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Abstract. Channelized Hotelling observer (CHO) models have been shown to correlate well with human observ-
ers for several phantom-based detection/classification tasks in clinical computed tomography (CT). A large num-
ber of repeated scans were used to achieve an accurate estimate of the model’s template. The purpose of this
study is to investigate how the experimental and CHOmodel parameters affect the minimum required number of
repeated scans. A phantom containing 21 low-contrast objects was scanned on a 128-slice CT scanner at three
dose levels. Each scan was repeated 100 times. For each experimental configuration, the low-contrast detect-
ability, quantified as the area under receiver operating characteristic curve, Az , was calculated using a previously
validated CHOwith randomly selected subsets of scans, ranging from 10 to 100. Using Az from the 100 scans as
the reference, the accuracy from a smaller number of scans was determined. Our results demonstrated that the
minimum number of repeated scans increased when the radiation dose level decreased, object size and contrast
level decreased, and the number of channels increased. As a general trend, it increased as the low-contrast
detectability decreased. This study provides a basis for the experimental design of task-based image quality
assessment in clinical CT using CHO.© 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.2.023504]
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1 Introduction
Task-based image quality metrics derived from model observers
predicated on statistical decision theory were proposed decades
ago for assessing medical image quality.1–3 These metrics have
been shown capable of providing comprehensive, objective, and
quantitative measurement of image quality for computed tomog-
raphy (CT) images reconstructed by both linear analytical and
nonlinear iterative reconstruction (IR) methods.4–6 Among
numerous observer models, the channelized Hotelling observer
(CHO) expressed in the spatial domain has been demonstrated
to successfully correlate with human observer performance for
specific diagnostic tasks.1,4

In previous studies, we have evaluated the performance of
CHO models in phantom-based detection/classification tasks
using images from real CT scans.5,7,8 These tasks included a
2-alternative forced choice (2AFC) lesion detection task,5 a
lesion detection and localization task,7 and a shape discrimina-
tion task to differentiate a round and hexagonal shapes.8 CHO
and human observer performance were highly correlated in each
of these tasks. To estimate the statistics under both conditions (i.
e., signal present and signal absent/background) and to yield
accurate observer performance, scans for each CT image acquis-
ition condition were repeated a large number of times. This
approach of large sampling has also been adopted by other
investigators to evaluate the quality of IR reconstructed images.9

In all of these previous studies, the number of repeated scans
was chosen without explicit evaluation of its impact on the

accuracy of the CHO’s estimated performance. Theoretically,
the bias of the CHO’s figure of merit (FOM) can be reduced
to be arbitrarily small by increasing the number of repeated
scans.10 For computer simulation experiments, this can be readily
achieved by simply generating a large number of images, given
sufficient computing time and power. For the evaluation of “real”
clinical CT images, however, it is impractical to arbitrarily
increase the number of repeated scans and oversample each con-
dition. Therefore, it is desirable to understand the relationship
between the number of repeated scans and the accuracy of a
CHO such that the minimum number of scans can be selected
without sacrificing performance accuracy.11 This is extremely
important if the CHO-based methods are to be used in routine
quality control testing.

The purpose of this study was to investigate the minimum
number of repeated scans necessary for accurate estimate of per-
formance by CHO as a function of object size and contrast,
reconstruction method, radiation dose, and channel filters in a
phantom with homogenous background. These results are
expected to provide a basis for experimental design of CHO-
based image quality assessment of clinical CT exams.

