.
Likewise, CTL proliferation is induced by T lymphocytes
(CD4+), secreting cytokines as IFN-𝛾 and IL-2, enhancing its
anti-tumoral effect [21].

Microglia is formed by resident immune cells in the
CNS which respond to signals triggered by brain damage,
inflammation and the presence of foreign pathogens [22,
23]. Furthermore, they participate in pathological conditions
such as neurodegenerative diseases and brain tumors [24].

Microglia is part of microenvironment that promotes
the development of GBM. Brandenburg et al. described the
important role of resident microglia for angiogenesis and
tumorigenesis in gliomas, so microglia is definitely involved
in tumor growth. Moreover, this study showed that depletion
of microglia/macrophages correlates with a decrease in cell
proliferation and angiogenesis and therefore a reduction in
tumor volume [25].

Other studies describe that microglia has immunosup-
pressive activity through release of particular cytokines such
as TGF-𝛽 and IL-10, increase of FasL, and inhibition of T cells
activation. Getting a strong immunosupression, microglia
is able to reduce the expression of MHC-II and CD80 and
secretion of TNF-𝛼 [26–29].

Natural killer T (NKT) cells are a subpopulation of T
lymphocytes, which are considered tumor cell killers; they
produce antitumormolecules, such as Fas ligand (FasL), IL-4,
IFN-𝛾, IL-13, perforin, and granzyme, that also promote lysis
of tumor cells [30, 31].

3. Mechanisms of Immunosuppression

Local and systemic immunosuppression caused by GBM
have negative impact on the treatment. Tumor microen-
vironment is comprised of multiple cell types, including

tumor-associated parenchymal cells (microglia, neural pre-
cursors cells, peripheral immune cells, and vascular cells),
which interact between them and promote tumoral growth
[32]. Macrophages phenotype M2, T regulatory lymphocytes
(Tregs), and myeloid-derived suppressor cells (MDSC) par-
ticipate in this microenvironment, which actively infiltrate
GBM and suppress T cell function [17, 18, 33–35].

SomeCD4+ T cells express 𝛼 subunit interleukin-2 recep-
tor (CD25+), formerly known as T regulatory cells (Tregs;
CD4+FoxP3+CD25+) [36–38]. Current knowledge is that
Tregs could infiltrate tumors acting as cellular immunosup-
pressors and at the same time contributing to pathogenesis
and tumoral progression [39]. In tumoralmicroenvironment,
Tregs play a direct or indirect downregulation induction on
T lymphocytes (CD4+ and CD8+) through diverse mech-
anisms: they can interact directly with DC to induce an
immunosuppressor phenotype, avoiding the T lymphocytes
reaction (CD4+ CD8+); thus, they promote tumoral cells
survival; moreover, Tregs produce IL-10 and TGF-𝛽, which
block directly the effector T lymphocytes response inducing
anergy [35, 40, 41]. Also, it has been described that Tregs
low population increases the survival rate to induced brain
tumors in animal models [18, 42].Therefore, it is necessary to
eliminate this subpopulation to achieve an effective immune
response [35].

Tumor-associated macrophages (TAMs) frequently ac-
quire a M2 phenotype; in patients affected by brain tumors,
the presence of these cells has been associated with high-
grade tumors and low survival rate [43]. TAMs are frequently
related to neoangiogenesis and negative outcomes since
they release metalloproteases, such as membrane type 1-
matrix metalloprotease (MT1-MMP); these enzymes break
off intercellular binding and allow glioma cells to invade
the brain parenchymal. Also, glioma cells release substance
that stimulates their overexpression through TLRs signaling
[44, 45].

