Skip to main content
. Author manuscript; available in PMC: 2017 Sep 1.
Published in final edited form as: Addict Behav. 2016 Apr 21;60:154–159. doi: 10.1016/j.addbeh.2016.04.008

Table 2.

Logistic models of the odds of using e-cigarettes and hookah in the previous 14 days.

Predictor Coefficient Standard Error z-score Odds Ratio (95% ci) p-value
E-cigarettes: model χ2 (6) = 39.20, p < .001
Age 0.07 0.07 1.08 1.08 (0.94, 1.23) .279
Sex −0.25 0.23 −1.05 0.78 (0.49, 1.24) .293
Race/ethnicity 0.00 0.11 0.00 1.00 (0.80, 1.25) .998
Student status −0.03 0.25 −0.11 0.97 (0.59, 1.60) .911
Cigarette days −0.01 0.03 −0.22 0.99 (0.94, 1.05) .828
E-cigarette expectancies 1.20 0.21 5.70 3.31 (2.19, 5.00) <.001
Hookah: model χ2 (6) = 36.87, p < .001
Age −0.02 0.07 −0.24 0.98 (0.86, 1.13) .812
Sex −0.16 0.23 −0.71 0.85 (0.54, 1.34) .479
Race/ethnicity 0.08 0.11 0.70 1.08 (0.87, 1.35) .481
Student status 0.58 0.26 2.23 1.79 (1.07, 2.99) .026
Cigarette days 0.05 0.03 1.75 1.05 (0.99, 1.11) .080
Hookah expectancies 0.87 0.18 4.84 2.39 (1.68, 3.40) <.001