2 Methods and Materials

2.1 Experimental Setup

A cylindrical phantom (Helical CT Phantom, CIRS Inc.) was
scanned on a dual-source 128-slice CT scanner (Definition
Flash, Siemens Healthcare) using only the primary x-ray tube.
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The phantom has a diameter of 18 cm and a length of 4 cm and
contains three groups of low-contrast objects with different con-
trast levels (measured values: −7;−14, and −21 HU below the
liver equivalent background) that embedded in homogenous
background material. Each group has six spheres and two
rods, with one of the rods positioned parallel and the other
perpendicular to the longitudinal axis of the phantom. These
objects show seven disks and one rectangular box in a cross-sec-
tional image (Fig. 1). The diameters of the seven disks were 10,
9.5, 6.3, 4.8, 4, 3.2, and 2.4 mm, respectively. The scanning
parameters were as follows: 120 kV, 64 × 0.6 mm detector col-
limation with the z-flying focal spot, rotation time of 0.5 s, and
helical pitch of 0.8. Three tube current settings were used: 240,
120, and 60 effective mAs (mAs/pitch), which correspond to
volume CT dose index (CTDIvol) values of 16, 8, and 4 mGy,
respectively. The automatic exposure control system was dis-
abled for all image acquisitions since the phantom is a cylinder.
Scans at each dose level were repeated 100 times. Images were
reconstructed with a 1-mm slice thickness and 0.8-mm slice
interval using two different reconstruction methods, filtered-
back projection (FBP) with a convolution kernel of B40 and
IR (SAFIRE, Sinogram Affirmed Iterative Reconstruction,
Siemens Healthcare) with a convolution kernel of I40 and a
strength setting of 3 (on a scale of 1 to 5, with 1 being the least
amount of noise reduction and 5 the most). Example images
reconstructed by FBP and IR methods at each of the three
dose levels are shown in Fig. 2.

2.2 Use of Channelized Hotelling Observer to
Calculate Low-Contrast Detectability

A CHO model previously validated through a 2AFC low-con-
trast detection task5 was used to determine the low-contrast
detectability for each object at each dose level. The general form
of the test statistics for a CHO is expressed as λ ¼ ωT

CHOgc,
12

where gc is the channelized test image and ωCHO is the
template, which is defined as: ωCHO ¼ S−1c ½ḡsc − ḡbc�, where
Sc ¼ 1

2
½Ksc þ Kbc� is the channel output of intraclass scatter

matrix; ḡsc ¼ UTḡs and ḡbc ¼ UTḡb are the mean channelized
images under the signal present and absent conditions, respec-
tively. ḡs and ḡb are the mean original images under the signal

present and absent conditions, respectively. Ksc and Kbc are the
covariance matrices of the channelized images, defined asKsc ¼
UTKsU and Kbc ¼ UTKbU, where U is the matrix representa-
tion of the channel profiles and matrices Ks and Kb are the
covariance matrices of the images. There are many types of fil-
ters that can be used to channelize the images, such as Gabor,
Laguerre–Gauss, and difference of Gaussian.13–15 In this study,
we utilized Gabor filters as they have been shown to well char-
acterize human visual system responses.2,16

After calculating the test statistics, an internal noise compo-
nent was added according to the following equation:

EQ-TARGET;temp:intralink-;e001;326;357λ 0 ¼ λþ α · x; (1)

where α is a weighting factor and x is a normally distributed
random variable with a zero mean and a standard deviation of
σ that were obtained from

EQ-TARGET;temp:intralink-;e002;326;293σ2 ¼ varfλbg ¼ varfωt
CHOgbcg; (2)

where “var” stands for variance and λb is the set of test statistics
from the signal-absent images. The internal noise weighting fac-
tor was set to 9.35; the same value used in Ref. 5. This weighting
factor was determined to generate the same percent correct (Pc)
between model observer and human observers for one specific
configuration (5-mm diameter object, 120 mAs, FBP
reconstruction), and was used in all the rest of the configura-
tions. The signal-present images for each low-contrast object
were generated by extracting a region of interest (ROI) sur-
rounding the object with a size of 1.5 times of the object diam-
eter. The signal-absent images for each low-contrast object were
generated by extracting an ROI of the same size and located near
the object of interest. The template, ωCHO, was built using n
signal-present and n signal-absent images, where n is the num-
ber of scans available for the CHO calculation. The template was
subsequently used to calculate the decision variable for each pair
of the signal-present and signal-absent images. After adding the
internal noise, the decision variables were compared and the

Fig. 1 A phantom with three groups of low-contrast inserts (−21;−14,
and −7 HU), each with seven disks of different sizes (diameters: 10,
9.5, 6.3, 4.8, 4, 3.2, and 2.4 mm).

