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Abstract

Event-related desynchronization (ERD) of sensori-motor rhythms (SMR) can be used for online 

brain–machine interface (BMI) control, but yields challenges related to the stability of ERD and 

feedback strategy to optimize BMI learning. Here, we compared two approaches to this challenge 

in 20 right-handed healthy subjects (HS, five sessions each, S1–S5) and four stroke patients (SP, 
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15 sessions each, S1–S15). ERD was recorded from a 275-sensor MEG system. During daily 

training, motor imagery-induced ERD led to visual and proprioceptive feedback delivered through 

an orthotic device attached to the subjects’ hand and fingers. Group A trained with a 

heterogeneous reference value (RV) for ERD detection with binary feedback and Group B with a 

homogenous RV and graded feedback (10 HS and 2 SP in each group). HS in Group B showed 

better BMI performance than Group A (p < 0.001) and improved BMI control from S1 to S5 (p = 

0.012) while Group A did not. In spite of the small n, SP in Group B showed a trend for a higher 

BMI performance (p = 0.06) and learning was significantly better (p < 0.05). Using a 

homogeneous RV and graded feedback led to improved modulation of ipsilesional activity 

resulting in superior BMI learning relative to use of a heterogeneous RV and binary feedback.

Index Terms

Brain–machine interface; event-related desynchronization; neurorehabilitation; stroke

I. Introduction

Based on the finding that power amplitudes of the sensori-motor rhythm (SMR) can be 

voluntarily modulated [1], various brain-computer and brain-machine interface (BMI) 

applications were developed that translate event-related desynchronization (ERD) or 

synchronization (ERS) into signals that control external devices [2], [3]. ERD/ERS offers 

quantification of stimulus-locked brain activity e.g., during motor imagery, compared to 

reference conditions (RC). Easiness of use made SMR-ERD, which reflects processing 

within the sensorimotor cortex [4], an ideal candidate to drive online BMI systems in the 

context of neurorehabilitation [5].

In contrast to BMI approaches that aim to replace lost function e.g., by allowing for 

continuous high-dimensional control of robotic devices that move completely paralyzed 

hands or legs, restorative (biofeedback) BMI systems aim at inducing (BMI-) use-dependent 

neuroplasticity that might facilitate motor recovery [6]–[8]. As in both approaches 

contingent feedback or reward plays a key role for acquiring control of neural activity, novel 

techniques that were recently successfully incorporated in BMI systems delivering feedback 

through direct stimulation of peripheral nerves [9], [10], dorsal root ganglia (DRG) [11] or 

cortical and sub-cortical brain regions [12]–[16] offer promising new perspectives for patient 

populations with compromised afferent pathways.

The development of restorative (biofeedback) BMI is closely related to the success of 

neurofeedback [17] and to data indicating that stroke patients with best motor recovery are 

the ones in whom ipsilesional cortical function is closer to that found in healthy controls 

[18], [19]. A negative correlation between impairment and activation in ipsilesional M1 

during hand motions has been documented [20]–[23]. Thus, in a restorative BMI, adaptive 

plasticity of ipsilesional brain activity could be acquired through contingent reward of better 

SMR-ERD control associated with motor movement or imagery of the affected limb.

For implementation of such an approach, however, an optimal trade-off between BMI 

adaptability to the dynamic states of the brain and rewarding feedback for consistent 
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reproduction of desired neurophysiologic activity that might facilitate motor recovery needs 

to be met. The nonstationary nature of ERD provides an objective rationale to implement 

adaptive methods [24]–[26], but it is not conclusively clear how to adapt and at what rate 

[27]. Various methods were described in the literature to address nonstationarity [28], [29] 

including application of adaptation techniques carried out at different BMI modules, e.g., 

spatial filtering of the signal [30], feature extraction [31] or at the classifier. Operationally, 

the purpose of a restorative BMI (induction of use-dependent neuroplasticity) would be to 

augment a desired neurophysiologic feature through systematic reward [6], [7], [32]. Our 

study addresses this issue by using different adaptation settings carried out at the level of the 

BMI normalizer coupled with afferent proprioceptive feedback.

