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Abstract

Objective—EEG reactivity is an important predictor of outcome in comatose patients. However, 

visual analysis of reactivity is prone to subjectivity and may benefit from quantitative approaches.

Methods—In EEG segments recorded during reactivity testing in 59 comatose patients, 13 

quantitative EEG parameters were used to compare the spectral characteristics of 1-minute 

segments before and after the onset of stimulation (spectral temporal symmetry). Reactivity was 

quantified with probability values estimated using combinations of these parameters. The accuracy 

of probability values as a reactivity classifier was evaluated against the consensus assessment of 

three expert clinical electroencephalographers using visual analysis.

Results—The binary classifier assessing spectral temporal symmetry in four frequency bands 

(delta, theta, alpha and beta) showed best accuracy (Median AUC: 0.95) and was accompanied by 

substantial agreement with the individual opinion of experts (Gwet’s AC1: 65–70%), at least as 

good as inter-expert agreement (AC1: 55%). Probability values also reflected the degree of 

reactivity, as measured by the inter-experts’ agreement regarding reactivity for each individual 

case.

Conclusion—Automated quantitative EEG approaches based on probabilistic description of 

spectral temporal symmetry reliably quantify EEG reactivity.

Significance—Quantitative EEG may be useful for evaluating reactivity in comatose patients, 

offering increased objectivity.
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1. Introduction

Accurate prediction of neurologic outcome is essential for the care of comatose patients, 

particularly to guide decisions about whether or not to continue supportive care. 

Prognostication in comatose patients is based on both clinical and electrophysiological 

parameters (Gaspard et al., 2014; Tjepkema-Cloostermans et al., 2015; Wijdicks et al., 

2006). One of these variables is the reactivity of the EEG to external stimulation, which has 

emerged as an important predictor of improved outcome in a wide variety of clinical 

conditions, including traumatic and anoxic brain injury (Logi et al., 2011; Rossetti et al., 

2010). In multimodal prediction of outcome after anoxic brain injury, the information 

provided by EEG reactivity complements the information derived from clinical examination 

and somatosensory evoked potentials (SSEP) (Oddo and Rossetti, 2014; Rossetti et al., 

2010).

EEG reactivity is generally regarded as presence of any change in frequency or amplitude of 

the EEG background pattern, detected after the application of an external stimulus (Young, 

2000), although no consensus exists about the detailed characteristics or exact timing or 

duration of changes involved in a responsive EEG. External stimulation often includes 

applying auditory stimuli (i.e. shouting or clapping), somatosensory stimuli (i.e. applying 

pressure to the nail bed or supraorbital nerve) or visual stimuli (i.e. passive eye opening), but 

there is no consensus about the particular stimulus or stimuli that need to be applied.

In current practice, EEG reactivity in comatose patients is assessed by visual comparison of 

EEG segments before and after the time of stimulus administration. However, visual EEG 

analysis can be difficult and is prone to subjectivity (Gerber et al., 2008; Noirhomme et al., 

2014; Young et al., 1997).

By providing an objective assessment of the EEG signal and detecting subtle changes in the 

signal that might escape visual assessment (Claassen et al., 2004; Vespa et al., 1997), 

quantitative EEG (qEEG) analysis can assist the interpretation of the EEG (Lodder and van 

Putten, 2013; Nuwer, 1997).

In the present study, several quantitative approaches that score differences in signal 

characteristics are compared with visual analysis of EEG reactivity by experts. With this 

work, we aimed to explore the possibility for automated quantification of EEG reactivity in 

comatose patients.

2. Methods

2.1. EEG data

We used EEG recordings of 70 consecutive comatose patients that were admitted to the ICU 

and underwent continuous EEG and stimulation to assess reactivity for neurological 
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prognostication. Coma was clinically defined as the absence of meaningful clinical response 

to noxious stimulation (i.e. withdrawal or better response on the motor component of the 

Glasgow Coma Scale (Wijdicks et al., 2006)). At the time of EEG recording, some patients 

were sedated with midazolam, propofol or a combination of these and some were 

hypothermic.

The set of EEG recordings was selected from the digital ICU EEG databases of Yale-New 

Haven Hospital (New Haven, Connecticut, USA), Massachusetts General Hospital (Boston, 

Massachusetts, USA) and Medisch Spectrum Twente (Enschede, the Netherlands). The 

institutional review boards of participating institutions did not require informed consent and 

approved the research protocols under which the study was conducted.

Recordings included standard arrangements of 19 electrodes placed according to the 

international 10–20 system. Recordings were routinely performed with commercially 

available medical-grade EEG equipment, with a sampling frequency of 200, 256 or 512 Hz.