Fig. 2 Sample CT images of low-contrast inserts at three different
dose levels with FBP and IR reconstructions.
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2AFC decision was made. The Pc for n pairs of signal-present
and signal-absent images was calculated and used as the FOM to
describe the low-contrast detectability. The Pc obtained from the
2AFC experiment is equivalent to the area under the receiver
operating characteristic (ROC) curve (Az). Here, we used a
“resubstitution” strategy to calculate the test statistics, i.e.,
the same set of images was used for training and testing the
model. In other words, the same set of images used to build
the template were used to calculate the decision variables and
hence the FOM. A more thorough description of this resubsti-
tution strategy can be found in page 973 in Ref. 10.

2.3 Determining Minimum Number of Scans

Ideally one could establish a ground truth of observer perfor-
mance and based on this ground truth, the minimum number
of scans necessary for sufficient observer performance accuracy
could be determined. However, one would need infinite number
of scans to establish the truth or a large number to yield an assur-
edly accurate value, which is not achievable in practice.
Therefore, the absolute value of the bias between the CHO-
determined FOM with a finite number of scans and the truth
(i.e., infinite scans) is difficult to estimate. Our previous studies
showed that the model observer calculated using 100 repeated
scans can achieve excellent agreement with human observers.5 It
is therefore appropriate to use the Az values estimated from 100
scans as a reference or ground truth by which the bias associated
with Az values determined from fewer scans can be compared.

To determine FOMs from different number of scans, the mean
and variance of Az values were calculated using the following
method. First, image subsets were randomly selected with
replacement from the 100-image pool 200 times. In this case, the
chance of each image being selected was the same similar to the
well-established bootstrap strategy.17 Then from these image sub-
sets, mean Az values and corresponding variances were calculated
for each subset of images. This process is shown in Fig. 3.

Using this strategy, the empirical distribution of images given
a single set of images is the nonparametric maximum-likelihood
estimate of the actual distribution of images. Hence, resampling
this single set of images gives the best estimate of sampling from
the actual distribution of images, in the absence of any other
information about the distribution.18

The minimum number of scans was determined as the fewest
number of scans that yielded a mean Az value within ±0.02 of

the reference value. Note here the mean Az value calculated with
all the 100 repeated scans was used as the reference.

2.4 Factors Affecting the Minimum Number of
Images Required for Channelized Hotelling
Observer

We investigated the impact of several Gabor filter parameters
on the minimum number of scans necessary for accurate
CHO performance. The general form of Gabor function can
be expressed as
EQ-TARGET;temp:intralink-;sec2.4;326;634

Gaðx; yÞ ¼ exp

�
−
4ðln 2Þ½ðx − x0Þ2 þ ðy − y0Þ2�

ωs2

�

× cos½2πfcðx − x0Þ cos θ þ ðy − y0Þ sin θ þ β�;

where ws is the channel width, (x0; y0) is the channel center, fc is
the center spatial frequency, θ indicates the channel orientation,
and β is a phase factor.16