One method for online classification of SMR-based ERD is based on the expression of 

power estimates in sample blocks recorded during a task condition (TC) relative to a 

reference value (RV). The RV is continuously updated by the power estimates of the RC and 

can be based on either 1) signal power estimates of a rest condition and TC preceding the 

actual sample block (heterogeneous RV) or on 2) the signal power estimates of the rest 

condition only (homogeneous RV). Both approaches comprise a certain degree of 

adaptability to account for potential changes of power values during the rest condition, e.g., 

due to fatigue [33], [34]. This is achieved by continuously updating the RV during the 

training based on the ITI’s (rest conditions) that immediately preceded the actual trial (Fig. 

1). Moreover, the heterogeneous RV is additionally updated by the power values recorded 

during the previous task trials. This approach offers the advantage that the ERD detection 

threshold is reduced if the subject fails to persistently produce ERD of certain strength so 

that reliable BMI control is sustained and early frustration to control the BMI avoided. 

Furthermore, improvements in ERD production will make the task more challenging in the 

following trials giving the subject an incentive to improve further.

In contrast, a homogeneous RV requires setting a fixed ERD detection threshold relative to 

the RV. Accordingly, the subject has to reliably reach a specific ERD strength relative to the 

RV that is influenced by the signal power estimates of rest only to gain BMI control.

Another aspect in designing a BMI is the translation of the BMI signal into adequate 

feedback. Based on the assumption that rapid and accurate feedback is beneficial for 

learning [35], graded feedback to reward stronger ERD might increase the probability for 

reliable ERD detection in the course of the training. Thus, here we hypothesized that 

training on a homogeneous RV and graded feedback that reflects ERD strength will lead to 

better BMI learning compared to a BMI that is based on a heterogeneous RV and binary 

feedback. Presently, it is unknown which approach leads to better BMI learning and 

performance and, thus, induction of adaptive plasticity of ipsilesional brain activity in 

patients with extensive brain lesions.

II. Methods

A. Subjects

Twenty right-handed SMR-BMI-naïve healthy volunteers (10 male, 10 female, mean age: 

28.3 years ±5.6) and four stroke patients (see Table I) were invited for five BMI training 
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sessions (S1–S5, healthy subjects) on consecutive days. We also included four stroke 

patients (see Table I) who received 15 sessions (S1–S15) of daily BMI training. The 

handedness of each subject was evaluated by the Edinburgh Handedness Inventory [36]. All 

stroke patients suffered from subcortical lesions (for demographics, lesion location and 

extent see Table I) and were unable to extend their severely affected fingers. Participants 

were randomly assigned to one of two groups. Before entering the study, written informed 

consent to the study was given. The study protocol was approved by the National Institute of 

Neurologic Disorders and Stroke Institutional Review Board.

B. Design

In Group A, desynchronization was identified during BMI training based on a heterogeneous 

RV, while in Group B a homogenous RV was used (Fig. 1). Subjects were instructed to use 

visuo-kinesthetic motor imagery (MI) of moving their left hand to generate contralateral 

ERD.

C. Electrophysiologic Recordings

Neuromagnetic brain activity was recorded at a sampling rate of 600 Hz using a CTF 275 

MEG system (CTF Systems, Inc., Port Coquitlam, BC, Canada) composed of a whole-head 

array of 275 radial first-order gradiometer/SQUID channels housed in a magnetically 

shielded room (Vacuumschmelze, Hanau, Germany). Synthetic third gradient balancing was 

used to remove background noise online. A video system was used to constantly monitor the 

subjects. Online electromyography (EMG) recordings were obtained from the m. 

brachioradialis and m. flexor carpiulnaris muscles of both arms using radiotranslucent 

surface electrodes (Biopac, inter-electrode distance: 2 cm).

D. Online Classification of ERD

ERD were computed based on the power method described by Pfurtscheller (1979) [4] using 

the following equations:

(1)

(2)

Pt is the power estimate in a given frequency band of the t sample block. RV is reference 

value.