EEG reactivity was tested as part of routine clinical care at each institution using a variety of 

external stimuli. Stimuli were administered sequentially and included calling the subject’s 

name, clapping hands, shaking the subject, administration of central or peripheral noxious 

stimuli (nostril tickle and/or nail bed pressure), and passive eye opening. The sequence of 

stimuli takes less than 30 s and could have been interrupted in case the subject showed a 

clinical response. We cannot exclude some discrepancy between the technicians’ and the 

treating physicians’ clinical assessment, but followed the treating physicians’ opinion. One 

epoch of stimulation was selected for every patient. The time of onset of reactivity testing, 

i.e. start of stimulation, was determined using the notes in the original EEG file and 

confirmed by reviewing the corresponding video recording. Since the goal of this study was 

to develop a quantitative method for assessing reactivity that is competitive with the expert’s 

opinion regarding reactivity, and acknowledging the variability in the way stimulation was 

provided to patients, rather than pursuing its use for prognostication, information about 

outcome was not collected. In addition, no attempt was made to select patients stimulated in 

any specific or uniform manner, or to ensure uniformity of testing conditions or methods of 

external stimulation.

EEG recordings with prominent artifacts prior to stimulation were excluded. EEG recordings 

with suppression-burst were also excluded from the analysis as spontaneous short-term 

variation in the duration and spectral content of the burst between the pre- and post-

stimulation epoch may affect the performance of the detector.

In addition to the selected test cases, a verifications set of 34 2-min EEG clips was randomly 

selected from comatose patients with background better than suppression-burst between 12 

am and 6 am, at a time no active stimulation was provided.

2.2. Visual scoring

Reactivity of each test case was assessed by three independent practicing, board certified, 

clinical neurophysiologists routinely involved in prognostication of patients with coma. 

These expert EEG readers evaluated responsiveness using standard visual analysis of the 
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total EEG recording, under ordinary clinical conditions, without time constraints. During 

analysis, the expert readers were able to manipulate the 19 channel EEG by changing filters, 

montages, signal gain, and the amount of data shown on a single EEG review screen.

Before assessment, the expert readers agreed to use a reactivity score in which each case was 

classified as ‘Reactive’, ‘Non-reactive’ or ‘Unclear’. The presence of stimulus-induced 

rhythmic, periodic, or ictal discharges (SIRPIDS) was coded separately but regarded as 

reactivity. Presence of a change in electromyographic (EMG) activity by itself without 

corresponding EEG changes was regarded as non-reactive. Besides this common set of rules, 

experts were free to determine what represented reactivity as they would in routine clinical 

practice. For purposes of model training, cases were categorized according to the majority 

(2/3) of the experts’ opinion. Cases in which no consensus was reached were classified as 

unclear reactivity.

2.3. Quantitative analysis

For each EEG recording, a set of qEEG parameters was calculated. These qEEG features 

were based on different computational approaches, which have been described as potentially 

capable of quantifying changes in spectral characteristics of the EEG. In addition to the 

qEEG features describing EEG reactivity, parameters detecting EMG reactivity were 

implemented.

The quantitative analysis of EEG reactivity involved comparison of the EEG characteristics 

before and after administration of external stimulation. The pre-stimulation epoch that was 

selected as baseline included the EEG segment of 60 s prior to the documented time of the 

onset of reactivity testing. The subsequent 60 s segment starting at the onset of stimulation 

was selected as the post-stimulation epoch. The duration of the epochs was chosen to allow 

the detection of any EEG changes during the total period of stimulation, which may last up 

to 30 s, and the detection of delayed responses, which in our experience can occur several 

seconds after the stimulus. Quantitative analysis was performed for all derivations of a 

bipolar longitudinal montage.

EEG recordings were first exported in standard European Data Format (.edf), and then 

imported into the Matlab (Natick, MA) computing environment for further analysis. 

Independent component analysis (ICA), as implemented by the FastICA tool version 2.5 for 

Matlab (Gävert et al., 2005) was used to identify and eliminate the component with the 

highest correlation with the electrocardiogram (ECG). Furthermore, components with high 

kurtosis were removed in order to minimize artifacts (Delorme et al., 2001) using a threshold 

of 15, which was established through observation of the data. Components were manually 

checked to prevent elimination of EEG signal. After detection of EMG reactivity (see 

below), a 4th order zero-phase high pass Butterworth filter with a cut-off frequency of 0.5 

Hz was used to reduce baseline instability.

The power spectrum of the EEG segments was estimated with the Thomson’s multi-taper 

method (Thomson, 1982) implemented in the Chronux toolbox (Bokil et al., 2007, 2010), 

which generates spectral estimates with an optimal balance between spectral resolution 

(bias) and variance. The frequency resolution, i.e. the intervals between spectral 
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components, was 0.39 and 0.5 Hz, depending on the sampling rate. In all cases the spectral 

estimation was based on 3 slepian tapers, a moving window length of 1.5 s and a step length 

of 0.1 s, resulting in a spectral resolution bandwidth, i.e. the minimal proximity in which 

two spectral peaks are clearly distinguishable, of 2.67 Hz, independent of sampling rate. 

Analysis of EEG spectral characteristics was confined to 1–18 Hz, to mitigate the 

contamination by the electromyography (EMG) activity. Within this total frequency band 

(1–18 Hz or 1.2–18.4 Hz, depending on frequency resolution), we specified the delta (d; 1–4 

Hz or 1.2–4.3 Hz), theta (h; 4–8 Hz or 4.3–8.2 Hz), alpha-band (a; 8–12 Hz or 8.2–12.1 Hz) 

and beta-band (β: 16–18 Hz or 16–18.4 Hz).

