
Targeting BMP signalling in cardiovascular disease and anaemia

Nicholas W. Morrell, Donald B. Bloch, Peter ten Dijke, Marie-Jose T.H. Goumans, Akiko 
Hata, Jim Smith, Paul B. Yu, and Kenneth D. Bloch
Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s 
Hospital, Hills Road, Cambridge CB2 0QQ, UK (N.W.M.). Center for Immunology and 
Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard 
Medical School, 149 13th Street, Charlestown, MA 02129, USA (D.B.B.). Department of Molecular 
Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Center, 
Albinusdreef 2, 2333 ZA Leiden, Netherlands (P.T., M.J.G.). Cardiovascular Research Institute, 
University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA (A.H.). MRC 
National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK (J.S.) 
Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, 75 Francis 
Street, Boston, MA 02115, USA (P.B.Y.). Anaesthesia Center for Critical Care Research, 
Department of Anesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, 
USA (K.D.B.)

Abstract

Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of 

embryonal patterning and organogenesis, are also critical for the regulation of cardiovascular 

structure and function. In addition to their contributions to syndromic disorders of heart and 

vascular development, BMP signalling is increasingly recognized for its influence on endocrine-

like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss 

several critical and novel aspects of BMP signalling in cardiovascular health and disease, which 

highlight the cell- and context-specific nature of BMP signalling. Based on advancing knowledge 

of the physiological roles and regulation of BMP signaling, we indicate opportunities for 

therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and 

pulmonary arterial hypertension, and well as for anaemia of chronic disease. Depending on the 

context and the repertoire of ligands and receptors involved in specific disease processes, the 

selective inhibition or enhancement of signaling via particular BMP ligands (such as in 

atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The 

development of selective small molecule antagonists of BMP receptors, and the identification of 

ligands selective for BMP receptor complexes expressed in the vasculature provide the most 

immediate opportunities for new therapies.
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Introduction

The bone morphogenetic proteins (BMPs) were originally discovered because of their ability 

to induce the formation of bone and cartilage in ectopic sites. Marshall Urist, a pioneer in 

this field, first observed that demineralized bone matrix induced bone growth when 

implanted into rabbit muscle, suggesting that the matrix contained bone morphogenetic 

activity.
1
 Subsequent efforts to purify BMP and to elucidate its amino acid sequence 

revealed several closely related proteins of the transforming growth factor β (TGF-β) family 

of secreted ligands.
2
 BMPs account for 20 of the 33 known members of the TGF-β 

superfamily in humans. They are highly conserved throughout evolution, possessing 

orthologues in vertebrates and invertebrates, including Cnidaria and sponges. BMPs are 

usually secreted as active dimeric complexes, and some are bound to a prodomain (such as 

BMP9 and BMP10). BMPs communicate with neighbouring cells primarily in a paracrine or 

autocrine fashion, and local concentration gradients of BMPs are thus critical during early 

development and organogenesis. Several BMPs, including BMP6, BMP9, and BMP10 also 

circulate in blood,
3–6

 and have the potential to exert effects on distant tissues and organs. 

BMPs thereby function as an important endocrine regulator of cardiovascular, metabolic, 

and haematopoietic function (Table 1).

The last 15 years has witnessed an increasing awareness of the fundamental role played by 

BMPs in the development and maintenance of homeostasis in the heart and circulation, and 

the perturbation of BMP signalling in cardiovascular disease, with evidence of increased and 

decreased BMP signalling activity in different disease contexts. Increased activity is 

associated with vascular inflammation, atherosclerosis and calcification, as well as anaemia 

of chronic disease. Conversely, reduced BMP signaling is associated with pulmonary arterial 

hypertension and hereditary hemorrhagic telangiectasia. This review is timely because 

strategies have now been developed to inhibit or enhance BMP signaling, which show 

promise in preclinical models of cardiovascular disease and anemia. Thus, these approaches 

hold considerable promise for the development of novel therapies for human disease.

In this article we review relevant aspects of BMP ligands, receptors and signalling pathways 

and their role in cardiovascular development and disease. In addition, we indicate how this 

knowledge might be exploited to treat specific cardiovascular diseases and anaemia.

BMPs are structurally diverse

Like other members of the TGF-β family, BMPs bind to serine-threonine kinase receptors, 

known as type I and type II receptors. Similar to TGF-β ligands, BMPs form 

heterotetrameric signalling complexes with two type I and two type II receptors, but unlike 

TGF-β ligands, BMPs bind with greater affinity to the type I rather than type II receptors. 

Based on their structural homology, BMP type I receptors can be divided into two groups: 

the BMP type-I A receptor (BMPR-IA, a.k.a., activing receptor-like kinase 3, or ALK3) and 

BMP type-I B receptor (BMPR-IB, a.k.a., ALK6) group, and the Activin Receptor Like 1 

(ACVRL1, a.k.a., ALK1) and activin receptor type-1 (ACVR1, a.k.a., ALK2) group. 

Whereas ALK3, ALK6, and ALK2 are widely expressed by diverse cell types, ALK1 is 

more restricted to endothelial cells. Type II receptors of the BMP family include the BMP 
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type II receptor type (BMPRII), and activin receptor type-2A (ACTRIIA) and activin 

receptor type-2B (ACTRIIB). BMPRII is selective for BMPs, whereas ACTRIIA and 

ACTRIIB are activated in response to activins, growth differentiation factors (GDFs), and 

Nodal. Both BMPRII and ACTRIIA are expressed broadly in mesenchyme-derived tissues, 

but only BMPRII is expressed at high levels in endothelial and endocardial tissues. Upon 

complex formation, the type II receptors transphosphorylate specific residues within type I 

receptor intracellular glycine-serine-rich juxtamembrane regions, causing type I receptor 

activation and phosphorylation of receptor-regulated SMAD (R-SMAD) effector proteins. 

BMP ligands possess the ability to activate the BMP-responsive SMADs 1, 5 and 8, yet exert 

diverse effects on target tissues, owing in part to their structural and receptor 

complementarity. BMPs form subgroups based on their affinities for specific receptors. 