For online classification various possibilities for choosing the composition and length of the 

RC exist. Preferring a reliable online detection of ERD that is rather insensitive to inter- and 

intra-session changes of maximum power values during rest and task suggests to choose a 

RV that is continuously updated by both, Pt and PREF values during BMI control 

(heterogeneous RV). With such an approach, an ERD is usually detected if the incoming 

sample block values are smaller than RV (as in Group A).
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Given that the power estimates during rest condition (e.g., inter-trial-interval, ITI) are rather 

stable (as indicated in Fig. 3, lower graph), individual ERD thresholds for graded 

proprioceptive feedback can be set. In Group B each sample block value became interpreted 

as ERD if it was equal or stronger than 20% relative to RC. In stroke patients, a threshold of 

15% was chosen.

The BCI2000 Software platform1 was used to implement online BMI control of an orthotic 

device [37]. BCI2000 is based on a system model that consists of four modules (source, 

signal processing, user application, and operator interface) [38] and incorporates 

customizable signal filtering as well as extraction of signal features for translation into 

device control signals. Computation of ERD involved the power spectrum estimation (an 

autoregressive model of order 16 using the Yule-Walker algorithm) of the ongoing MEG 

signal associated with the specified SMR rhythm frequency range (11–14 Hz) and 

comparison of the resulting values with a RV. A custom made module implemented in the 

BCI2000 chain allowed to set fixed thresholds for various speed levels of the orthosis. The 

update rate for the orthotic device was at 153 ms.

E. MEG Sensor Selection

Before the first training session, a screening session was performed to identify the frequency 

that showed strongest ERD within the range of 11–14 Hz over right (healthy subjects) or 

ipsilesional (stroke patients) central sensor space. In this area, three MEG sensors were 

chosen that showed strongest desynchronization during motor imagery. To estimate the 

ERD, power estimates were calculated for every sensor separately and then averaged. On all 

training days, head localization relative to MEG sensors was kept constant and the same 

sensors were used as in S1. ERD detection thresholds and thresholds for different speed 

levels of the orthosis were computed and set-up in Group B before each training session. As 

stated above, the purpose of the BMI was to facilitate activity in the ipsilesional motor 

network in stroke patients or in the “active” motor network of healthy subjects.

F. BMI Training

In both groups, BMI training consisted of 575 trials (1725 trials in stroke patients) 

distributed over five (15) sessions. In Group B, each training session was preceded by a 

screening run with 23 trials to determine mean power values during RC and task.

In Group A, desynchronization was identified if three subsequent incoming sample blocks 

had equal or lower values than RV and translated into visual and proprioceptive feedback 

delivered through steady extension of the subject’s fingers by an orthotic device (see Fig. 2). 

Movement of the orthotic device would stop if the incoming sample block was greater than 

RV. After each trial, the subjects’ fingers were moved back passively to a neutral position.

In Group B, a threshold (Tr) was identified that allowed good differentiation between rest 

and task power values, so that false positive classification of desynchronization during rest 

would range below 10%. In healthy subjects that threshold was 20% and 15% in stroke 

1http://www.bci2000.org
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patients (a value to be found reliably beyond one standard deviation (SD) of the mean ITI 

power). Depending on the maximum strength of desynchronization (relation of the incoming 

sample block’s value to the RV in %) three speed levels for orthosis movement were set for 

the training. Optimal desynchronization in both groups would result in identical position of 

the orthotic device at the end of the task. BMI training was interrupted when EMG activity 

during imagery exceeded baseline activity recorded at rest.

G. Data Analysis

In order to have a measure that allows comparison across groups, BMI performance was 

defined as % of orthosis movement time relative to total training time. This measure reflects 

the number of incoming sample blocks classified as ERD in each group. BMI learning was 

defined as improvement of BMI performance between the first and last training sessions 

(S1–S5, healthy subjects; S1–S15, stroke patients). To evaluate the rate of false positive 

ERD classification in each group as an indirect measure of volitional (intended) movement, 

the sensitivity index SI, (3) for each subject and session was calculated and averaged across 

group. To assess BMI learning in both groups, an ANOVA for repeated measures 

(ANOVARM) with “session” as the within-subject factor and “group” as between subject 

factor was performed. Statistical significance was assumed when p < 0.05

(3)

Hit rate was defined as the relative number of sample blocks during the trials in which ERD 

were detected according to (1) and (2). “False_alarm_rate” was defined as the relative 

number of sample blocks in which ERD were detected during the ITI. To illustrate changes 

in amplitude and extent of desynchronization at 11 Hz from session to session, ERD maps of 

the MEG sensor space in S1, S3, and S5 were calculated for each healthy subject separately 

and then averaged over group.