We started with a set of 40 Gabor filters consisting of four
passbands, five orientations, and two phases. The four passbands
were [1/128, 1/64], [1/64, 1/32], [1/32, 1/16], and [1/16,
1/8] cycles/pixels, with center frequencies fc ¼ 3∕128; 3∕64;
3∕32, and 3/16 cycles/pixels, respectively. The five orientations
θ were 0; π∕5;2π∕5;3π∕5, and 4π∕5, and the two phases were
equal to 0; π∕2.4 The number of channels was first reduced by
trimming the number of passbands. By iteratively removing
the highest and lowest frequency channel filters, the total number
of passbands was reduced to 4, 2, and 1. Correspondingly, the
total number of channels was 40, 20, and 10, while keeping
the five orientations and two phases the same. We further altered
the total number of channels by adding four more passbands (two
low frequencies and two high frequencies) to the original four
passbands and then iteratively reducing the number from 8 to
6, 4, and 2, while keeping only one orientation (θ ¼ 0) and
one phase (β ¼ 0), resulting in 8, 6, 4, and 2 channels in
total. Similar operations were then performed to reduce the num-
ber of orientations from 5 to 3 and 1, while keeping four pass-
bands and two phases. This results in a total of 24 and 8 channels,
respectively. Ideally, for symmetric testing objects, it is not nec-
essary to include the directional channels. However, the testing
objects in physical phantoms are not perfectly symmetrical. We
include this test to evaluate its impact on the minimum number of

Fig. 3 Scheme used to calculate mean and variance from subsets of (finite) scans.
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repeated scans. Finally, the number of phases was reduced from 2
(0 and π∕2 deg) to 1 (only 0 deg), while maintaining four pass-
bands and five orientations, resulting in a total of 20 channels.
These channel selection strategies are listed in Table 1.

We also investigated the impact of various experimental fac-
tors on the mean and variance of the Az values estimated by CHO.
These factors include object size and contrast, radiation dose
level, and reconstruction kernel (Table 2). Based on the mean
of the Az values at different subset number of images, the mini-
mum number of images for each experimental configuration was
determined using the previously stated criterion.

3 Results

3.1 Estimated Performance Using all 100 Repeated
Scans

Figure 4 shows the Az values estimated by a CHO for all 21 low-
contrast objects at each of the three dose levels and two
reconstruction methods (FBP and IR). Presented in this figure

are FOMs from a CHO based on 20 Gabor channel filters, includ-
ing four channel passbands: [1/64, 1/32], [1/32, 1/16], [1/16, 1/8],
and [1/8, 1/4] cycles/pixels, five orientations: (0; 2π∕5; 4π∕5;
6π∕5, and 8π∕5), and one phase at 0 deg. All 100 repeated
scans were used to generate the results. The error bar denotes
the standard deviation obtained from 200 repeats of samples
with replacement. As expected, the low-contrast detectability
decreased with the decrease of radiation dose, object contrast,
and size and approached 0.5 at 60 mAs for smaller objects (3.2
and 2.4 mm) and 7 HU contrast, indicating that it was almost a
random guess at this dose level. The largest lesion (10 mm) at
all three contrast levels had almost perfect detectability at all
doses. Figure 5 shows two-dimensional (2-D) map of absolute
Az value differences between IR and FBP as a function of both
object size and contrast level at three different dose levels (240,
120, and 60 mAs, corresponding to 16, 8, and 4 mGy in
CTDIvol. We performed paired t-test for each of the 21 objects
and three dose levels between IR and FBP, most pairs show sig-
nificant difference between IR and FBP, but these differenceswere

Table 1 Channel selection strategies for the Gabor filter.

Passband change

Number of orientations Number of phases Number of passbands Total number
of channels

5 ðθ ¼ ½0; π∕5;2π∕5;3π∕5;4π∕5�Þ 2 ðβ ¼ ½0; π∕2�Þ 4 ðf c ¼ ½3∕128;3∕64;3∕32;3∕16�Þ 40

2 ðf c ¼ ½3∕64;3∕32�Þ 20

1 ðf c ¼ ½3∕64�Þ 10

1 ðθ ¼ 0Þ 1 ðβ ¼ 0Þ 8 ðf c ¼ ½3∕512;3∕256;3∕128;3∕64;3∕32;3∕16;3∕8;3∕4�Þ 8

6 ðf c ¼ ½3∕256;3∕128;3∕64;3∕32;3∕16;3∕8�Þ 6

4 ðf c ¼ ½3∕128;3∕64;3∕32;3∕16�Þ 4

2 ðf c ¼ ½3∕64;3∕32�Þ 2

Orientation change

Number of passbands Number of phases Number of orientations

4 ðf c ¼ ½3∕128;3∕64;3∕32;3∕16�Þ 2 ðβ ¼ ½0; π∕2�Þ 5 ðθ ¼ ½0;2π∕5;4π∕5;6π∕5;8π∕5�Þ 40