BMP2 and BMP4 bind preferentially to BMPRII in a complex with ALK3 or ALK6, while 

BMP6 and BMP7 bind to ACTRIIA with ALK3, and BMP9 and BMP10 bind to BMPRII in 

combination with ALK1 or ALK2 (Table 1).
7–10

 While BMPs have been most extensively 

studied as homodimeric ligands, the interaction of heterodimeric ligands such as BMP2 and 

BMP7, and their respective heteromeric ALK2 and ALK3 receptor complexes has become 

an increasingly appreciated signalling motif in vertebrate development.
11

H1 Regulation of BMP signalling

Since BMPs are potent modulators of cell growth and fate, each component of the BMP 

signalling pathway is subjected to extensive positive and negative regulation in order to 

maintain the integrity of tissue development and repair. The expression of BMP antagonists 

is especially important during development when BMP signalling gradients are established 

by diffusion to fine-tune the magnitude and duration of BMP signalling.
12

 A large number 

of extracellular (chordin, noggin, and gremlin) and membrane-bound antagonist molecules 

(BMP-binding endothelial regulator protein (BMPER), Twisted gastrulation, matrix Gla 

protein, and neogenin) sequester BMP ligands to reduce signalling. Noggin is the 

prototypical secreted antagonist, and possesses high affinity for BMP2 and BMP4, but low 

affinity for BMP6 and BMP9, whereas BMPER, a transmembrane protein, potently inhibits 

BMP9 in the context of endothelial signalling.
13,14

 Following signalling activation, 

phosphorylated R-SMADs form heteromeric complexes with a common-mediator SMAD 

(SMAD4) and translocate into the nucleus to directly regulate target gene expression by 

binding to SMAD-binding elements. This complex can also indirectly regulate gene 

expression by interacting with DNA-binding transcription factors, or by associating with co-

activators or co-repressors, and histone-modifying factors. Targets of BMP/SMAD 

transcriptional activity include the inhibitory-SMADs (SMAD6 and SMAD7) and the BMP 

and activin membrane-bound inhibitor homolog (BAMBI). SMAD6 and SMAD7 provide 

feedback inhibition to antagonize BMP and TGF-β signalling by inducing degradation of 

their respective receptors and R-SMADs, while BAMBI sequesters ligands away from 

receptors, thereby inhibiting BMP signaling. In addition, several classes of BMP co-

receptors that lack enzymatic activity, but modulate BMP ligand-receptor interactions, have 

also been identified. These co-receptors include the so-called type III receptors endoglin and 

betaglycan, as well as the glycosylphosphatidylinositol-anchored repulsive guidance 

molecule proteins, all of which potentiate ligand-specific signalling to modify the cellular 
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consequences of signalling.
15–17

 These BMP co-receptors can be produced via pro-protein 

convertases or can be shed from the cell surface by matrix metalloproteases, resulting in 

soluble receptor fragments that function as BMP ligand traps.
18

The repertoire of BMP receptors, co-receptors, and modulators is highly specialized in the 

cardiovascular system, helping to confer spatiotemporal specificity to BMP signalling, and 

particularly for sensitizing endothelial and endocardial tissues to BMP9 and BMP10. 

BMPRII, ALK1, and endoglin are abundant in vascular endothelium, as well as in 

embryonic ventricular and atrioventricular endocardium. In fact, the depletion of ALK1
19

 or 

endoglin
20,21

 in endothelial cells from diverse vascular beds significantly impaired 

signalling via BMP9 and BMP10, and diminished BMP9-mediated modulation of 

angiogenic activity. While the depletion of BMPRII does not abolish BMP9 or BMP10 

signalling, the loss of BMPRII in endothelium substantially impairs the downstream anti-

mitotic and cytokine regulatory functions of BMP9.
22

 ALK2 is also expressed in the 

endothelium, and its signalling appears to modulate the expression of ALK1 to respond 

dynamically to various stimuli.
23

 BMPRII, ACTRIIA, ALK2, and ALK3are expressed in 

cardiomyocytes and vascular smooth muscle, and signalling is activated in response to their 

canonical ligands to modulate cell phenotype, growth, and survival.
24–29

 In addition, ALK2 

and ALK3 contribute to the calcification of vascular smooth muscle cells.
30,31

 BMPER and 

Twisted gastrulation modulate BMP9 signalling to regulate these functions in the 

endothelium and thereby maintain vascular homeostasis.
32

 As a group, these molecules have 

essential roles in vasculologenesis, cardiomyogenesis, ventricular compaction, septation, 

valve formation, and maintenance of the integrity of the pulmonary and lymphatic 

circulation
33

.

H2 Cross-talk with other signalling pathways

BMPs and their signalling effector molecules exhibit various degrees of cross-talk with other 

pathways essential to vascular development and homeostasis, including vascular endothelial 

growth factor (VEGF), fibroblast growth factor (FGF), and Notch and Wnt 

signalling.
16,34–36

 In the cardiovascular system, the recruitment or modulation of these 

pathways by BMP signalling can be critical for proper function; BMP signalling via 

SMAD1/5 activation regulates the expression of Jagged 1 in endothelial cells to transactivate 

Notch signaling in neighboring cells.
37

 BMPs also co-regulate the Notch transcriptional 

targets HES1 and HEY1 in mesenchymal lineages via a Notch intracellular domain–SMAD 

interaction to modulate cellular plasticity.
38–40

 Similarly, the interplay between BMP and 

delta-ligand 4/Notch pathways determines the identity of tip versus stalk cells during 

angiogenesis.
41

 BMP9 has been documented to suppress VEGF expression and VEGF-

induced angiogenesis via ALK1 and BMPRII signalling,
16,35

 while in the developing 

outflow tract of the heart, BMP4 and BMP7 repress VEGFa expression via the miR-17-92 

cluster to stimulate outflow tract cushion formation.
42

 Furthermore, during cardiac cushion 

formation, the coordination of the endothelial to mesenchymal transformation response is 

mediated by the interplay of Notch, BMP, and TGF-β signalling.
43,44

 The antagonism of 

FGF signalling by BMP ligands is necessary for specifying cardiomyocyte fate in the early 

embryo or in embryonic stem cells.
45

 Taken together, these findings show that the BMP 
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pathway provides essential gating, amplifying, and damping effects on Notch, Wnt, VEGF, 

and FGF signalling in vascular development and homeostasis.

H2 Experimental evaluation of BMP signalling

Early BMP genetic ablation procedures that resulted in severe defects with prenatal or 

perinatal lethality revealed the importance of many receptors of the BMP signalling pathway 

for embryogenesis and organogenesis (see Table 2 for details and references). Subsequent 

studies to address postnatal and physiologic functions of BMP ligands have utilized Cre-Lox 

technology for postnatal ablation of BMP receptors, or have targeted the individual ligands 

themselves. (see Table 2 for details and references) Genetic and pharmacologic epistasis has 

been accomplished using several methods: transgenic expression or administration of 

recombinant BMPs or endogenous BMP signalling inhibitors (such as noggin or gremlin); 

antibodies directed against specific BMP ligands; and recombinant ligand traps derived from 

receptor extracellular domains that scavenge subsets of BMP ligands (such as ALK1-Fc, 

ALK3-Fc, and Hemojuvelin-Fc).
31,46,47

 Small molecule inhibitors of BMP type I receptors 

also allow temporally restricted modulation of BMP signalling (see Table 3 for details and 

references). Together, these experimental approaches to evaluate BMP signalling has helped 

to elucidate their roles in diverse biological processes such as iron metabolism and 

inflammation, and in cardiovascular diseases such as atherosclerosis, pulmonary 

hypertension, and vascular calcification (Table 3).