III. Results

A. Healthy Subjects

BMI performance: While Group A showed a mean performance of 67.5 ± 6.74% over all 

sessions, Group B reached 86.7 ± 5.85%. ANOVARM with factors “group” and “session,” 

showed a main effect for “group” (F(1, 18) = 39.26, p < 0.001) and “session” (F(4, 15) = 

3.508, p < 0.05).

BMI learning: Repeated measures ANOVA with factors “group” and “session” showed a 

main effect for “group” (F(1, 18) = 16.325, p < 0.05) and “session” (F(4, 72) = 5.670, p < 

0.01) (Fig. 4, upper graph). Bonferroni corrected post-hoc analysis of BMI learning from 

S1–S5 showed significant BMI learning only in Group B (M: 9.5, 95% CI [0.7; 1.13], p < 

0.05), but not A (M:4.0, 95% CI [0.3; 0.8], p = 0.19, n.s., Fig. 4, upper graph). An 

independent samples t-test was used to evaluate the difference of BMI learning between 

Group A and B, showing that Group B learned significantly better than A (M:5.531, 95% CI 

[1.75; 9.308], p < 0.01). SI: SI values differed significantly between both groups (F(1, 18) = 

16.325), p < 0.001). While SI improved from S1 to S2 in both groups, only Group B 
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continued to show a trend for further increase (Fig. 5, upper graph). Topographical ERD 

maps: While both groups improved mean ERD strength and spatial distribution across 

sessions, Group B had mean ERD values of up to 46% (compared to 34% in Group A) (Fig. 

6).

B. Stroke Patients

BMI performance: Group A: Patient 1 reached a mean performance of 67.7 ± 2.66% while 

patient 2 showed a mean performance of 71.6 ± 2.79%. Group B: Patient 3 reached a mean 

performance of 73.6 ± 5.83% while patient 4 showed a mean performance of 79.4 ± 3.01% 

(Fig. 4, lower graph). ANOVARM with factors “group” and “session,” showed a main effect 

for “session” (F(14 140) = 9.79, p < 0.001), but not for “group” ((F(1, 10) = 4.382, p = 

0.063), n.s.). BMI learning: Mean performance increase in Group B was higher over 

sessions resulting in a overall gain of 12.58 ± 1.56% (Group A: 6.28 ± 3.17%). Repeated 

measures ANOVA with factors “group” and “session” showed a main effect for “session” 

(F(4, 72) = 5.670, p < 0.001), but not for “group.” Bonferroni corrected post-hoc tests 

showed significant BMI learning from session 1–15 only in Group B (M:11.7, 95% CI 

[10.2; 12.9]; p < 0.05), but not in A (M:6.3, 95% CI [22.2; 12.9]; p = 0.194, n.s.) (Fig. 4, 

lower graph).

A two-tailed t-test for independent samples was used to evaluate the difference of BMI 

learning between Group A and B. There was significantly more learning in Group B than A 

(M:3.57, 95% CI [6.65; 0.48], p < 0.05). SI: ANOVARM with factors “group” and “session” 

indicated a main effect for “group” (F(1, 18) = 139.00), p < 0.001)) and “session” (F(14, 

87.82) = 13.428, p < 0.05). While SI was similar at the beginning of the training in all 

patients, only Group B improved after S8 (see Fig. 5). Post-hoc t-test for independent 

samples indicated significant differences of SI in S9–15 (p < 0.05).

IV. Discussion

These results, though preliminary in stroke patients due to the small n, indicate that the 

combination of a homogeneous RV for ERD detection with graded feedback based on ERD 

strength leads to better BMI performance and learning than a heterogeneous RV with binary 

feedback. Thus, this training strategy may offer a better way to improve modulation of 

ipsilesional activity in the context of restorative BMI use in neurorehabilitation.