3 ðθ ¼ ½0;2π∕5;4π∕5�Þ 24

1 ðθ ¼ ½0�Þ 8

Phase change

Number of passbands Number of orientations Number of phases

4 ðf c ¼ ½3∕128;3∕64;3∕32;3∕16�Þ 5 ðθ ¼ ½0; π∕5;2π∕5;3π∕5;4π∕5�Þ 2 ðβ ¼ ½0; π∕2�Þ 40

1 ðβ ¼ 0Þ 20

Table 2 Varying object size, object contrast, radiation dose, and reconstruction kernels.

Object size (mm) Object contrast (HU) Radiation dose level (mGy) Reconstruction kernel

10, 9.5, 6.3, 4.8, 4.0, 3.2, 2.4 −7;−14;−21 16, 8, 4 FBP (B40) SAFIRE (I40-3)
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really small, with a maximum difference below 0.03 as shown
in Fig. 5.

3.2 Dependency on Object Size and Contrast Level

Figure 6 shows 2-D map of the minimum required number
of scans as a function of both object size and contrast level
(120 mAs, FBP reconstruction, and the same 20 channel

setting as in Sec. 3.1). As a general trend, the minimum
required number of scans increases as object size and contrast
decrease. For example, for an object with a diameter of 6.3 mm
and a contrast of 21 HU, a minimum number of 20 repeated
scans is necessary for accurate model performance; where
as, for an object with a diameter of 3.2 mm and a contrast
of 7 HU, a minimum of 60 scans is required for accurate
performance.

Fig. 4 Area under the ROC curve (Az ) estimated by CHO for the 21 low-contrast objects (7 sizes × 3
contrast levels) at three different mAs levels (240, 120, and 60), corresponding to a CTDIvol of 16, 8, and 4
mGy, respectively, with both FBP and IR reconstruction methods, using 20 channel Gabor filter (four
passbands, five orientations, and one phase).

Fig. 5 2-D map of Az value difference between IR and FBP as a function of both object size and contrast
level at three different dose levels (240, 120, and 60 mAs, corresponding to 16, 8, and 4 mGy in CTDIvol).
Twenty channel Gabor filter (four passbands, five orientations, and one phase) was used.
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Figure 7 shows examples of how the Az values changed as a
function of number of repeated scans for different object sizes.
The object contrast was fixed at −14 HU. Figure 8 shows the
examples of how the Az values changed as a function of number
of repeated scans for different object contrast levels. The object
size was fixed at 3.2 mm object, and the images were recon-
structed with the FBP method.

3.3 Dependency on Radiation Dose

Figure 9 shows 2-D maps of the minimum required number of
scans as a function of both object size and contrast level
at each of the three dose levels, which correspond to different
noise levels (standard deviation: 5.6� 0.3 HU at 240 mAs,
7.9� 0.5 HU at 120 mAs, and 11.2� 0.8 HU at 60 mAs,
respectively). In this figure, the minimum required number of
scans increases as the mAs level decreases from 240 to 60 mAs.

Fig. 6 2-D map of minimum required number of scans as a function of
both object size and contrast level, at 120 mAs dose level, using the
FBP reconstruction. Twenty channel Gabor filter (four passbands, five
orientations, and one phase) was used.

Fig. 7 Estimated performance as a function of number of repeated scans used in the CHO calculation,
for different object sizes. The contrast was −14 HU, and the images were reconstructed with FBP.
Twenty channel Gabor filter (four passbands, five orientations, and one phase) was used.

