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Abstract

Treatments that successfully modulate anti-cancer immunity have significantly improved 

outcomes for advanced stage malignancies and sparked intense study of the cellular mechanisms 

governing therapy response and resistance. These responses are governed by an evolving milieu of 

cancer and immune cell subpopulations that can be a rich source of biomarkers and biological 

insight, but it is only recently that research tools have developed to comprehensively characterize 

this level of cellular complexity. Mass cytometry is particularly well suited to tracking cells in 

complex tissues because 35+ measurements can be made on each of hundreds of thousands of 

cells per sample, allowing all cells detected in a sample to be characterized for cell type, signaling 

activity, and functional outcome. This review focuses on mass cytometry as an example of systems 

level characterization of cancer and immune cells in human tissues, including blood, bone marrow, 

lymph nodes, and primary tumors. This review also discusses the state of the art in single cell 

tumor immunology, including tissue collection, technical and biological quality controls, 

computational analysis, and integration of different experimental and clinical data types. Ex vivo 
analysis of human tumor cells complements both in vivo monitoring, which generally measures far 

fewer features or lacks single cell resolution, and laboratory models, which incur cell type losses, 

signaling alterations, and genomic changes during establishment. Mass cytometry is on the leading 

edge of a new generation of cytomic tools that work with small tissue samples, such as a fine 

needle aspirates or blood draws, to monitor changes in rare or unexpected cell subsets during 

cancer therapy. This approach holds great promise for dissecting cellular microenvironments, 

monitoring how treatments affect tissues, revealing cellular biomarkers and effector mechanisms, 

and creating new treatments that productively engage the immune system to fight cancer and other 

diseases.
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Introduction

The immune system is a complex network comprised of localized and specialized tissue 

sites connected by circulating immune cells. Traditional immunological techniques and 

approaches have provided a depth of knowledge within each compartment, but struggle to 

comprehensively dissect the network and its interactions as a whole. In addition to system-

wide complexity, each cell subset is itself a “system within a system”, possessing its own 

hierarchies and heterogeneity. As cancer and immune system cells compete in a complex 

and continuously evolving cycle (1), understanding the complex rules governing anti-cancer 

immune responses poses a challenge. Multiple subsets of immune cells are implicated as 

promoters or inhibitors of the anti-tumor immune responses (2, 3). To dissect and predict 

anti-cancer immune responses, it is crucial to not only monitor the cellular milieu of 

peripheral blood, tumor sites, and draining lymph nodes, but also to monitor the cell surface 

molecules responsible for cell:cell interactions, the deep immunophenotype of cell subsets 

of special interest, and intracellular signaling events including post translational protein 

modifications, proliferation, cytokine production, and other functional capabilities (Figure 

1).

Keeping Track of Complex Immune Networks

Milieu

Each step of the cancer-immunity cycle includes the potential for competition between 

effector and regulatory cells, and nearly every immune cell subset has been implicated in the 

anti-cancer immune response (8). Dendritic cells presenting tumor antigen are required to 

activate a specific anti-cancer adaptive immune response (1, 9). Effectors like CD8+ and 

CD4+ T cells, NK cells, and tumor specific antibodies participate in direct killing of tumor 

cells (10–13). Controlling these effectors are cells and signaling mechanisms that can check 

or attenuate immune responses, including regulatory and suppressive cells arising from the T 

cell (14), myeloid (15), and B cell lineages (16). These effector and regulatory cells are 

diverse in phenotype and variable in abundance (17). While some cell subsets comprise a 

substantial proportion of the total leukocyte pool (e.g. ~2–11% cytotoxic T cells), others, 

such as Tregs or memory B cells, can contain critical information while comprising <5% of 

total leukocytes (18–21). Although small in number, regulatory cell subsets can drastically 

impact the anti-tumor immune response. Thus, the ability of mass cytometry to characterize 

rare cells comprising as few as 1 in 10,000 cells is a key advantage for evaluating the state of 

a patient’s immune system (22). This capacity is highlighted in detection of minimal 

residual disease (MRD) in leukemia, a crucial metric for monitoring progress of patients on 

therapy (23). Recently mass cytometry has demonstrated proof of concept efficacy in 

working with small samples (22) and detecting MRD (24). While detecting MRD, mass 

cytometry also allows for the detection of multiple other cell subsets.