By design, a BMI based on a heterogeneous RV and binary feedback reduces the probability 

of early frustration during BMI learning and offers good adaptability to day-to-day and 

intraday variability of mean power estimates during rest and task condition intervals, but is 

also more susceptible to inconsistencies of voluntary SMR modulation during the BMI 

training: in a subject who fails to optimally desynchronize during a trial, e.g., due to 

distraction or fatigue that leads to a delay in desynchronization or weaker ERD, the 

heterogeneous RV will be adapted accordingly resulting in a lower threshold for ERD 

detection in the following trial and, thus, reduce the necessity to consistently generate strong 

ERD.

Soekadar et al. Page 7

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2016 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Homogeneous RV coupled with graded feedback facilitates BMI learning and excludes false 

positive detection of ERD, an issue relevant if subjects have difficulties to focus on the task 

as it often occurs in stroke patients. Inattention e.g., will not lead to a change of the 

feedback-threshold in the following runs. Furthermore, graded feedback allows better offline 

differentiation of BMI learning and performance depending on e.g., the amount of time the 

subject reached different speed levels during the BMI training, leading to improvements in 

motor control of the orthosis. This is an important issue for day-to-day comparability of 

ERD throughout the BMI training in stroke patients, assuming that stronger ERD correlate 

with increased activity of the underlying neuronal populations. Using a homogeneous RV 

with graded feedback, though, has the disadvantage that it requires daily determination of 

thresholds for different speed levels related to ERD strength.

Subjects in Group A showed some improvement of mean performance from S1 to S2 that 

was, however, not significant due to high variance. In the following sessions there was no 

further improvement, except for a decrease of variance (Fig. 4). It is likely that subjects in 

Group A did not improve their mean performance because stronger desynchronization 

would result in an adaptation of the RV making it more difficult (and metabolically costly) 

in the following trials to sustain the previously reached level of performance. Topographical 

ERD maps (Fig. 6) of both groups substantiate this assumption. While subjects in Group B 

showed successive increase in ERD strength, this steady increase could not be seen in Group 

A. This finding is further supported by the evaluation of the SI (Fig. 5) that indicates that in 

Group A the distribution of mean power values during task and ITI is in higher proximity. 

Our finding suggests that a heterogeneous RV with binary feedback results in an 

intermediate desynchronization level while stabilizing performance by improving 

consistency of ERD production so that a stable level of feedback is sustained. An 

intermediate desynchronization level, however, may lead to a higher amount of false positive 

ERD detections and, thus, lower performance levels compared to levels reached in Group B. 

The decrease of variance in the course of the training at the same performance level supports 

the assumption that the subjects in Group A tend to sustain an intermediate 

desynchronization strength with increasing consistency. This might reflect the attempt of the 

brain to optimize metabolic cost of BMI control minimizing a cost function according to 

optimal control theory [39], [40].

While in the patient population, both groups showed some increase of mean BMI 

performance over the course of 15 sessions (Fig. 4, lower graph), only patients of Group B 

showed significant BMI learning from S1 to S15.

A potential disadvantage of graded feedback with fixed ERD thresholds in patients with 

stroke could be that inattention or fatigue might lead to early frustration, as any drop in ERD 

strength will be reflected immediately by the movement speed of the orthosis. While it could 

be expected that higher absolute power values reached during ITI imply a higher capacity 

for desynchronization [41], we could not find such a correlation in stroke patients (Fig. 3, 

lower graph). On the contrary: high amplitudes with little variance during rest, respectively 

ITI, in stroke patients might indicate extensive idling of neuronal networks in the ipsilesional 

hemisphere as a sign of impairment. While recent studies showed that stroke patients can 

successfully learn to control a SMR-based BMI [3], [6], [8] this is, to our knowledge, the 
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first study that investigated online-translation of ERD into graded proprioceptive feedback in 

a homogeneous RV environment. It suggests that fast adaptation of BMI parameters e.g., by 

using a heterogeneous RV, coupled with binary feedback might not be optimal for BMI 

learning associated with ERD production compared to less adaptive approaches and graded 

feedback. These findings might be of relevance to identify optimal parameters and 

frameworks for restorative BMI applications in stroke patients. Future work should 

dissociate further the relative contribution of RV and feedback type on BMI learning.
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Fig. 1. 
Upper: Design of the BMI training and computation of RV in Group A (N = 12) and B (N = 