A small molecule inhibitor of BMP signalling, dorsomorphin, was identified by screening a 

library of small molecules for their ability to induce dorsalization in embryonic zebrafish.
48 

This compound mimicked a mild form of dorsalization seen in zebrafish deficient in BMP 

type I receptor orthologues, or fish overexpressing noggin or chordin.
49

 Dorsomorphin 

inhibited the expression of hepcidin, a master iron regulatory hormone, in zebrafish and 

mice via the antagonism of BMP signalling in the liver. Since dorsomorphin is a broad 

acting multi-kinase inhibitor identified originally for its ability to inhibit AMP-activated 

protein kinase (compound C), further potent and selective inhibitors of BMP type I receptors 

were generated, including pyrazolopyrimidine analogues,
50

 and other scaffolds such as 2-

aminopyridine compound K02288 and its derivatives.
51,52

 These small molecules have been 

utilized extensively to study the role of BMP signalling in vitro, as well as the postnatal roles 

of BMP signalling in vivo.

H1 BMPs and the cardiovascular system

H2 BMP signalling in the vasculature

The critical role of BMP signalling in the vasculature is evident from both clinical and 

experimental observations. Genetic lesions in this pathway result in the development of 

congenital vascular syndromes, and corresponding phenotypes are also observed in loss-of-

function animal models (Table 2). Consistent with these roles in disease, BMPs exert potent 

effects on all vascular cell lineages, impacting the ability of endothelial cells to migrate, 

proliferate, and form basic tubular structures, and establishing the fates of surrounding 

pericytes, vascular smooth muscle, and adventitial cells that contribute to the structural 

integrity and function of the vessel.
53

 Similar to other developmental processes, BMP 
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signalling is tightly regulated in a spatiotemporal manner, and is thus lineage-, tissue-, and 

context-sensitive (Figure 1).

BMPs can function in a pro-angiogenic or anti-angiogenic manner, depending on its ligand, 

concentration, cellular target, and the context.
54

 Although a number of BMPs have been 

reported to modulate angiogenesis, BMP9 is the most important BMP ligand in the 

vasculature owing to its presence in the circulation and the high expression of its cognate 

receptors BMPRII, ALK1, and endoglin in endothelial and smooth muscle cells. In human 

pulmonary artery endothelial cells, BMP9 signals through distinct type II receptors to 

stimulate SMAD1 and SMAD2 phosphorylation and to induce distinct target genes.
22

 Under 

normal conditions, BMP9 primarily has an angiostatic effect. BMP9 inhibits the formation 

of vessel-like tubular networks in vitro, which requires the function of BMPRII and ALK1. 

In addition, BMP9 inhibits VEGF and FGF-induced angiogenic responses. Furthermore, 

BMP9 has been shown to inhibit lymphangiogenesis.
33

 Interestingly, low BMP9 

concentrations were reported to have pro-angiogenic properties
55

 and inhibiting BMP9 

levels using an ALK1-Fc ligand trap was shown to inhibit tumour angiogenesis.
56,57

 In 

addition, other BMPs, including BMP2, BMP4, BMP6, and BMP7, have been shown to 

induce endothelial cell proliferation, migration, and formation of tube-like structures, and to 

promote angiogenesis in vitro and in vivo in mouse models.
58

 The induction of inhibitor of 

DNA binding protein (Id) expression by BMP contributes to its pro-angiogenic 

response.
59,60

 The indirect induction of alpha-crystallin B chain signalling via Id1 by BMP 

also contributes to the survival of pulmonary microvascular endothelial cells.
61

 Id proteins 

also play an important effector role in the regulation of smooth muscle cell function by 

BMPs. Id1 and Id3 are potently regulated by BMP signalling in pulmonary arterial smooth 

muscle cells in vitro,
62

 are jointly upregulated by hypoxia in pulmonary vascular smooth 

muscle in vivo,
63

 and might play a complementary and partially redundant role in regulating 

cell cycling in vascular and other tissues.
64

 BMPs also function to maintain the contractile 

phenotype of vascular smooth muscle cells by inducing the expression of microRNA-21,
65 

either through suppression of microRNA-96,
66

 or via the induction of myocardin-related 

transcription factors.
67

Finally, physiological stimuli including shear stress can influence endothelial cell behaviour 

in a BMP-dependent manner. For example, in response to oscillatory shear stress, BMPRII 

mediates a physical association between BMPR1B and integrin αVβ3 in endothelial cells, 

thereby inducing endothelial proliferation.
68

 The mechanism of BMP receptor activation 

under conditions of shear might involve the cyclic AMP-dependent transcription factor 

ATF-2 pathway, which can be activated by fluid shear stress, and can stimulate the secretion 

of BMP ligands during early haematopoietic stem cell differentiation.
69

 In zebrafish, 

BMP10 induces vascular quiescence via shear stress in an ALK1-dependent manner.
5,70 

Thus, whether BMP has positive or negative effects on the vasculature is highly dependent 

on the BMP isoform, concentration, and cellular context.
71

BMP signalling in cardiovascular development

A critical event during embryonic development is the establishment of a vascular network 

and a beating heart. The growth of the heart is initiated by specification of the cardiac 
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mesoderm, bilaterally distributed on both sides of the primitive streak.
72,73

 These 

mesodermal patches migrate to the midline, fuse, and form the cardiac crescent. On day 7 of 

murine embryonic development, the cardiac crescent develops into the primitive heart tube 

with an inner endocardial layer and an outer myocardial layer, separated by a layer of 

extracellular matrix, known as the cardiac jelly.
74,75

 The heart then undergoes “looping” to 

form the atrioventricular canal, the hallmark of the chambered heart. In the atrioventricular 

canal, the cardiac cushions form the valve primordia. The endocardial layer at the site of the 

atrioventricular canal undergoes endocardial to mesenchymal transition (EMT) and migrates 

as mesenchymal cells to populate the cardiac jelly.
76

The differentiation of pluripotent stem cells and embryonic stem cells into the cardiac 

lineage is partly regulated by BMP signalling in a tightly controlled spatiotemporal 

sequence, as demonstrated by in vivo studies,
77

 as well as in vitro studies
78,79

. BMP4 

cooperates with FGF2 via the activation of ERK signaling to induce cardiac mesoderm 

formation by increasing expression of Brachyury protein, homeobox protein CDX-2, and 

homeobox protein NANOG
80

 in a SMAD1-dependent manner,
81

 while inhibiting endoderm 

differentiation. BMP4 signaling again plays a critical role in the terminal differentiation of 

cardiomyocyte progenitors into cardiomyocytes, but its effect at commitment stages is 

dependent on a precise balance with activin A, Nodal, and WNT signals in combinations 

that are specific not only to lineages, but specific also to progenitor clones.
82–84