Greenplate et al. Page 2

Eur J Cancer. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Deep phenotype

In addition to detecting rare cellular subsets, high dimensional single cell technologies are 

also capable of revealing cells with unusual or unexpected phenotypes. With single cell 

analysis, it is possible to not only resolve rare cell subsets or subtle changes in phenotype, 

but also to distinguish cancer cells from healthy non-hematopoietic cells, and immune cells 

(5, 25). Small phenotypic shifts, such as the slight downregulation of antigen receptors by 

activated T cells (26), may provide important information about the state of a patient’s 

immune system. At present, the effort is to track the status of cells and identify markers and 

mechanisms that indicate status can cell type, including “poised to attack cancer cells”, “in 

need of priming”, “held in check by regulation”, or “lacking key effector subsets”. Given 

sufficient examples, it may be possible to discern the signaling rules that govern cell identity 

and to use this information to precisely modulate the in vivo activity of target cell subsets.

Cell: Cell interactions

The behavior of effector immune cells is directly affected by the engagement of cell surface 

receptors. While some ligands are soluble, like many cytokines and chemokines, many are 

bound to the surface of antigen presenting cells and even cancer cells themselves. A long list 

cancer cell bound ligands are known to modulate and suppress the behavior of cytotoxic T 

cells within the tumor microenvironment (27). Although it is well known that cancer cells 

express molecules like PD-L1 that modulate the immune response, the surface phenotype of 

cancer cells is less well characterized than immune cells. For instance, when expressed on 

melanoma cells, HLA-DR, an MHC class II molecule generally restricted to professional 

antigen presenting cells, was shown to have predictive value in determining which patients 

will respond to PD-1 blockade (28). Including key markers of cancer cell type in immune 

classification panels makes it possible to localize biomarker and cytokine expression to 

cancer and immune cells, which is especially important given how cancer cells aberrantly 

express molecules from outside their lineage of origin.

Function and Signaling

Distinguishing “cancer” versus “healthy” cells and then attributing genotype and phenotype 

characteristics is especially critical when developing novel therapeutics expected to have 

selective activity on cancer cells. Analysis of non-cancer cells can provide information on 

off-target effects of therapeutics. For example, small molecule inhibitors have varied 

functional impacts across immune cell populations (29, 30). Preserving viability and effector 

function of healthy immune cells during cancer therapy is crucial for maintaining an 

effective anti-tumor response (31).

The Need for Longitudinal Cytomic Monitoring in Clinical Trails

The immune system is constantly in flux with cells undergoing stimulation, suppression, 

expansion and death resulting in phenotypic changes (32). Static snapshots of tissue and 

tumor resident or peripheral immune cells provide a wealth of information about overall 

immune function and tumor immune response, although lack key information about dynamic 

changes. Serial acquisition of healthy donor peripheral blood revealed low intra-donor 

variability but high inter-donor variability (33). The analysis of blood from melanoma 
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patients, treated with anti-CTLA-4 or anti-PD-1, revealed small, but critical changes in 

certain cell subsets, such as the upregulation of activation marker HLA-DR on CD4 T cells 

(34). With the combination of high, single-cell resolution and primary patient samples over 

the course of therapy, it is possible to create an in-depth picture of the immune network as 

therapy progresses. By connecting this detailed picture with the clinical outcome of the 

patients, it may be possible to 1) identify a marker that predicts whether patients will 

respond to therapy and 2) identify a specific cell type or group of cells that are responsible 

for successful therapy.

Mass Cytometry: Optimized for Human Immune Monitoring

Multidimensional flow cytometry has been a gold standard of single cell biology, both 

within basic research labs and the clinic. Flow cytometry is routinely used in the clinic for 

analysis and diagnosis of leukemia and lymphoma, identification of lymphocyte subsets in 

HIV infection, monitoring solid organ transplantation matches, and detection of 

immunodeficiency. In traditional flow cytometry, single cell suspensions are stained with a 

cocktail of antibodies tagged with different fluorophores (35). Stained cells are then run 

through a flow cytometer in a single cell stream, passing by lasers that excite the 

fluorophores conjugated to the antibodies bound to the cell surface. The emissions of the 

excited fluorophores are then recorded by the machine’s detector (36).

Like fluorescence flow cytometry, mass cytometry utilizes single cell suspensions stained 

with antibody cocktails. However, instead of fluorophores, antibodies used in mass 

cytometry are coupled to pure metal isotopes rarely found in nature. Stained single cells are 

atomized and ionized by argon plasma. The resulting ion clouds are then resolved and 

quantified by time-of-flight mass spectrometry. Mass cytometry largely eliminates spectral 

overlap issues that can confound quantitative fluorescence cytometry and has been used to 

measure over 40 parameters simultaneously at the single cell level (37). The use of metal 

isotopes and inductively-coupled mass spectrometer (ICP-MS) allows for precise 

quantitation (38). The capacity to measure so many features per cell allows combined 

detection of surface proteins, intracellular phospho-proteins, transcription factors, and 

functional markers, such as cleaved caspases, within a single panel. While monitoring of 

these features in live cells is not possible, by fixing cells at multiple times following 

stimulation, a kinetic analysis of specific populations within a heterogeneous sample is 

obtained (25, 29, 30).