EMG activity of scalp muscles, when present, influences spectral characteristics of the EEG 

(Goncharova et al., 2003). This is potentially problematic, as the neurologic prognostic 

significance of EEG reactivity in comatose patients is conventionally thought to depend on 

measuring the potential of cortical activity to react to stimulation, whereas EMG activity 

may arise from extra-cortical activity. Elimination of EMG artifacts remains a challenge, 

despite the use of artifact reduction methods. As a result, EMG reactivity on stimulation 

might influence qEEG features, with the potential to produce false positive assessments of 

reactivity.

In the present study, the ratio of mean power in the 20–35 Hz and 1–4 Hz frequency bands 

(muscle activity ratio) and the ratio in mean 20–35 Hz power before and after stimulation 

(muscle reactivity ratio), were used to detect EMG reactivity of a certain quantity, as 

described in more detail in the Supplementary Material. Cases in which EMG reactivity was 

detected were excluded from analysis.

2.4. Temporal brain symmetry index

In order to quantify temporal changes in spectral characteristics of EEG, the temporal brain 

symmetry index (tBSI) was proposed in a recent study (van Putten, 2006). The tBSI is 

defined as the normalized difference between spectral estimates of two EEG epochs and thus 

provides a measure of temporal invariance or symmetry. In the current study, the tBSI is 

calculated to assess the difference between the pre-stimulation epoch and post-stimulation 

within an individual derivation:

(1)

Here, Sposti,j and Sprei,jare the spectrogram of the post- and pre-stimulation epochs with i = 

1,2…. N time samples and j = q,..q + K frequency components starting at frequency q. The 

tBSI was separately calculated for the previously described δ, θ, α and β-bands and the total 

frequency band.

2.5. Two-group test

The two-group test (Bokil et al., 2007) is a method for comparing the power spectra of two 

time series. In this method, a Z-statistic for the differences between each frequency 

component of the two time series is calculated, and a p-value is calculated using the 
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jackknife method to test the null hypothesis that the spectral components are identical (Bokil 

et al., 2007; Miller, 1968).

We used the implementation of this method in the function two_group_test_spectrum from 

the Chronux toolbox (Arvesen, 1969; Bokil et al., 2010) to obtain p-values for all the 

individual frequencies between 1 and 18 Hz. The mean p-value of all frequency components 

within a specific frequency band was used as reactivity scoring index, which we call 

hereafter the TGT:

with Pj is the p-value corresponding to a specific frequency component and j = q,…,q + K 
are the frequency components within a particular frequency band. The TGT was calculated 

for frequency bands identical to the bands used in the tBSI, including the δ, θ, α and β-bands 

and the total frequency band.

2.6. Relative entropy

Spectral entropy is a widely used feature to quantify the degree of regularity or organization 

in a signal, which is based on quantification of the uniformity of power in the power 

spectrum of a signal. The relative entropy (RE), or Kullback-Leibler divergence, compares 

the spread of power in the frequency spectra of two signals, thereby quantifying the change 

in signal organization (Kullbback and Leibler, 1951).

It has been suggested that RE based methods might be useful in various settings of EEG 

analysis, including the assessment of event related potentials (Rosso et al., 2001) and the 

detection of epileptic seizures (Quiroga et al., 2000). In the current study, the spectral RE is 

used to assess the similarity in degree of order between the pre-and post-stimulation EEG 

segment:

(2)

In which S′postj and S′postj are respectively the 1–18 Hz mean normalized spectra of the 60 

s post- stimulation and pre- stimulation epochs with j = 1,2…,K frequency components.

2.7. Kolmogorov-Smirnov test

The Kolmogorov–Smirnov (KS) test assesses the difference in the distribution of a variable 

in two populations (Lilliefors, 1967; Massey, 1951). It has been suggested that the KS-test 

might be used to test the equality of the spectral distribution of two EEG samples, which can 

be used to verify the stationarity of the EEG (McEwen and Anderson, 1975). In the present 

study, a two-sample KS-test was used to test the null hypothesis that the distribution of the 

mean pre-stimulation spectrum is equal to the distribution of the mean post-stimulation 

spectrum. To obtain these mean spectra, the 1–18 Hz spectrogram corresponding to the pre-
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and post-stimulation segments is averaged over the time. The p-value of KS-test is used as 

quantitative score of EEG reactivity.

2.8. Peak comparison method

In a recent study, a method that automatically analyzes EEG reactivity in comatose patients 

was presented (Noirhomme et al., 2014). The method is based on the detection of changes in 

peaks in the spectra of multiple channels, and we will hereafter refer to this method as the 

Peak comparison method (PCM). The detection involves a comparison of spectral power of 

1 s EEG segments immediately before and after stimulation, performed in multiple channels. 

Noirhomme et al. reported that this automated method provided substantial agreement with 

visual reactivity scoring, and a fairly high correlation between automated reactivity scoring 

and the patient outcome was found.

In the current study, a variation of the PCM is tested for its capability of detecting reactivity. 

In this variation, we used the preprocessed data of the longitudinal bipolar montage instead 

of a referential montage and limited the frequency domain to 1–18 Hz instead of >1 Hz. The 

computational design and all other settings were similar to the originally described 

approach. Details can be found in the Supplementary Material.