 Importantly, 

if BMP signalling persists for 3 days beyond when cardiac mesoderm is formed, cardiac 

progenitor cells differentiate into epicardial lineages instead of cardiomyocycytes.
85,86

 The 

epicardium has been shown to serve as an important reservoir of cardiac fibroblasts and 

vascular smooth muscle progenitors in the developing heart, and plays an important role in 

cardiac repair after injury
87

. BMP signal transduction has been demonstrated in the 

atrioventricular canal,
88,89

 and to a lesser extent in the cardiac crescent
88–90

 using BMP 

reporter mice, which harbour a BMP responsive element that regulates the reporter genes 

lacZ or GFP. BMP2 and BMPR-1A are both expressed in the cardiac crescent; deletion of 

BMPR-1A in the cardiac mesoderm results in embryos that lack the cardiac crescent and 

cardiomyocytes, suggesting a role for BMP in early cardiomyocyte formation.
91,92

 BMPs 2, 

4, 5, 6, and 7, as well as ALK2 and BMPR-1A, are expressed in the atriocentricular canal.
76 

Studies using mouse and chicken models have shown that only BMP2 is required for EMT 

and cushion formation in the atrioventricular canal. Furthermore, endocardial-specific 

deletion studies involving ALK2 and BMPR-1A have demonstrated that they are both 

involved in EMT, albeit for different processes.
93–95

 While deletion of ALK2 and 

BMPR-1A both led to a reduction in SMAD1/5/8 phosphorylation, deletion of ALK2 also 

diminished phosphorylation of SMAD2/3. Only myocardial-specific deletion of BMPR-1A 

resulted in cardiac defects, namely reduced atrioventricular cushion size and myocardial 

thinning.
93–95

BMP10 is transiently expressed in the ventricular trabeculae during midgestation when the 

ventricles grow and mature.
96

 BMP10 levels are tightly controlled because any fluctuations 

in expression can result in abnormalities in trabecular development and maturation of the 

ventricular wall. Myocardin, a muscle specific transcription factor, induces the expression of 

BMP10 by binding to its promoter.
97

 In the adult heart, expression of BMP10 is restricted to 

the right atrium.
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In addition to their role in cardiac development, BMPs are also involved in the development 

of the vascular network that is crucial for the embryo once the heart begins to beat. 

Vascularization is a two-step process: firstly, vasculogenesis—the de novo formation of 

vessels from angioblasts—takes place, followed by angiogenesis, which involves the 

sprouting of new vessels from pre-existing vessels.
98

 During vasculogenesis, a new vessel 

forms when endothelial cells start to proliferate, migrate, and form a primitive tube. The 

primitive tube becomes stabilized by the deposition of extracellular matrix proteins and 

coverage by mural cells (pericytes or smooth muscle cells).
99

 BMP signalling is required for 

both endothelial cell and mural cell development and function. BMPs 2, 4, 6, and 7 stimulate 

the growth of endothelial cells and induce their migration.
59,100

 BMP9 has a dual effect on 

angiogenesis, depending partly on its concentration. BMP9 and ALK1 signalling at low 

concentrations induces proliferation and migration of endothelial cells,
55

 whereas complete 

inhibition of BMP9 and ALK1 signalling using a recombinant ligand trap (ALK1-Fc) 

prevents tumour angiogenesis.
56

 However, other studies showed that BMP9 and ALK1 

signalling inhibited VEGF- and FGF-induced angiogenesis
3,16

 in cooperation with Notch 

signalling,
41

 thereby inhibiting the activation phase of angiogenesis. BMP9 and ALK1 

signalling can also inhibit lymphangiogenesis.
33

During vascular development, BMP signalling can also influence the differentiation of 

smooth muscle cells. BMP2 and BMP7 inhibit the growth and migration of smooth muscle 

cells, and promote their differentiation into a contractile phenotype.
101–104

 Mutations in 

ALK1 were associated with reduced mural cell coverage in brain vessels
105

. Interestingly, 

TGF-β was shown to reduce BMP4 signalling in smooth muscle cells, suggesting a cross-

talk between the two signalling pathways.
106

 Therefore, the effect of BMP signalling on 

angiogenesis is context-dependent; proper signalling in both endothelial cells and mural 

cells is necessary for normal development of the vasculature.

BMP signalling and cardiovascular disease

The essential role of BMP signalling in cardiovascular homeostasis and function is 

underscored by numerous genetic studies in humans. Mutations in the genes that encode 

transducers of the BMP signalling pathway have been associated with cardiovascular 

diseases such as pulmonary arterial hypertension and hereditary haemorrhagic 

telangiectasia. Other vascular abnormalities, such as those contributing to Marfan syndrome 

and Loeys-Dietz syndrome have been linked to exaggerated TGF-β activity and reduced 

responsiveness to BMPs.
107,108

 BMPs have also been implicated in the promotion of 

vascular calcification and tumour angiogenesis. Furthermore, studies conducted in the past 5 

years support a protective role of BMP signalling during post-infarction remodelling of the 

heart,
109–112

, and patients with coronary artery disease also exhibit aberrant expression of 

BMP signal transducers.
113,114

 Finally, the level BMP receptor expression correlates with 

anemia and the degree of iron deficiency, which is prevalent in patients with heart failure.

Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is defined as an increase in mean pulmonary artery 

pressure greater than 25 mmHg at rest in the setting of normal left atrial pressure and 

increased pulmonary vascular resistance.
115

 The increase in pulmonary vascular resistance is 
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attributable to a reduction in the cross-sectional area of the pulmonary vascular bed, which 

occurs as a result of obliteration of the vascular lumen in small pulmonary arterioles.
116 

Affected individuals present with dyspnoea on exertion and are at increased risk of death 

from right heart failure.
117

 Although a number of systemic conditions are associated with 

PAH,
118

 such as congenital heart disease, liver cirrhosis, connective tissue diseases, and HIV 

infection, a rare, idiopathic form of PAH has been observed, with an annual incidence of 1–2 

cases per million people.
117

 Approximately 6–10% of patients with PAH has more than one 

affected family member, and has inherited the disease via an autosomal dominant pattern of 

inheritance (though with reduced penetrance of approximately 20–30%).
119

 Data from two 

studies published in 2000 established that this familial form of PAH was caused by 

heterozygous germline mutations in BMPR2.
120,121

 Subsequent studies have shown that 

more than 70% of heritable cases of PAH are caused by mutations in BMPR2,
122

 and 

approximately 20% of apparently sporadic cases of idiopathic PAH are in fact also caused 

by BMPR-II mutations, either as a result of de novo mutations or owing to the combination 

of reduced disease penetrance and small family size.
123

 Approximately 70% of mutations in 

BMPR2 result in premature termination codons; the remaining 30% are missense mutations 

that might lead to loss of function by a variety of mechanisms, including loss of kinase 

activity and aberrant trafficking of misfolded BMPR2 in the endoplasmic reticulum.
122

Although our understanding of the pathogenesis of PAH has progressed since the seminal 

papers published in 2000, major questions still remain. For example, it remains unclear how 

loss of function mutations in BMPR2 cause a disease that appears to be confined to the 

pulmonary circulation, as are the mechanisms that influence variable penetrance. Notably, 

BMPR2 has a very long C-terminal extension and might also regulate and modify 

intracellular signalling by recruitment of factors other than SMADs, such as protein kinase 

G, in the vasculature.
25,124,125

 The high prevalence of asymptomatic carriers of disease-

associated mutations in families with PAH suggest that additional factors are required to 

trigger the onset and progression of the disease. Mice that are heterozygous for BMPR2 

deficiency develop minimal signs of pulmonary hypertension in the absence of additional 

stimuli.
126

 However, mice with a heterozygous knock-in of a human disease-causing 

mutation in BMPR2 (R899X) do show susceptibility to spontaneous pulmonary 

hypertension by 6 months of age,
127

 highlighting potential important differences between 

heterozygous null and knock-in mouse models. Additional genetic factors, including 

polymorphisms in the CYP1B1 gene (linked to estrogen metabolite levels) and 

cerebellin-2
128

 have been suggested to have a role in the development of PAH, but these 

require confirmation in prospective cohorts. Environmental factors, particularly 

inflammation, have also been shown to increase disease penetrance in BMPR2 heterozygous 

mice.
129

 Interestingly, overexpression of dominant negative kinase deficient BMPR2 in 

pulmonary artery smooth muscle cells is sufficient to promote pulmonary hypertension in 

transgenic mice.
130

 These observations suggest that a critical reduction in the expression or 

function of BMPR2 is required to trigger the development of PAH.

In patients with PAH and BMPR2 mutations, pulmonary arterial smooth muscle cells exhibit 

a loss of the normal BMP/SMAD-mediated growth suppression,
131,132

 and demonstrate 

heightened proliferation to growth factors such as platelet-derived growth factor, TGF-β, and 

serotonin.
126

 Therefore, loss-of-function mutations of BMPR2 promotes pulmonary arterial 

Morrell et al. Page 9

Nat Rev Cardiol. Author manuscript; available in PMC 2016 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



smooth muscle cell proliferation and resistance to apoptosis, key factors in the occlusion of 

small pulmonary arteries. Downstream of BMP/SMAD signalling, the induction of Id genes 

plays a critical role in smooth muscle growth suppression.
133

 Interestingly, approaches 

currently employed to treat PAH, such as phosphodiesterase type 5 inhibition and 

prostanoids, have been shown to partly rescue SMAD/Id gene signalling in vitro and in vivo 
via mechanisms involving cyclic adenosine monophosphate (cAMP) and cyclic guanosine 

monophosphate (cGMP).
134,135

Studies from the past 8 years have demonstrated that BMPR2 forms a signalling complex 

with ALK1, which is almost exclusively expressed in endothelial cells, and signals 

specifically in response to BMP9 and BMP10 activation.
22,136

 Although mutations in ALK1 

usually cause hereditary haemorrhagic telangiectasia (HHT), there are well-documented 

cases of severe PAH in families affected by HHT that are indistinguishable from idiopathic 

PAH.
137

 Therefore, BMP9 and BMP10 signalling via BMPR2/ALK1 is likely to play a 

central role in the pathobiology of PAH as well as HHT, and implicates the endothelial cell 

as an important cell type involved in the initiation of both diseases. Indeed, endothelial 

selective deletion of BMPR2
138

 or ALK1 deficiency
139

 can also promote the development 

of pulmonary hypertension in mice.

Loss of BMPR2 in endothelial cells promotes endothelial apoptosis and increases 

endothelial permeability in vitro and in vivo,
140,141

 whereas BMP9 protects endothelial cells 

from apoptosis and reduces agonist-induced endothelial permeability.
141

 Loss of BMPR2 

function, therefore, leads to changes in the function of vascular wall cells that promote the 

development of PAH, particularly in the presence of an injurious trigger. An increased 

understanding of the role of BMPR2 in these processes suggests that approaches to restore 

BMPR2 expression, function, or signalling might have a role in disease treatment or 

prevention. Proof-of-concept studies in vitro have shown the potential for rescue of 

translational read through of mutations, which result in premature termination codons by 

small molecules,
142

 and for the use of chemical chaperones to rescue misfolded BMPR2 

mutants.
143

 In addition, targeted delivery of BMPR2 gene therapy to the pulmonary vascular 

endothelium has been shown to prevent and reverse PAH in the monocrotaline rat model.
144

Another potential approach to the treatment and prevention of PAH stems from the 

identification of the rapid turnover of cell surface BMPR2 and its subsequent degradation by 

the lysosome.
145

 This mechanism appears to involve an E3 ubiquitin protein ligase called 

Itch. Inhibition of the lysosomal degradation of BMPR2 by chloroquine prolongs the half-

life of BMPR2 at the cell surface and restores signalling in pulmonary artery smooth muscle 

cells and endothelial cells that harbour haploinsufficiency-inducing mutations in BMPR2.
146 

In nongenetic models of pulmonary hypertension, such as those caused by the plant alkaloid 

toxin, monocrotaline, protein levels of BMPR2 are reduced. In these rodent models of 

pulmonary hypertension the 4-aminoquinoline, chloroquine and the better tolerated 

hydroxychloroquine have shown preclinical efficacy in preventing the development and 

progression of pulmonary hypertension, and can be shown to restore BMPR2 protein levels. 

In addition to lowering pulmonary blood pressure, chloroquine also inhibits autophagy, 

which promotes apoptosis of pulmonary artery smooth muscle cells.
146–148

 Thus, as the use 

of chloroquine and hydroxychloroquine has already been well-established for the treatment 
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of malaria, sarcoidosis, rheumatoid arthritis and systemic lupus erythematosus, repurposing 

these agents for the treatment of PAH might prove a novel and readily testable approach. 