While mass cytometry is not the only quantitative, high-dimensional technique, it is 

especially effective for monitoring immune responses in patients undergoing 

immunotherapy. In particular, mass cytometry allows for high-dimensional, single cell 

analysis at a relatively high throughput of around 500 cells per second. Other 

multidimensional techniques may play a role in immune monitoring as well. Polychromatic 

fluorescence flow cytometry has contributed immensely to the field of tumor immunology 

and, unlike CyTOF, can be utilized for fluorescence associated cell sorting (FACS). 

Multidimensional fluorescence and mass based imaging techniques can provide information 

about cellular positioning and cell-cell contacts (30, 39, 40), but typically measure several 

orders of magnitude fewer cells per sample than either fluorescence or mass cytometry. 
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These techniques make excellent use of widely-available formalin-fixed paraffin-embedded 

(FFPE) blocks of tumor tissue. Recent work indicates that fixed cells can be released for 

analysis by mass cytometry (41).

In addition to protein, it is possible to measure RNA transcripts at the single cell level. 

Single cell RNA sequencing (scRNAseq) measures the transcriptome quantitatively at the 

single cell level (42). Despite the high dimensional, single-cell capabilities, scRNAseq 

typically measures only tens to hundreds of cells per sample and detection of transcripts can 

be confounded by issues including cell size, cell cycle changes, cell death, and allele dropout 

(43). Additionally, scRNAseq is restricted to measuring RNA transcripts and does not 

provide information about which genetic material is ultimately translated into protein or how 

these proteins are post-translationally modified. Quantitative PCR can also measure DNA, 

but is generally focused on hundreds of targets. Polychromatic fluorescence cytometry, 

imaging cytometry, scRNAseq, qPCR, and many other high dimensional technologies have 

produced great advances in the field of tumor immunology and will continue to play key 

roles in discoveries aimed to improve patient care. However, mass cytometry’s ability to 

measure surface protein expression, post-translational modifications, transcription factors, 

and functional outcomes (e.g. cytokine production, apoptosis, cell cycle) for millions of cells 

at the single cell level (5) makes it uniquely adapted for monitoring immune responses in 

cancer patients undergoing immunotherapy.

Dissecting Tissue Microenvironments in the Cloud

The increasing dimensionality of mass and fluorescence cytometry has dramatically 

increased the robustness and complexity of cytometry data (44). Analysis of data from a 

single mass cytometry panel containing 30 antibodies would require hundreds of traditional, 

biaxial plots (4). The use of hundreds of biaxial plots to analyze high dimensional, single 

cell data is not only impractical, but also insufficient in its ability to characterize complex 

cellular phenotypes and overly reliant on prior knowledge of the cell of interest. Thus, the 

growing use of high-dimensional cytometry has necessitated the development of novel data 

analysis tools. These advances have ushered in an ‘information age’ of single cell biology 

(45) by providing researchers with access to machine learning tools for dimensionality 

reduction, clustering, and model building. Machine learning algorithms can be designed to 

learn and improve performance based on previous experience (46). Recently, tools from 

machine learning have been adapted to visualize and cluster cells. One group of tools uses 

dimensionality reduction to reduce data from the original dimensions (about 40 for mass 

cytometry) to a few dimensions (47) that might be interpreted by a human expert or further 

analyzed by clustering algorithms that group phenotypically similar cells (44). These 

algorithms thus facilitate interpretation of highly complex, multidimensional data.

The current need for analysis by human experts in clinical diagnostic and experimental 

cytometry introduces problems of bias and limitations on the speed, quantitative accuracy, 

and reproducibility that might be overcome by computational analysis. However, it is only 

recently that the “big data” being generated is comprehensive enough for the discovery of 

predictive correlations that might match or exceed the skill of experts. What is needed now 

are use cases that show the systems biology approach not only captures standard clinical 
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readouts quickly and accurately, but that it goes beyond what is known to also reveals 

clinically useful information from unexpected cellular sources (45). For example, we 

recently used mass cytometry immune monitoring to reveal and characterize unexpected 

myelodysplastic syndrome (MDS) blasts in the blood of a melanoma patient treated with α-

PD1 (Greenplate et al., in press). This case showed not only the potential for in depth 

characterization of changes within major immune cell populations during immune therapy, 

but also the ability to aid in diagnosis of potential pathological changes within human tissue. 