Another immunosuppression mechanism is carried out
by Myeloid-derived suppressor cells (MDSC). These cells
were initially found in tumor-induced hosts, being T-
cell blastogenesis suppressors [46]. MDSC are phenotypi-
cally double positive to granulocyte and monocyte markers
His48+/CD11bc+ in rats or Gr1/CD11b in mice. Human
MDSC have been described in other neoplasms such as
melanoma and renal cell carcinoma [47–49]; besides there is
an increase of this subpopulation inGBM [29, 50].MDSCuse
multiple mechanisms to suppress T lymphocytes function,
such as essential amino acids catabolism as arginine or tryp-
tophan by arginase I or indolamine 2,3-dioxygenase (IDO),
respectively; also, they produce reactive nitrogen compounds
and immunosuppressive cytokines as TGF-𝛽 [51–53]. In rats
immunized with glioma cells, an increase in tumor infiltrat-
ing MDSC was observed; these cells generate a decrement
in T lymphocytes, through nitric oxide production, inducing
apoptosis [54]. Recently an association between MDSC and
CD4+ effector memory T cells has been described, through
surface receptor programed-death-1 (PD-1). This receptor
is expressed on the surface CD4+ effector memory T cells,
while their respective ligand, PD-1L, is upregulated on tumor-
derived MDSC that induce T cells suppression [55].
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Diverse immunomodulators and immunosuppressive
factors are secreted by glioma cells, for example, interleukin-
6 (IL-6) and colony stimulating factor-1 (CSF-1), which play
an important role in Th2 response; this enhances its activity
resulting in a less effective response against tumors [56, 57].
Other factors, such as prostaglandins, interleukin-10 (IL-10),
and cyclooxygenase-2 (COX-2) have been described as part
of the immunosuppressive tumor microenvironment [58].
Glioma cells also segregate transforming growth factor-𝛽
(TGF-𝛽) that stimulates epithelial mesenchymal transition
(EMT), thus contributing to extravasation and migration.
Moreover, they provide a favorable microenvironment for
angiogenesis and immunoevasion and induce immunosup-
pression by increasing Tregs and inhibiting dendritic cells
(DC), cytotoxic T lymphocytes (CTL), and NK cells [59].
CCL2 is a chemokine secreted by gliomas; its function
consists in Treg recruitment and migration [60]. On the
other hand, CXCL10 raises proinflammatory IFN-𝛾 expres-
sion that triggers CD4+ T lymphocytes release and promote
tumor rejection [61]. Indoleamine 2,3-dioxygenase (IDO)
is a cytoplasmic enzyme that participates in tryptophan
degradation. Its expression by antigen presenting cells in
lymph nodes enables T cell tolerance, in part due to induction
and recruitment of Tregs [62]. During neuroinflammation,
IFN-𝛾 upregulates IDO expression by glial cells [63].

Furthermore, hypoxic microenvironment is another im-
portant factor that contributes to immunosuppression; it
promotes the expression of genes involved in angiogenesis
and proliferation [64]. Hypoxia activates STAT3 pathway as
well as proteins which constitutes this immunosuppressive
pathway. An important proangiogenic factor is the vascular
endothelial growth factor (VEGF) [65, 66], aswell as hypoxia-
inducible factor 1-𝛼 (HIF1-𝛼), which increases Tregs subpop-
ulation [67–71]. Besides, STAT3 participates as a mediator
for recruitment of microglia with a subsequent enhanced
immunosupressive response [72].

Tumoral growth is associated with the release of microR-
NAs (miR). In glioma cells the expression of miR-92a gener-
ates tolerant natural killer T cells (NKT) and also promotes
the expression of IL-10 and IL-6 in these cells, showing a
reduction of perforin, Fas ligand, and interferon-𝛾. NKT cells
can suppress cytotoxic CD8+ T lymphocytes [30]. Recently,
we reported that specific changes on RB mutation and RAS
overexpression in glioma cells confer properties to evade
immune responses. These alterations enhance resistance to
NK cell-mediated cytotoxicity [73]. Besides, NKT cells pro-
duce IL-13, which increase the expression of TGF-𝛽 through
MDSC [74]. Some mechanisms are shown in Figure 1.

4. Therapeutic Strategies

Theoretically immune system would be able to generate
tumoral eradication; however, this is limited due to multi-
ple immunosuppressive mechanisms. Nowadays, there are
diverse studies focused to eliminate this tumor-associated
immunosuppression and promote an effective immune
response against cancer [75, 76].

Several strategies are under investigation in order to
reduce immunosuppression mediated by Treg cells [77].

Curtin et al. used PC61 and anti-CD25+ antibody at an ortho-
topic GBM murine model and they observed a depletion
of Tregs cell population in different tissues such as tumor,
lymph nodes, and spleen; besides a better long-term survival
after systemic depletion of regulatory T cells was achieved.
Remarkably, this improvement depends on tumor burden
because no effect was seen trying to induce Tregs depletion
24 days after implantation, suggesting that it could be useful
in minimal residual disease [18].

Recently, we reported the use of pertussis toxin (PTx) as
adjuvant immunotherapy in a C6 glioma model, showing a
decrease in tumoral size, selective cell death in Tregs, and less
infiltration of tumoral macrophages [78]. In another study,
we evaluated the cytotoxic effect of PTx in combination with
temozolomide (TMZ) for glioma treatment, both in vitro
and in vivo RG2 glioma model. We observed an induction of
apoptosis in around 20% of RG2 cells, in both single treat-
ments PTx and TMZ and their combination. Also, the treat-
ment with PTx increases the formation of autophagy vesicles.
Survival increased after individual treatments, and this effect
was enhanced with the combination TMZ+PTx. Treatment
with PTx reduced the number of Tregs in tumor. PTx could
be an immunotherapeutic adjuvant in the integral therapy
against GBM due to their multiple properties either directly
in glioma cells or modulating immunological subpopula-
tions. We demonstrated that its combination with TMZ
could represent an advantage to improve the GBM treatment
[79].