Fig. 8 Estimated performance as a function of number of repeated
scans used in the CHO calculation for different object contrast levels.
The object size was 3.2 mm, and the images were reconstructed with
FBP. Twenty channel Gabor filter (four passbands, five orientations,
and one phase) was used.
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3.4 Dependency on Reconstruction Methods

Figure 10 shows 2-D maps of the difference between FBP and
IR in terms of minimum required number of scans as a function
of both the object size and contrast level at 120 mAs dose level.
There were only a few differences between FBP and IR among
all of the object contrast and sizes combinations, and these
differences in minimum number of scans did not exceed �20.

3.5 Dependency on Channel Parameters

Figure 11 shows theminimum required number of scans as a func-
tionof number of channels. The selectionof parameters that results
in changes of total number of channels is detailed in Table 1. As
can be seen, the minimum required number of scans increases as
the number of channels increases, regardless of the change of the
channel filter parameters (passband, phase, or orientation).

Fig. 9 2-Dmap of minimum required number of scans as a function of object size and contrast level using
the FBP reconstruction at three different dose levels (240, 120, and 60 mAs, corresponding to 16, 8, and
4 mGy in CTDIvol). Twenty channel Gabor filter (four passbands, five orientations, and one phase) was
used.

Fig. 10 2-D maps of the difference between FBP and IR in terms of minimum required number of scans
as a function of object size and contrast level at three dose levels (240, 120, and 60 mAs, corresponding
to 16, 8, and 4 mGy in CTDIvol). Twenty channel Gabor filter (four passbands, five orientations, and one
phase) was used.
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3.6 Dependency on Az Value

As previously shown, the minimum number of scans is depen-
dent on the object size and contrast, noise, as well as channel
parameters. Figure 12 shows a summary of the results by using a
scatter plot of the minimum number of scans as a function of
low-contrast detectability expressed as Az. As can be seen, the
minimum number of scans is highly dependent on the low-con-
trast detectability. Regardless of the factors (size, contrast, noise,
and reconstructions) that affect the low-contrast detectability,
the minimum number of scans increases with the decrease of Az.

4 Discussion
Previously, we have demonstrated the effectiveness of the spatial
domain CHO models to correlate with human observer perfor-
mance in a series of phantom-based detection/classification
tasks and with IR.5,7,8 One major limitation of these CHO mod-
els is that it requires a large number of repeated scans to estab-
lish the model’s template. In order to use the CHO in a routine
quality control test or in image quality assessment for given
tasks, one would prefer to acquire and use fewer number of

repeated scans without sacrificing the accuracy of the image
quality evaluation. To accomplish this goal, it is important to
understand the relationship between the minimum required
number of repeated scans and experimental and model param-
eters, including radiation dose, noise, reconstruction method,
contrast level, object, and channel filters. Results presented in
the current study provided experimental data on these relation-
ships, which may help guide the experimental design for low-
contrast performance measurement when CHOmodels are used.

Model observers have become a popular choice for task-
based image quality assessment in CT in recent years,5–8,19–21

especially with the increased use of IR and other noise reduction
methods in clinical CT.22–24 The growing adoption of model
observer-based assessment is primarily due to the limitations
of traditional quality metrics, such as modulation transfer func-
tion (MTF) and noise standard deviation, which poorly charac-
terize the spatial resolution and noise properties of IR methods
that involve nonlinear regularizations.25–27 Among various
model observers that have been proposed to assess image quality
in CT, some were expressed in spatial frequency domain that
required characterization of the system’s MTF and noise
power spectrum, which rely on the assumption of locally linear
shift-invariance (LSI) of the CT system.6,19,20 These frequency-
domain model observers do not require a large number of
repeated scans. However, it is known that accurate measurement
of MTF is challenging for nonlinear IR methods at very low
contrast levels27 and, more importantly, the local LSI
assumption is invalid for images created using IR methods
and containing anatomical structures.28