Ultimately, we expect the practical challenges of mass cytometry will be addressed and lead 

to increasing costs of not implementing high dimensional single cell tools and automated 

analysis. Critically, these approaches have been developed in a way to minimally impact 

current standards of care, such that the significant increase in actionable information should 

not be learned at a high cost.

Machine learning and computational analysis make it possible to analyze large data sets in a 

reasonable amount of time. The technological advances in flow cytometry have enabled the 

field to measure over 30 parameters simultaneously, either through mass cytometry or 

polychromatic fluorescence cytometry. Analysis via traditional biaxial gates would result in 

hundreds of biaxial gates, and these gates would still fail to show high-dimensional co-

expression of measured proteins (4). Computational analysis tools like viSNE and SPADE 

reduce multi-dimensional data into two dimensions while retaining high dimensional 

phenotype (48, 49). This allows the user to comprehensively analyze co-expression of all 

measured proteins. In addition to comprehensively analyzing and displaying data, 

computational methods are able to reduce bias. Analyzing all the data allows for the 

identification of cells with unusual or novel phenotypes that might have been overlooked 

otherwise (45). Using mass cytometry and computational analysis tools, Becher et al 

identified a previously unknown tissue-resident CD11blo NK cells (50). Work flows have 

been developed to streamline cellular discovery, identifying both broad populations and cell 

subsets and characterizing individual cell phenotype within those subsets (44, 51). 

Computational tools, while critical for analysis of big data, still face several challenges. 

Currently, an “expert” is needed for unstructured problem solving. In other words, 

computational tools fail in solving problems or analyzing data in systems where the rules do 

not currently exist.

Clinical Impact of Systems Immunology

Several recent studies have demonstrated that overcoming the practical challenges of mass 

cytometry data acquisition and analysis in longitudinal immune monitoring can unlock 

biologic and clinical insights in tumor immunology (34, 52, 53). A comprehensive and 

dynamic picture of anti-tumor immunity can be achieved by using cutting edge, single cell 

tools on samples collected longitudinally, over the course of therapy, or after specific 

perturbation. This approach has had success in the study of CD8+ T cell types (17), vaccine 

responses (54), surgery outcomes (53), and NK cell diversity (55). Serial sample collection 

provides personalized response profiles that could be used to guide treatment in real time. 

Specifically, high resolution analysis immunophenotyping and single cell signaling profiles 

have the potential to uncover prognostic markers, biomarkers, and possible mechanisms of 

response. For example, external stimulation through the B cell receptor of follicular 
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lymphoma revealed a population insensitive to BCR stimulation and was prognostic of a 

poor outcome (4) and potentiated cytokine signaling has characterizes clinically relevant 

leukemia cells (56, 57). Establishing a response to stimuli, whether through phenotypic 

changes, post-translational modifications, or genetic changes, can elucidate the behavior and 

function of each cell beyond what is possible with a static view (5).

Cytomic response profiles are accelerating the transition of immune “monitoring” into an in 
vivo tool that identifies biomarkers of response and mechanisms of action for cancer patients 

undergoing immunotherapy (Figure 2). An early proof of concept of immune monitoring 

with mass cytometry was recently published: using cytomic response profiles of patients 

undergoing hip replacements with the goal of identifying immune signatures of recovery 

from surgery. Peripheral blood from patients was analyzed before and at several time points 

after surgery. Strong correlates were found between clinical parameters of surgical recovery 

and signaling responses in a subset of monocytes (53). Likewise, cytomic response profiling 

of melanoma patients undergoing immune checkpoint blockade therapy revealed that anti-

CTLA-4, but not anti-PD-1, induced activation in a subset of CD4+ transitional memory T 

cells (7). More recently immune cells in breast cancer and acute myeloid leukemia were 

profiled by mass cytometry (57, 60, 61). Although these examples demonstrate the potential 

of HD immune monitoring in clinical practice, applying these principals to anti-tumor 

immunity remains relatively new and much work remains to identify standard procedures for 

experiments and data analysis.

Conclusion: Toward Clinical Cytomic Monitoring

Ultimately, it may be possible to bring cytomic profiling into the clinical setting such that a 

rapid assessment of cellular biomarkers could guide treatment. However, the current data 

analysis workflow remains driven by human experts and accounts for nearly half of the time 

spent going from sample to useful data. Expert driven manual analysis, the current gold 

standard, of high dimensional data is much too time consuming for practical clinical use. 