While the mechanism of action of these drugs should aid in the normalization of BMPR2 

expression levels in mutation-carrying individuals with PAH, they might also augment 

BMPR2 expression and signalling and possibly benefit non-mutation-carrying individuals.

A further approach to restoring BMP signalling was identified by screening 3,756 FDA-

approved drugs and bioactive compounds in a transcriptional high-throughput luciferase 

reporter assay.
149

 The best response was achieved with the drug tacrolimus, which although 

is recognized as a calcineurin inhibitor, also binds to the peptidyl-prolyl cis-trans isomerase 

FKBP12, a repressor of BMP signalling. Tacrolimus releases FKBP12 from type I receptors 

ALK1, ALK2, and ALK3, which are activated downstream of SMAD1/5 and mitogen-

activated protein kinase signalling and ID1 gene regulation. In pulmonary artery endothelial 

cells from patients with idiopathic PAH, low-dose tacrolimus therapy was able to reverse the 

reduction in BMP signalling.
149

 In vivo, low-dose tacrolimus therapy reversed severe 

monocrotaline-induced PAH in rats with medial hypertrophy and in rats with neointima 

formation caused by VEGF receptor blockade and chronic hypoxia.
149

 A clinical trial 

examining low-dose tacrolimus for the treatment of PAH is currently underway (https://

clinicaltrials.gov/ct2/show/NCT01647945)
150

In a study published in 2015, systemic administration of BMP9 was shown to prevent and 

reverse PAH in various genetic and nongenetic preclinical models.
141

 BMP9 is highly 

selective for endothelial cells, owing to its specificity for the BMPR2/ALK1 receptor 

complex. The growth of angioproliferative lesions observed in rats exposed to chronic 

hypoxia and a VEGF receptor 2 antagonist, which are thought to closely resemble the 

lesions observed in patients with severe PAH, was suppressed by systemic administration of 

BMP9.
127

 BMP9 administration also increased the expression of BMPR2 in these models in 

a SMAD-dependent manner. Although BMP9 has been shown to be a potent stimulus of 

ossification at high concentrations, no ossification was observed in animals treated with 

BMP9 daily for 4 weeks at the site of injection, either via the peritoneal or the intramuscular 

route.
141

 These studies raise the possibility that BMP9, BMP10, or their analogues might be 

promising candidates for novel therapies in patients with PAH. Potential approaches to 

restoring BMPR2 expression or function in PAH are summarized in Figure 2.

BMP signalling in HHT

HHT is a genetic autosomal dominant vascular disorder, with a prevalence of 1 in 5,000–

10,000 people worldwide.
56,151

 Clinical manifestations of HHT include spontaneous and 

recurrent epistaxis, telangiectasias of the lips, hands, and nasal and oral mucosa, and the 

development of arteriovenous malfomations in visceral organs, in particular the lung, brain, 

and liver.
152

 These presentations suggest that HHT predominantly involves vascular cells, 

although a contribution of dysfunctional mononuclear cells cannot be excluded. Different 

subtypes of HHT have been recognized based on their underlying mutation. HHT-1 and 

HHT-2 are caused by mutations in ENG
153,154

 and ACVRL1,
155–157

 respectively, and 

together represent 80% of all cases of HHT. Juvenile polyposis-HTT (JP-HHT) refers to a 

group of patients with HHT displaying a mutation in SMAD4 and features of JP, such as the 
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development of benign polyps.
158159

 Recently, mutations in BMP9 have been associated 

with a syndrome resembling HHT. These patients develop noose bleads and dermal 

telangiactesia although not limited to the hands, face, and mouth, typically found in HHT.
160 

Furthermore, impaired BMP signaling is also central in PPH and several families have been 

identified have both pathologies.
158

 The tortuous and fragile HHT vessels, caused by 

abnormal endothelial cell proliferation and aberrant recruitment of perivascular cells, can be 

linked to impaired BMP9 and BMP10 signalling.
3,16

 Since BMP9 and BMP10 are present in 

the circulation, bind to ALK1 and endoglin with high affinity, and are highly expressed in 

endothelial cells, dysfunctional BMP signalling is likely to be central to HHT pathology.

Given that the BMP9/ALK1/endoglin pathway suppresses VEGF expression and inhibits 

angiogenesis, patients with HHT exhibit elevated levels of VEGF and dysregulated 

angiogenesis. Accordingly, inhibition of VEGF with anti-VEGF-A antibody attenuated the 

vascular dysplasia in a heterozygous ACVRL1+/− mouse model of HHT2.
19,161,162 

Furthermore, treatment of HHT1 mice with thalidomide
163

 and HHT2 mice with an anti-

VEGF-A antibody
164

 stabilized vascular sprouts and reduced arteriovenous malformation 

expansion, respectively. Given these positive in vivo findings, anti-angiogenic agents are 

currently being tested in clinical trials as therapy for HHT.
165–169

 The first reports show that 

treating HHT patients with severe liver vascular malformations with the anti-VEGF antibody 

Bevacizumab decreased recurrent noose bleedings and cardiac index.
169,170

Park and colleagues
171

 demonstrated that a homozygous deletion of both ACVRL1 alleles 

was by itself insufficient to recapitulate the formation of arteriovenous malformations in a 

mouse model for HHT2, but required an additional local wound injury. The formation of the 

telangiectasia and arteriovenous malformations in this mouse model also required the 

complete loss of ACVRL1 expression in endothelial cells. Depletion of ALK1 expression in 

endothelial cells results in increased angiogenesis, which is characterized by faster 

migration, increased sprouting, and resistance to BMP9-induced inhibition of 

angiogenesis.
19

 To date, loss of heterozygosity or epigenetic modification of endoglin have 

not been reported in HHT1, suggesting that the additional insult required for the disease 

phenotype to manifest is not a second genetic event at this locus.

Atherosclerosis and vascular calcification

BMP ligands have been detected in arteries from patients with advanced atherosclerosis 

associated with vascular calcification.
172

 The role of BMP signalling in atherogenesis has 

been explored using a variety of BMP signalling inhibitors. Saeed and colleagues showed 

that administration of LDN-193189 could reduce vascular inflammation and inhibit the 

development of atherosclerosis in APOE−/− mice.
173

 Subsequently, Derwall and colleagues 

demonstrated that both LDN-193189 and ALK3-Fc could inhibit atherogenesis in LDL 

receptor-deficient (LDLr−/−) mice fed a Western diet.
31

 Moreover, they found that 

LDN-193189 reduces the vascular calcification seen in LDLr−/− mice with advanced 

atherosclerosis.