2.9. Statistical analysis

The ability of each qEEG feature to discriminate reactive and non-reactive EEGs was 

assessed using receiver operating characteristic (ROC) curves, calculated with 500 iterations 

of repeated random subsampling cross-validation (Hastie et al., 2009). The gold standard 

label (reactive vs. non-reactive) of each case was determined by classification according to 

the majority of experts, and only reactive and non-reactive cases were included in the 

assessment of accuracy; cases determined to exhibit ‘unclear reactivity’ were excluded.

Cross-validation was performed for all individual qEEG features (TBSI and BSI in the δ, θ, 

α, β and total frequency band, RE, KS-test and PCM), but also for several combinations of 

qEEG features. Feature combinations (FC) that were tested involved either 2–4 of the best 

performing individual features or 2 to 4 individual features together covering the 1–18 Hz 

frequency range.

In each iteration of cross-validation, classifier training was conducted on a randomly 

selected subset of N = 10 cases (training data), as sketched in Fig. 1. The classifiers were 

tested on the 10 remaining cases (test data) to avoid over-estimating performance due to over 

fitting to idiosyncrasies in the training data (Zhang, 1993).

In training classifiers, the feature values and labels of the training data were used to generate 

ROC-curves for every individual feature-channel combination. Classification consisted in 

comparing the feature value in that channel to a threshold. For every feature involved, the 

channel with the highest area under the curve was selected as the optimal channel, after 

which a reactivity probability model based on the feature values in these corresponding 

channels was defined. Hence, classifier training of individual features resulted in univariate 

model estimating the probability of reactivity using the feature value obtained in the optimal 

channel. Likewise, classifier training of feature combinations resulted in multivariate models 
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involving multiple features each calculated in one channel (feature-channel set). With this 

approach, changes of activity in the different frequency bands – which typically have their 

own spatial distribution in the brain (Young, 2000) – were evaluated in the single channel in 

which the corresponding feature was most distinctive.

In testing classifiers, i.e. testing the probability model, an ROC for classification of the left-

out testing data was obtained, involving classification of testing data according to the 

modeled reactivity probability values. The area under this curve (AUC) is reported as a 

measure of classifier performance. Classifier specificity and sensitivity were calculated by 

setting the classifier threshold to the value that achieved maximum classification accuracy.

A final reactivity probability model was obtained using the best performing feature or 

feature combination identified in the cross validation analysis, in which the optimal 

channel(s) and corresponding probability model were calculated using all reactive and non-

reactive cases. Hence, no randomization was performed. With this final model, the 

probability of reactivity was calculated for each case, and the distribution of these 

probability values in the different case categories was evaluated. To verify to what extent the 

final probability model is calibrated to the opinions of individual raters, the agreement 

between the expert scores and the scores determined by the model was assessed for a range 

of classification thresholds. As a reference, the inter rater agreement among three experts 

was evaluated. Agreement was evaluated using percent agreement and Gwet’s kappa value 

AC1 (Gwet, 2008).

3. Results

3.1. Cases

A total of 70 EEG recordings were collected. A burst suppression pattern was observed in 2 

cases and EMG reactivity was detected in 8 cases, which were all excluded from analysis. 

One case was excluded due to prominent non-physiological artifacts.

Of the 59 included cases, 18 cases were categorized as reactive and 34 as non-reactive, 

according to the majority of expert opinions. In 9 reactive cases and 24 non-reactive cases, 

all experts agreed on the presence of absence of reactivity, while in the other 9 reactive and 

10 non-reactive cases only two out of three experts agreed. A total of 7 cases were 

categorized as unclear, either due to total disagreement between experts or to multiple 

experts classifying the case as unclear. In total, the experts did not fully agree in 44% of the 

cases (26 out of 59). The inter-rater agreement for the included cases was 66%, and the 

corresponding Gwet’s AC1 was 53%, indicating moderate overall agreement.

3.2. qEEG

3.2.1. Optimal channels—A complete summary of the AUC values of the qEEG features 

found in each individual is included the Supplementary Material (Supplementary Figure S1 

and S2). The AUC values differed between channels. In addition, the channel in which the 

AUC was maximal varied between different qEEG features, and was dependent on the set of 

cases that was randomly selected as training data in the cross validation procedure. In 

general, features based on the δ-band showed a better performance in the frontal derivations, 
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while performance was most optimal in parietal region for the θ-band, in the posterior 

temporal area for the α-band and in the occipital derivations for the β-band. For most 

features, AUC values were higher on the left hemisphere than on the right.

3.2.2. qEEG features—The cross validated median AUC values and corresponding 

interquartile range (IQR) of the individual qEEG features are summarized in Table 1. 

Among all single qEEG features evaluated, those based on the tBSI showed the highest 

median AUC values, with tBSI calculations over the total band showing the best overall 

performance, followed by tBSIθ, tBSIβ and tBSIδ and tBSIα, respectively. Features based on 

the TGT were as a group better than features based on RE, the KS-test, and PCM. Table 1 

shows a selection of multivariate probability models involving feature combinations, with 

their AUC values obtained from the cross-validation process. No other multivariate models 

that were developed provided higher AUC values than the FC3 model.