Computational analysis tools are not only able to dramatically speed up analysis, but also 

reduce bias and facilitate the discovery of unexpected cell types or phenotypes. By using an 

unsupervised computational workflow (44), it is now possible to automatically analyze 

cellular populations, subsets, and single-cell phenotype for millions of cells within minutes 

of data collection. In time, computational tools are expected to play an increasing role in 

guiding diagnosis and treatment selection.

Mass cytometry could play several potential roles in cancer therapy. First, identifying 

markers that predict response to immune checkpoint inhibitors is a major unmet need. Pre-

treatment or early-on-treatment peripheral blood or tumor biopsies could be profiled to 

identify immune cell subsets that correlate with response to treatment or even severe 

toxicities. Second, with the advent of immune therapy combinations, dissecting the 

individual and collective effects of each agent will be critical. For example, a combination 

partner with immune therapy that dampens cytotoxic T cell proliferation or signaling may 

compromise rather than enhance the anti-tumor immune response. Mass cytometry could be 

used, therefore, in clinical trials or even in a high-throughput fashion to screen novel 

combinations. Finally, immune monitoring for patients who have responded to treatment 
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may be useful. Particular cellular populations may herald durable responses, or conversely, 

impending relapses. Studies by our group and others are addressing these clinical 

challenges.

A critical element is the acquisition of high quality samples of human tissue. As a field, 

there is a need for standardized procedures and consistent support for sample acquisition as 

part of clinical trials, especially early phase trials. We recently published detailed step by 

step mass cytometry focused protocols for human tissue acquisition (58) and unsupervised 

data analysis (44). Still missing, however, are studies testing the impact of sample 

acquisition and preparation conditions on a wide number of endpoint assays and standard 

protocols for data quality assessment that include protocols for data analysis. This problem 

is especially significant in the realm of multi-center trials, where differences in capacity and 

experience among the centers leads to inconsistent practices that jeopardize data integrity. 

However, publication and agreement on standards of practice can ameliorate these 

inconsistencies. The field is actively meeting these needs as improvement in mass cytometry 

data normalization (62) consistent online sharing of annotated data can improve data quality 

and accuracy(59, 63). As mass cytometry and other single cell immune monitoring 

techniques become more widely adopted, it will be valuable for the field to further develop 

and implement standardized procedures for immune monitoring, from sample collection to 

cytometric protocols to data analysis.
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bullet-point highlights

• A network of dynamic cells drives anti-cancer immune responses

• Mass cytometry enables cancer immune monitoring in human blood and tissue 

biopsies

• Cytomic profiling reveals known and novel cell types in complex tissues

• Systems cancer immunology may soon help guide clinical decision making
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Figure 1. Focal single cell areas in systems cancer immunology
Mass cytometry and other multidimensional single cell tools can be focused to resolve key 

biomarkers and mechanisms at different layers of cellular interaction. Most commonly, mass 

cytometry is used to provide cytomic resolution, meaning that all the different cell types 

present in a tissue are quantified and phenotyped. As this can generally be achieved with 10 

markers on a typical mass cytometry panel, this leaves at least 25 mass channels available 

for detection of cell interaction markers, immunophenotype, and intracellular signaling (4). 

As nearly any cellular property can now be quantified at the single cell level (5), 

multidimensional cytometry enables biomarkers with complex expression patterns that can 

vary with cell type and activation state – such as PD-L1 (6) – to be broadly monitored. 

Another advantage of cytomic approaches is that cells with unusual and unexpected 

phenotypes present in a patient’s tissue sample do not escape detection due to expert bias or 

overly focused analysis strategies. These advantages of mass cytometry address ongoing 

needs in cancer and immune biomarker development (7).
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Figure 2. Systems immune monitoring in cancer therapy
1) Acquisition of high quality tissue samples pre- and post-treatment is a critical element of 

human immune monitoring. Following processing into single cell suspension, smaller 

samples of 100,000 to 2 million cells are generally best analyzed immediately, whereas 

larger samples are typically cryopreserved as aliquots (58). 2) Next, single cells must be 

detected using a quantitative technique. This review focuses on mass cytometry, but many 

other flow, imaging, and sequencing based approaches now yield quantitative single cell 

information with sufficient cellular throughput. Critical to the analysis are software tools that 

cope with high dimensional data and provide human-readable single cell views (44, 59). 3) 

Finally, statistical models are derived that correlate cell subsets and biomarkers with clinical 

outcomes. This information can be used to develop new mechanistic models of cell to cell 

interactions and the impact of treatment on signaling networks within and between cells.
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