In a murine glioma model, TMZ treatment and vac-
cination with monoclonal antibody against IL2R𝛼 (CD25)
showed a decrease of tumor growth as well as depletion
of Treg cells without affecting the functions of effector T
cell. They also demonstrated that administration of anti-
CD25+ antibody in patients with glioblastoma reduced about
48% Treg population and raised an expansion of effector
T cells induced by vaccination with DC directed to human
cytomegalovirus antigen pp65 [4].

A recent study used both anti-CD25+ monoclonal anti-
body, daclizumab, and epidermal growth factor receptor vari-
ant III (EGFRvIII) vaccination in patients previously treated
with temozolomide. Daclizumab reduced significantly the
prevalence of circulating Tregs compared to control, with-
out evidence of adverse effect in effector T cell response.
Moreover, a greater EGFRvIII specific humoral response was
observed when Tregs population was low, suggesting that this
depletion may enhance vaccine-induced immunity [80].

PD-1 is located on the lymphocyte’s membrane and
is associated with immunosuppression in several tumors
including GBM [81]. Anti-PD-1 immunotherapy was evalu-
ated alongwith stereotactic radiosurgery in amouse intracra-
nial GBMmodel. Using the combinatorial therapy long-term
survival as well as increased tumor infiltrating cytotoxic T
cells and decreased regulatory T cells were seen [82].

Wainwright and colleagues researched the relevance of
IDO expression by glioma cells, finding a better prognosis
in patients with glioblastoma while IDO was downregulated.
They also shown that mice with IDO-deficient brain tumor
presented higher survival rate associated with a depletion of
resident Tregs into the brain [83].
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Figure 1: Diversemechanisms used by glioma cells to generate immunosuppression. (a) Glioma cells secretemolecules that recruit regulatory
T cells and inhibit cytotoxic T cells and Th1 lymphocytes proliferation. They promote the migration of MDSC and acquire an anti-
inflammatory phenotype because of molecules like M-CSF. Glioma cells also increase receptors like EGFR and particular enzymes as IDO.
(b) There is a predominance of immature DC and mature DC downregulate INF-𝛾 expression. (c) The majority of macrophages population
is represented by phenotype M2 which secretes MMP that remodel the extracellular matrix joined to other growth factors. (d) Phenotype
M2 macrophages secrete MMP and different growth factors, supplying microglia infiltration. However, M1 profile does not have antitumor
effect, because it generates cytokines such as IL-𝛽 inducing the expression of TGF-𝛽 by tumor cells. (e) Tregs downregulate other lymphocytes
populations and are recruited by glioma.

STAT3 inhibition offers a potential strategy to down-
stream immunosuppressive effects of tumor-associated mi-
croglia. Zhang et al. used a siRNA-based method to block
STAT3 pathway in the GL261 model of murine glioma,
resulting in a high activation ofmicroglia/macrophagewithin
tumor and improving clinical implications [84]. Inhibition
of intratumoral STAT3 activity can also be achieved through
delivery of miR-124 [85].

If microglia is activated and phagocytic activity is on
top, a selective delivery of targeted agents could be devel-
oped. It has shown that one of the properties of carbon
nanoparticles is increasing uptake ofCpGoligonucleotides by
murine macrophages/microglia. Both CpG oligonucleotides
and CNP were injected intratumorally and resulted in
improvement of survival period in the GL261 model [86].

5. Conclusion

It is clear that immunological therapies are important thera-
peutical alternatives in management of brain tumors, since
an effective immune response could be able to eliminate
neoplastic cells. Access of chemotherapy agents to glioblas-
toma is limited because of the existence of the blood-brain

barrier; however, few immune system cells possess the ability
to cross and infiltrate the tumor representing an advantage
in comparison with antitumoral drugs. In glioblastoma there
is no effective elimination of tumoral cells due immunomod-
ulation that exerts these cells, creating a microenvironment
predominantly immunosuppressor that allows tumoral pro-
liferation.This review offers a general overview of some ther-
apeutical strategies developed with the purpose of changing
this immunosuppressor phenotype as well as avoiding the
migration of immunosuppressor cells to tumor.
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