3.2.3. Optimal qEEG model—Of the univariate models, the model based on the tBSI 

total features performed best, with a median AUC of 0.94 (IQR: 0.83–1.00 and 1–99% 

percentile range: 0.43–1.00). Overall, the probability model performing best as a classifier of 

reactivity was based on feature combination FC3 (combining individual tBSI values from 

the in the δ-, θ-, α- and β-bands). The median AUC of the FC3-based probability models 

found in the in 500-fold repeated random subset cross-validation, in which models were 

trained on a randomized set of 10 cases and tested on the left-out cases, was 0.95 (IQR 0.86–

1.00 and 1–99% percentile range: 0.50–1.00). The ROC curve and corresponding classifier 

thresholds of the 500 fold iterations is show in Fig. 2A. In these FC3-models, the prediction 

of presence of reactivity was associated with a specificity of 86% (IQR: 67–100%) at 100% 

sensitivity and a sensitivity of 80% (IQR: 50–100%) at 87% specificity.

The FC3-based model that was estimated and tested using all cases classified as reactive or 

non-reactive by experts (final model) selected the F3-C3, C3-P3, P7-O1 and P3-O1 

derivations as the optimal channels to obtain tBSI features of the δ, θ, α and β frequency 

bands, respectively, according to the AUC values of the individual features. Hence, the FC3 

probability model included tBSI δ calculated in the F3-C3, tBSI θ in C3-P3, tBSI α in P7-O1 

and tBSI β in P3-O1. This final model was associated with an AUC of 0.95, as calculated 

using all included reactive and non-reactive cases.

The distribution among different case categories and the probability function corresponding 

to the final model are summarized in Fig. 2B and C. The probability values – i.e. predicted 

probability of reactivity – of the reactive cases were higher than those of the non-reactive 

cases. In addition, the median probability of reactivity was higher in reactive cases for which 

inter-expert agreement was 3/3than in cases scores as reactive by 2/3 of the raters. The 

opposite was seen for non-reactive cases; the predicted probability of reactivity was lower 

for the group classified as non-reactive by all experts compared to those in which 2/3 raters 

classified the case as non-reactive. For cases in which reactivity was assessed as unclear by 

the experts, probability values varied between 0.02 and 1.00, but showed a median value of 

0.50. In the 34 epochs of unstimulated comatose patients, the model yielded a probability 

values of 0–0.055, indicating lack of spontaneous reactivity.
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Fig. 2D shows the agreement between the individual expert and the final FC3 probability 

model used as a classifier involving a specific probability threshold, i.e. a threshold that 

determines from which probability value a case is considered reactive. The maximal 

agreement was found at a probability threshold of 0.65, accompanied by a Gwet’s AC1 of 

65% for expert 1, and 70% and 66% for experts 2 and 3 respectively. Using this threshold, 

classification by the FC3 model was in agreement with the expert’s opinion in 50 out of 52 

cases labeled as reactive or non-reactive. These results indicate that the FC3 final model was 

in substantial agreement with the individual opinion of all experts.

In Fig. 3A–D, the pre- and post-stimulation EEG recording and corresponding spectrogram 

of four different case examples are shown to illustrate the findings. The EEG recording of 

case presented in Fig. 3A was labeled as reactive by the experts, and was accompanied by a 

high probability of reactivity (close to 1) according to the FC3 model. Likewise, a case 

scored as non-reactive by experts (Fig. 3B) was accompanied by low probability values 

(close to 0). Hence, in both cases the probability model was in line with the opinion of 

experts, which was the case for all 50 cases labeled as reactive or non-reactive.

The reactivity probability values calculated by the FC3 model were in disagreement with the 

experts in two cases, of which one is presented in Fig. 3C. These cases were accompanied 

by a low probability of reactivity (<0.50), while the experts classified these cases as reactive. 

Strikingly, in both ‘misclassified’ cases, no clear spectral changes were observed in the 

spectrogram, supporting the estimated probability values.

Fig. 3D shows an example of a case in the unclear category, which was accompanied by an 

intermediate (close to 0.5) probability of reactivity.

4. Discussion

We have developed an algorithm to automatically assess EEG reactivity using several qEEG 

features. The algorithm relies on a probability model involving single or multiple features 

quantifying the spectral changes between a pre- and a post-stimulation epoch (spectral 

symmetry) and was tested against the consensus opinion of three expert EEG readers. The 

probability model showing best performance in the classification of reactivity was based on 

tBSI features in separate frequency bands and agreed with visual analysis by experts at least 

as well as experts agreed amongst themselves.

In the exploration of the performance of qEEG features as classifiers of reactivity, we found 

that the AUC values obtained from the ROC curves varied between the different features, 

indicating that some quantitative approaches reflect expert judgment regarding EEG 

reactivity better than others.

In general, among the univariate models, those based on tBSI emerged as the best classifiers 

of reactivity, showing median AUC values of 0.88–0.94, closely followed by TGT related 

features showing median AUC values of 0.83–0.89. Both methods compare the pre- and 

post-stimulation spectrum for all frequency components individually, and the high AUC 

values indicate that this approach might be efficient in characterizing EEG reactivity.
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Classifier models based on the KS-test and RE related features achieved moderate median 

AUC values of 0.78 and 0.79 respectively. By design, both parameters are sensitive to 

alterations in the relative spectral distribution, but insensitive to changes in total power with 

a constant relative spectrogram, which might explain misclassification of several cases.