In vitro and in vivo studies suggest that there are many potential mechanisms by which BMP 

signalling can promote atherogenesis and, perhaps, secondary vascular calcification. These 

mechanisms include BMP-mediated endothelial cell activation
174

 and reactive oxygen 
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species generation
31

. A compelling potential anti-inflammatory mechanism for the anti-

atherogenic effects of LDN-193189 was proposed by Saeed and coworkers,
173

 following 

observations that BMP inhibition modified iron-loading in macrophages.
175

 They also 

reported that LDN-193189 reduced hepatic hepcidin expression, increased ferroportin 

expression in peritoneal macrophages, and reduced macrophage iron levels and hydrogen 

peroxide production. Furthermore, peritoneal macrophages from mice treated with 

LDN-193189 showed enhanced gene expression of ABCA1 and ABCG1, two cholesterol 

efflux transporters, associated with an increased ability to export cholesterol. All the effects 

of in vivo treatment with LDN-193189 on peritoneal macrophage function could be reversed 

by ex vivo administration with hepcidin to induce ferroportin degradation.
173

 Together, these 

observations suggest that inhibiting BMP signalling can modulate macrophage phenotypes 

by altering hepcidin–ferroportin signalling and intracellular iron levels. Whether BMP 

inhibition modulates macrophage function in atherosclerotic vessels via hepcidin–

ferroportin signaling remains to be determined.

BMP signalling in myocardial remodelling

BMP4 expression can be acutely or chronically elevated in pressure overload-induced 

pathogical hypertrophy; importantly, an increase in BMP4 expression is not observed in 

exercise-induced physiologic hypertrophy.
29,176,177

 BMP4 expression is similarly 

upregulated in acute infarction and ischaemia-reperfusion injury, as well as in chronic 

ischaemic heart disease
28,29

. BMP4-induced hypertrophy in isolated cardiomyocytes can be 

inhibited upon treatment with BMP inhibitors noggin, dorsomorphin, or DMH1,
28,177

 or 

interestingly, antagonized by the co-administration of BMP2.
110

 The direct effect of BMP4 

signalling on the development of cardiac hypertrophy was demonstrated in in vivo studies 

showing that pressure overload-induced left ventricular hypertrophy
177

 and cardiac 

ischemia-reperfusion injury,
28

 were attenuated using BMP inhibitors or in BMP4-deficient 

animals, respectively.

The expression of endoglin is elevated in both failing human hearts and in mice with 

pressure overload-induced heart failure.
178

 Both endoglin heterozygosity as well as the 

expression of a soluble form of endoglin limited cardiac fibrosis and improved survival in an 

experimental model of left ventricular pressure overload.
178

 In follow-up studies, 

haploinsufficiency of endoglin, and inhibition of endoglin in the myocardium using a 

specific neutralizing antibody limited calcineurin activation in pressure overload-induced 

right heart failure, limited myofibroblast transformation and cardiac fibrosis, and improved 

survival.
179

 These findings were attributed to the ability of endoglin to modulate TGF-β 

signalling. Since soluble endoglin selectively binds to and inhibits BMP9 and BMP10 to 

exert antiangiogenic effects in vivo,
180

 the reduction in cardiac fibrosis as a result of 

treatment with soluble endoglin or endoglin-neutralizing antibody might also result from 

attenuated signalling of those ligands or their downstream effects. However, BMP10 has also 

been reported to reduce cardiac fibrosis and improve cardiac function following 

experimental myocardial infarction in mice.
111
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Anaemia of Inflammation

Anaemia of chronic disease, or anaemia of inflammation, deserves special consideration in 

this discussion of cardiovascular disease for several reasons. The reduction in oxygen-

carrying capacity associated with anaemia is an important exacerbating factor in 

cardiovascular disease, aggravating symptoms of hypoxic lung and pulmonary vascular 

disease, heart failure, as well as coronary and systemic atherosclerotic disease. In moderate 

to severe states, all of these conditions can be linked to a clinically relevant degree of anemia 

that is caused by a disease-associated systemic inflammatory state, through a mechanism 

that is BMP-dependent. BMP signal transduction regulates the expression of hepcidin, the 

central hormonal regulator of iron metabolism.
181

 Ferroportin, is the sole molecule 

responsible for exporting iron from intracellular stores within intestinal epithelial cells, 

hepatocytes, and macrophages into the circulation.
182

 Ferroportin is targeted for 

internalization and degradation by hepcidin to reduce circulating iron levels. Hepcidin 

synthesis in the liver is regulated by BMP6, numerous inflammatory stimuli including IL-6, 

as well as increased iron levels themselves (Figure 1).

The important role of BMP signaling in the regulation of hepcidin expression was identified 

by Babitt and colleagues, who observed that haemojuvelin, a protein defective in severe 

forms of haemochromatosis, is a BMP co-receptor and that soluble haemojuvelin could 

inhibit the ability of BMP ligands to induce hepatocyte hepcidin gene expression.
181 

Moreover, these investigators observed that soluble haemojuvelin prevents the induction of 

hepcidin gene expression by IL-6, suggesting that inhibition of BMP signalling could be 

used to treat anaemia of inflammation. The role of BMP signal transduction in the regulation 

of iron transport and potentially anaemia of chronic disease was subsequently confirmed by 

the use of BMP inhibitor dorsomorphin to reduce hepcidin gene expression and increase 

serum iron levels in zebrafish and mice.
48

Anaemia of inflammation is attributable to a reduction in red blood cell production by the 

bone marrow owing to reduced systemic iron bioavailability, yet frequently occurs in healthy 

individuals with an iron replete diet. Several factors contribute to reduced red blood cell 

production including: sequestration of iron in macrophages leading to a reduction in plasma 

iron levels; reduced absorption of iron from the duodenum; impaired erythropoiesis despite 

an increase in erythropoietin levels; and in some cases, a reduction of red blood cell life-

span.
183,184

 Anaemia of inflammation is associated with a wide variety of disorders 

including infection, chronic kidney disease, cancer, connective tissue diseases such as 

rheumatoid arthritis and systemic lupus erythematosus, inflammatory bowel disease, and 

congestive heart failure. All of these disorders share acute or chronic immune activation 

pathways leading to the production of inflammatory cytokines, including IL-6. Although 

haemoglobin levels are generally only moderately reduced in anaemia of chronic disease, 

the decreased oxygen delivery associated with this condition is sufficient to exacerbate 

symptoms in patients with cardiovascular comorbidities.
185

 Treatment in these individuals is 

directed towards alleviating symptoms such as angina, fatigue, or functional limitation.