It is interesting to note that the minimum required numbers of
scans required for FBP and IR were not significantly different
from each other, given the same radiation dose, object size and
contrast, and channel filter parameters in CHO. This lack of a
difference may be due to the marginal or very small improve-
ment on low-contrast detectability using IR. Objective assess-
ment of image quality on IR reconstructed images has
recently been an active research area in clinical CT. It appears
that the performance of IR varies across vendors, software
version, dose levels, and diagnostic tasks. The reason why
the performance of IR is highly dependent on the diagnostic
task and dose level is because of the nonlinear properties of
the spatial resolution and noise as a result of the nonlinear regu-
larization term in all current IR methods implemented on CT

Fig. 11 Minimum required number of scans as a function of number of
channels, for an object contrast of 21 HU and a size of 3.2 mm at
240 mAs using the FBP reconstruction.

Fig. 12 Scatter plot of the minimum required number of scans as a function of low-contrast detectability
expressed in Az . Each scatter point in the plot represents the Az value at certain object size, contrast
level, and dose level. (a) Forty channels in the Gabor filter (four passbands, five orientations, and one
phase) and (b) 20 channels in the Gabor filter (four passbands, five orientations, and one phase).
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scanners. In general, the performance improvement over FBP is
higher for high-contrast diagnostic tasks, but lower or close to
none for low-contrast tasks.24 In our current study, we focus on
the low-contrast detection task, which was the reason why we
did not observe much improvement. This observation is consis-
tent with some of the other recent evaluation studies on the low-
contrast performance of IR methods, either phantom-based 5,29–

31 or clinical patient-based studies.32,33

The results in Fig. 11 suggested that the required number of
scans decreased as the number of channels decreased. However,
it is inappropriate to make the claim that less number of channels
is better. When the number of channels is reduced to a certain
extent (e.g., by reducing the number of passband and number of
orientations), it is expected that it does not model the human
visual system response well and its correlation with human
observers becomes degraded. The correlation between two
sets of channels (one of them validated with human observer)
serves as a reasonable test on how well the channel selection
maintains the estimate of human performance, at least in
terms of relative ranking order. Figure 13 shows two examples
of such correlation test. When the channel selection was appro-
priate, the correlation between the two sets of channel selection
was high [Fig. 13(a)]. However, when the channel selection was
inappropriate (the frequency band cannot cover the frequency
component of the object), the correlation with the 40 channel
selection became very low [Fig. 13(b)]. How to select the opti-
mal number of channels and the channel parameters such that a
good balance between the minimum numbers of repeated scans
and sufficient correlation accuracy remains to be investigated,
although it was claimed that 36 channels gives a complete
model (six channels to cover spatial frequency space × six ori-
entation channels), see page 937 in Ref. 10.

There were limitations in this study. First, we did not test the
hold out strategy18 for CHO calculations. This was mainly
because our previously validated CHO models were based on
the resubstitution strategy. It is expected that the positive bias
with finite samples in the resubstitution strategy becomes neg-
ative in the hold out strategy, but the general trend of the impact
on the minimum number of repeated scans from various factors
(reconstruction, dose, lesion size/contrast, and channel param-
eters) should remain similar. Second, use of Az as the FOM
has its limitation. When the Az value is approaching 1, there

could still be a bias that cannot be detected since the perfor-
mance for the detection task becomes saturated. Index of detect-
ability may be used to overcome this limitation, but the bias at an
Az value close to 1 is mostly irrelevant in terms of diagnostic
performance for a given task.

5 Conclusion
We performed an experimental study to investigate the impact of
object size and contrast, reconstruction method, radiation dose,
and channel filter parameters on the minimum number of
repeated scans required for accurate CHO calculation in a sig-
nal-known-exactly phantom-based detection task. Using results
obtained with 100 independent image samples acquired from
repeated scans as the reference, we determined the minimum
number of scans required to yield accurate performance of
the model for images acquired at different dose levels and recon-
structed with both FBP and IR methods. This study provides an
experimental basis that may help guide the design of task-based
image quality assessment in clinical CT when CHO models
are used.
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