Classifiers based on the PCM method achieved low sensitivity and specificity and a median 

AUC of 0.54. During visual evaluation of the case spectra, it was seen that changes in the 

frequency or amplitude did not always start immediately after the onset of stimulation and 

that EEG reactivity was often not homogeneous throughout the total post-stimulation period. 

This might explain the low AUC values for classifiers based on the PCM method, as this 

approach uses only very short epochs, leading to a higher susceptibility to errors due to 

irregularities in the EEG and to delay in EEG reactivity.

The channels in which a maximal AUC was found most frequently varied between features 

based on either the δ, θ, α or β band. This suggests that the reactivity in individual frequency 

bands is more visible in specific locations of the brain than others. In general, models with 

good classification performance involved assessment of spectral changes in the frontal 

channels for the δ-band, in parietal channels for θ-band, in the posterior temporal area for 

the α-band and in the occipital region for the β-band. Strikingly, reactive and non-reactive 

cases could generally be distinguished better using EEG derivations situated on the left 

hemisphere. Although this is an intriguing finding, the differences in AUC between left and 

right derivations were relatively small and were not seen in all pairs of channels. Therefore, 

this asymmetry should be taken with caution and requires confirmation.

In general, qEEG models in which all frequency bands are involved showed higher AUC 

values compared to those involving one, two or three individual bands. This is not surprising 

since coma can be associated with a variety of EEG patterns involving activity in different 

frequency bands, depending on its cause (Sutter and Kaplan, 2012; Synek, 1990). The tBSI 

total model, in which all frequency components of the total frequency range contribute 

equally, was the best performing univariate model. Yet, the multivariate models FC1 and 

FC3 performed slightly better according to the AUC values, i.e. median, IQR and 1–99% 

percentile range, suggesting that it is beneficial to combine information across the δ, θ, α 

and β-bands in a specific ratio.

The probability functions based on the presented combination of qEEG features (FC3) 

showed best performance (median AUC value and IQR) and was accompanied with a 

specificity of 88% for 100% sensitivity. As shown in the illustrative examples of Fig. 3A and 

B, cases without obvious changes in the spectrograms generally result in low probabilities of 

reactivity estimated by FC3 while cases with evident spectral changes are assigned high 

probabilities. Cases in which the spectral changes are less clear were accompanied by 

variable probability values with an intermediate median value (close to 0.5), likely indicating 

that this group comprises cases showing ‘weak’ reactivity (Fig. 3D). Furthermore, the 

substantial agreement between the assessment by individual experts and the classification 

based on the FC3 probability model (Fig. 2D) indicates that the model agrees at least as well 

with the individual experts as the experts agree amongst themselves and shows that the 

performance of the classifier was not biased by one or two specific reviewers.
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Despite the promising AUC values and concordance with the experts’ opinion, the 

probability functions of both individual features and combinations are still accompanied by 

imperfect specificity relative to overall expert consensus. According to the FC3 final model, 

two cases were classified as reactive by the experts but were accompanied by a discrepant 

low probability value (<0.50) indicating absence of reactivity. However, in retrospect 

evaluation of these cases, the experts did not notice evident spectral changes in the 

spectrograms (Fig. 3C). This makes it less likely that the final model provided false 

classification, and suggests that the EEG readers misclassified these cases.

The quantitative methods developed herein were evaluated for their performance as binary 

classifiers (reactive vs. non-reactive), which matches the current approach in which ‘any’ 

change in the EEG is regarded as reactive. Our results however indicate that reactivity is in 

fact not a binary phenomenon. Indeed, cases where there was a full agreement (3/3) between 

EEG readers showed more extreme probability of reactivity (i.e. values close to 1 for 

reactivity or 0 for non-reactivity) than cases where agreement was only partial (2/3) (Fig. 

2B). Similarly, unclear cases (that were not used for training the classifier) were 

characterized by a wide range of probability values intermediate between cases classified as 

reactive or unreactive. This indicates that degrees of reactivity can be seen and interpreted 

variably by EEG readers. In practice, presence or absence of reactivity does not appear 

obvious in a significant minority of cases, as reflected by the substantial number of unclear 

cases in this study population and by the significant disagreement between experts. This 

inter-rater variability deserves to be investigated if reactivity testing is to become a reliable 

prognostic tool and motivated this work. It is likely that intermediary cases will benefit from 

quantification methods that provide an objective measure of reactivity, rather than depends 

on subjective assessment. To facilitate quantification adapted to the gradual character of 

reactivity, a non-binary measure or ‘reactivity scale’ would be most appropriate.

Altogether, our findings indicate that the quantitative method developed herein provides a 

proper representation of the expert opinion regarding reactivity, which seems efficient in 

distinguishing reactive cases from non-reactive cases. In addition, the numerical reactivity 

probability values might provide a more refined approach or ‘scale of reactivity’ that might 

quantity the degree of reactivity as a continuous rather than dichotomous variable.