12). In Group A, RV for every incoming sample block of Taskn is computed as a mean based 

on power estimates of the preceding two rest condition intervals (ITIn−1 and ITIn−2) and task 

intervals (Taskn−1 and Taskn−2) (heterogeneous RV). In Group B, only power estimates of 

ITIn−1 and ITIn−2 are used to compute the RV for the sample blocks of Taskn (homogeneous 

RV). Lower: BMI settings for ERD detection in Group A and B are given in the box. In 

Group A, ERD is detected if the power value of the incoming sample block recorded during 

BMI training is smaller than RV (binary). In Group B, an ERD is detected if the incoming 

sample block value is smaller than a fixed value (e.g., 20% of homogeneous RV). Stronger 

ERD are translated to faster velocities of orthosis movements (graded feedback).
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Fig. 2. 
A 275-sensor MEG was used for recording of oscillatory brain activity. An orthotic device 

affixed to the subject’s hand and fingers delivered proprioceptive feedback. Onset and end of 

task was indicated by an auditory stimulus.
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Fig. 3. 
Stability of inter- and intraday mean power values during inter-trial intervals (ITI, rest 

condition). Upper: Healthy subjects, error bars indicate minimum and maximum of all data. 

Power values are shown for each group (A,B) across sessions (S1–S5). Lower: Stroke 

patients, black = group A; gray = group B; each line represents the mean power values of 

intra-session ITI’s on S1–S15 (STD indicated by error bar, numbers at the end of each line 

indicates which patients data is represented). While absolute mean power values during rest 

show a large inter-individual variability, average variances of intraday power estimates range 

between 8%–12%. This stability of power values allow fixed thresholds for ERD detection 

(e.g., if decrease of mean power estimates during task performance reach 20%).

Soekadar et al. Page 15

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2016 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Mean BMI performance over sessions in Group A and B. Upper: Healthy subjects (n = 10 in 

each group). Lower: Stroke patients (n = 4, each subject is shown individually, numbers at 

the end of each line indicate of which patient’s data is shown).

Soekadar et al. Page 16

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2016 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Mean sensitivity index (SI) in healthy subjects (upper graph, p < 0.001 by ANOVARM, main 

effect for‚ group indicated by †) and stroke patients (lower graph, p < 0.05 by ANOVARM, 

significant post-hoc comparison between groups indicated by *). The SI reflects the 

separation between mean power values during rest (ITI) and the task condition according to 

the ERD detection threshold used in Group A, respectively Group B. A high index indicates 

good separation and a low false positive ERD detection rate during the training. While there 

is a clear difference in healthy subjects between absolute SI values of each session in both 

groups, stroke patients showed very similar values at the beginning of the training, but only 

Group B showed improvements of SI values after S8.
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Fig. 6. 
Mean topographical ERD maps of in S1, S3, and S5 for Group A (upper row) and B (lower 

row) at 11 Hz (healthy subjects). Averaging was performed based on the assumption of a 

similar signal source in the sensori-motor cortex. While both groups show some increase in 

mean ERD-strength, this increase is more pronounced in Group B with a peak over the 

vertex. Both groups showed an enlargement of ERD in the course of the training.
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TABLE I

Demographic Data of Participating Stroke Patients

Patient Age Months after stroke Lesion location and extent Affected hand

1 45 53 Subcortical stroke involving the basal ganglia (putamen) and centrum semiovale 
subjacent to the right central sulcus. Some involvement of the anterior insula.

left

2 34 19 Palidum, striatum, thalamus, encephalomalacia affecting the descending fibers of 
the frontal and right temporal lobe. Slight ex vacuo dilatation of the right lateral 
ventricle.

left

3 31 151 Encephalomalacia of the left centrum semiovale affecting the corona radiata, 
posterior limb of the capsula interna, globus pallidus, putamen and white matter 
of the medial temporal lobe.

right

4 64 63 Subcortical stroke affecting left

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2016 May 29.


	Abstract
	I. Introduction
	II. Methods
	A. Subjects
	B. Design
	C. Electrophysiologic Recordings
	D. Online Classification of ERD
	E. MEG Sensor Selection
	F. BMI Training
	G. Data Analysis

	III. Results
	A. Healthy Subjects
	B. Stroke Patients

	IV. Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	TABLE I