Although the automated method performed at least as well as visual analysis, which has its 

own restraints and inaccuracies, the proposed quantitative methods might be accompanied 

by several limitations when used for prediction of clinical outcome.

First, given the potentially major implication of absence of reactivity, it is desirable that even 

the smallest or most subtle amount of EEG reactivity is detected. Therefore, the sensitivity 

of a quantitative parameter for the prediction of the presence of reactivity is critical. Further 

studies should investigate in greater detail the time course of EEG changes following 

stimulation and the optimal length of the pre- and post-stimulation epochs for visual and 

quantitative analysis. Second, non-stationarity of the background rhythm might distort the 

quantitative assessment, even though the use of 60 s epochs probably averages out most of 

the background variations and the results of the non-stimulated cases indicate low sensitivity 

for this phenomenon. In the setting of prognostication, evaluation of the background rhythm 
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might be warranted to optimize the settings of the quantitative assessment of reactivity. 

Third, the presented models involve features that are based on one single pre-defined 

channel. Yet, it is plausible the various types of stimuli arouse different reactivity patterns in 

divergent brain areas or that functionality of the brain is inhomogeneous due to partial 

injury. With the presented quantitative approach, it is possible that reactive patterns that are 

merely present in brain areas distant from the selected channels are missed by the model 

which may lead to unjust quantification. Therefore, it needs to be explored whether use of 

multiple channels in different areas or separate models for different stimuli types increases 

sensitivity even more, without affecting specificity. Last, the calculated models give more 

importance to specific frequency domains than others, in which definition of the boundaries 

of these frequency bands is imperative. In the current analysis, the frequency range was 

limited to 1–18 Hz, and the β range that is mostly defined as 14–30 Hz was truncated to 

minimize effects of EMG activity. Whether this design has clinical implications has to be 

demonstrated, and further exploration of the most optimal frequency components with most 

clinical value is warranted.

Another issue that should be taken into account is that the currently proposed method may 

be inefficient in case artifacts, in particular EMG, are present in the EEG. To prevent 

erroneous quantification of EEG reactivity, development of methods reducing the influence 

of artifacts, burst suppression or EMG reactivity is desirable. It might also be beneficial to 

switch to different quantitative approaches in case burst-suppression is detected. In case of 

burst-suppression, one might calculate the qEEG features using the non-suppressed periods 

only. An additional parameter assessing changes in length or frequency of burst and inter-

burst intervals could also be implemented.

Although we validated our algorithm using 500 iterations of cross-validation, further studies 

are required to demonstrate the generalizability of these findings from a small sample to a 

larger independent set of cases. Another limitation of the present study is that agreement 

between experts scores based on the total EEG expert recording was only moderate, which is 

in line with the observation that experts do not always agree on the interpretation of EEG 

findings(Gerber et al., 2008; Mani et al., 2012). This finding questions the validity of using 

expert scoring as a gold standard. To strengthen the reliability of expert scores as gold 

standard in further research, one could consider increasing the number of raters. In addition, 

utilization of a carefully defined guideline seems to improve agreement between raters in the 

assessment of various EEG characteristics (Gaspard et al., 2014). Thus it is highly 

recommended to define a uniform standard for the assessment of EEG reactivity. 

Furthermore, it is suggested to involve alternative domains to present the EEG, i.e. as a time-

frequency or temporal symmetry representation, as this might support visualization of the 

EEG characteristics and contribute to an objective interpretation (van Putten, 2008). The 

finding that the inter-rater agreement is far from optimal underlines the subjectivity of visual 

analysis and stresses the importance of the development of objective quantitative methods as 

aimed in this present study.

Ultimately, the most important aspect of qEEG features is how well they can predict 

neurological outcomes of patients, regardless of how well they correlate with the opinion of 
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experts. Therefore, future studies comparing qEEG findings and clinical outcome are 

desirable.

Yet, there is currently no standardized protocol for the assessment of EEG reactivity. The 

temporal, spatial and morphological characteristics of the EEG arousal response are not 

known to be influenced by the method of stimulation (Fischgold et al., 1959). It remains to 

be demonstrated if different arousal patterns have different prognostic implications and only 

limited prognostic information might be obtained in cases of hypothermia and sedation. 

These factors should be investigated in subsequent studies, after which development of a 

proper testing protocol is warranted to enable proper evaluation of the result of the EEG 

reactivity test.

In addition in the interpretation of EEG reactivity test, it needs to be considered that a single 

assessment of EEG reactivity may underestimate the reactive capability of the brain, as 

intermittent reactivity may occur. Accordingly, absence of a change in the EEG after 

stimulation does not always imply a bad prognosis, i.e. when this is accompanied by a 

favorable background pattern representing an ‘active’ or ‘already stimulated’ cerebral state 

prior to reactivity testing. Likewise, not all changes in the EEG are inherently prognostically 

favorable, e.g. SIRPIDs or the induction of bursts (Alvarez et al., 2013). It should be noted 

that burst-suppression, and especially burst-suppression with identical bursts in postanoxic 

coma, is strongly associated with poor outcome (Hofmeijer et al., 2014; Young, 2000; 

Zandbergen et al., 1998), suggesting that EEG reactivity testing might be superfluous when 

such a pattern is observed. To ensure correct interpretation of the (quantitative) results of the 

reactivity test, visual verification of the underlying rhythm during reactivity testing is 

essential. Besides, it is imperative to obtain multiple epochs per patient to ensure that the 

outcome is reproducible.

Furthermore, for purposes of prognostication, the outcome of the EEG reactivity test should 

be interpreted in the light of other test results and findings such as clinical examination, EEG 

background rhythm, and somatosensory evoked potentials (Oddo and Rossetti, 2014; 

Rossetti et al., 2010; Tjepkema-Cloostermans et al., 2015; Wijdicks et al., 2006), which all 

have some predictive value. In this, it is relevant to make a distinction between patients with 

traumatic brain injury and postanoxic encephalopathy, as the mechanisms involved in 

cerebral damage and prognoses are quite different.

5. Conclusion

We have shown that EEG features quantifying spectral changes can detect EEG reactivity. 

Binary classifiers based on these features agreed with the visual assessment of reactivity by 

experts at least as well as experts agreed among themselves. In addition, the numerical 

measures provided by the probability model might provide a more refined representation or 

scale of the quantity of reactivity. Although further validation is needed, these results 

suggest that quantitative EEG is a useful tool to support visual analysis, potentially 

improving the objectivity of the EEG reactivity test and assisting in the prediction of clinical 

outcome in comatose patients.
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HIGHLIGHTS

• Quantitative EEG features are used to classify reactive and non-reactive EEGs.

• Probabilities based on quantitative EEG features reflect the degree of reactivity.

• Quantitative methods may increase reproducibility and objectivity of EEG 

reactivity assessment.
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Fig. 1. 
Schematic overview of the cross-validation iteration, which is performed 500 times for 

purposes of classifier training and testing. Abbreviations: ROC, receiver operating 

characteristics; AUC, area under curve; qEEG, quantitative EEG.
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Fig. 2. 
(A) Receiver operating characteristic (ROC) curves corresponding to the probability 

function obtained the 500-fold cross-validation. The blue line reflects the median sensitivity 

of the 500 iterations, with its area reflecting the interquartile (IQR) range. The green line and 

area reflect the corresponding median probability threshold and IQR range used for 

classification. (B) Distribution of probabilities based on the FC3 model in corresponding to 

case categories. Cases were categorized according to the major expert score (R = Reactive, 

NR = Non-reactive, U = unclear) and the amount of experts that agreed on this score (3/3, 

2/3 or 0/3). (C) Reactivity probability curve of final FC3 model. k reflects exponential 

function of the selected set of qEEG features, involved in the probability function P = 1/1 + 

k. Green stars and red circle reflect the cases scored as reactive and non-reactive 

respectively. (D) Agreement between categorization by the majority of experts’ impressions 

and classifiers of the FC3 probability model involving a specific threshold.
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Fig. 3. 
Examples of EEG recording and corresponding probability of reactivity of cases with 

different expert labels: (A) Reactive case with corresponding high probability value. (B) 

Non-reactive case with corresponding low probability values. (C) Reactive case with a 

discrepant low probability value (misclassification) (D) Unclear case with median 

probability value. Top frames reflect the spectrogram of the pre- and post-stimulation epoch 

in Cz-Pz, showing the power (dB) of the frequency components (Freq) in time. Onset of 

stimulation is at 60s, as indicated by the double vertical lines in the spectrum. Lower curves 

display the Cz-Pz recording in time, where the blue line (0–60 s) reflects the pre-stimulation 

epoch and the red line the post-stimulation epoch (60–120 s). In the side panel, the 

probability calculated using the FC3 final model is shown. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Table 1

Accuracy of tested quantitative EEG features.

Feature Median AUC (IQR)

tBSI total 0.94 (0.83–1.00)

tBSI δ 0.88 (0.76–0.96)

tBSI θ 0.92 (0.83–1.00)

tBSI α 0.88 (0.76–0.96)

tBSI β 0.89 (0.79–1.00)

TGT total 0.89 (0.79–1.00)

TGT δ 0.86 (0.75–0.95)

TGT θ 0.83 (0.72–0.92)

TGT α 0.83 (0.69–0.94)

TGT β 0.88 (0.80–0.94)

RE 0.79 (0.67–0.90)

KS-test 0.78 (0.65–0.88)

PCM 0.54 (0.53–0.56)

FC1 (tBSI total + TGT total) 0.94 (0.84–1.00)

FC2 (tBSI total + TGT total + RE + KS-test) 0.92 (0.83–1.00)

FC3 (tBSI δ + tBSI θ + tBSI α + tBSI β) 0.95 (0.86–1.00)

FC4 (TGT δ + TGT θ + TGT α + TGT β) 0.91 (0.81–1.00)

FC5 (tBSI δ + tBSI θ + tBSI α + tBSI β + TGT δ +
TGT θ + TGT α + TGT β)

0.92 (0.81–1.00)

Abbreviations: FC, feature combination; tBSI, temporal brain symmetry index; TGT, two-group test; RE, relative entropy; KS-test, Kolmogorov–
Smirnov test; PCM, peak comparison method; AUC, area under the curve; IQR, interquartile range.
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