Steinbicker and colleagues assessed whether inhibiting BMP signalling could prevent the 

induction of hepatic hepcidin gene expression by IL-6.
186

 Intraperitoneal injection of 

LDN-193189 or a soluble ALK3 receptor inhibited IL-6’s ability to increase hepatic 
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hepcidin mRNA levels. This group and others subsequently showed that administration of 

LDN-193189, or a BMP ligand trap using recombinant haemojuvelin expressed as an IgG-

Fc domain fusion protein could prevent and reverse established anaemia in several rodent 

models of anaemia of chronic disease.
186,187

 Mayeur and colleagues subsequently showed 

that oral administration of LDN-193189 was sufficient to prevent anaemia in this model of 

chronic inflammation.
188

 Taken together, these observations suggest that inhibiting BMP 

signalling might represent a novel and practical therapeutic target for treating anemia of 

chronic disease.

Conclusion

Human genetic studies have revealed major, previously unsuspected roles for the BMP 

family of ligands and receptors in cardiovascular disease and iron homeostasis. The large 

BMP family of ligands, receptors, ligand traps, and cell surface modifiers of signalling 

suggests a finely regulated pathway with complex interactions. Nevertheless, meticulous 

dissection of the BMP pathway over the last 15 years has led to a greater understanding of 

the cell-specific nature of signalling and has revealed potential opportunities for therapeutic 

intervention. In particular, restoration of BMPRII receptor expression or function, and the 

use of selective ligands such as BMP9 and BMP10 have shown promise for PAH. By 

contrast, small molecule inhibition of other BMPs and their receptors might provide novel 

opportunities in conditions as diverse as atherosclerosis and anaemia. The next few years 

will determine whether this intriguing family of bone forming proteins can be exploited 

safely for the treatment of cardiovascular disease.
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Key Points

• Bone morphogenetic proteins (BMPs) play important roles in cardiovascular 

growth, homeostasis, and disease development

• The wide repertoire of BMP ligands and receptors, coupled with numerous 

modifiers of BMP signaling, confer marked tissue- and cell-specific responses to 

BMPs

• Understanding the context-specific nature of BMP signalling can help guide the 

development of novel therapeutics to treatment cardiovascular disease and 

anaemia

• Small molecule inhibition of BMP signalling is efficacious in preclinical models 

of atherosclerosis, vascular calcification, and anaemia

• Enhancement of BMP receptor-II (BMPR-II) signalling by increasing cell 

surface levels of BMPR-II or by endothelial-selective BMPR-II agonists such as 

BMP9 show promise in preclinical models of pulmonary arterial hypertension
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Figure 1. The repertoire of receptor complexes and ligands involved in cardiovascular and 
related metabolic responses to BMP signalling
A variety of BMP ligands (BMP6, BMP9, and BMP10) are present in the circulation at 

biologically active concentrations. Endothelial cells (EC), vascular smooth muscle cells 

(SMC), and adventitial myofibroblast cells (AC) express receptors, co-receptors, and 

antagonists in a tissue-specific manner to permit complementarity and precise regulation of 

signalling. Congenital vascular syndromes are shown in red to depict the loss-of-function of 

several of these signalling molecules, resulting in human hereditary telangiectasia (HHT) 

syndromes HHT1, HHT2, HHT5, and heritable pulmonary arterial hypertension (HPAH). 

Positive regulatory effects downstream of BMP signalling are depicted by green arrows, 

whereas negative effects are depicted with red arrows. Hepatocytes respond to BMP6 

signaling to express hepcidin, which subsequently downregulates expression of ferroportin 

(FPN) to increase the retention of Fe+2 in macrophages (MΦ) and duodenal enterocytes, 

consequently enhancing macrophage activation and reducing serum iron. This activity 

contributes to iron-deficiency anaemia associated with chronic inflammatory states, and 

potentiates the activity of macrophages and foam cells in atherosclerosis. While BMP9 

signalling appears to be protective in endothelial cells, signalling by BMP2, BMP4, and 

BMP6 appear to be osteogenic and pro-atherogenic in SMC and EC, acting downstream of 

atherogenic stimuli including oxidized LDL (oxLDL) via the induction of reactive oxygen 

species to promote atherosclerosis and vascular calcification. Abbreviations:
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Figure 2. Potential approaches to target and enhance signalling or expression of BMPRII
BMPRII cell surface expression can be increased by endothelial gene therapy targeted to the 

pulmonary circulation. This increase in BMPRII can be achieved using small molecules that 

increase translational read through of BMPRII mutations encoding premature termination 

codons, and chemical chaperones that increase trafficking of BMPRII misfolded mutations 

that are held up within the endoplasmic reticulum. In addition, BMPRII signalling can be 

restored by ligands (BMP9 and BMP10) that target the BMPRII/ALK1 receptor complex on 

endothelial cells, and agents that enhance downstream SMAD phosphorylation, such as 

tacrolimus, sildenafil, and prostanoids. Finally, inhibition of BMPRII turnover by the 

lysosome, using agents such as hydroxychloroquine, can enhance cell surface expression of 

BMPRII protein. Abbreviations:
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Table 1

BMP ligand expression in cardiovascular biology

Ligand Source Activity Target(s) Receptor Complementarity Effector(s)

Type II Type
I

Type
III

BMP2/4 EC, SMC
Cardiomyocytes

Autocrine
Paracrine

EC, SMC
Cardiomyocytes

BMPRII
ACTRIIA

ALK3
ALK2
ALK6

SMAD1/5/8

BMP6 Hepatocytes Autocrine
Paracrine
Endocrine

Hepatocytes
EC, SMC

BMPRII
ACTRIIA

ALK3
ALK2

Hjv SMAD1/5/8

BMP9 Hepatocytes
EC

Endocrine
Autocrine

EC
EC

BMPRII
ACTRIIA

ALK1
ALK2

Endoglin SMAD1/5/8
SMAD2/3

BMP10 Cardiomyocytes Autocrine
Endocrine

Cardiomyocytes
EC

BMPRII
ACTRIIA

ALK1
ALK2

Endoglin SMAD1/5/8
SMAD2/3
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Table 2

Cardiovascular phenotypes of BMP mutant models

Gene/Protein Mutation Tissue Phenotype Analogous
human
syndrome

Bmpr2/
BMPRII

Null Global Embryonal lethality due to

gastrulation defect
189

Heterozygous Global Mild susceptibility to PAH
190

Pre-clinical
HPAH

N-terminal
exon 2
deletion

Global Outflow tract and septation

defects
191

 and susceptibility

to hypoxic PAH
192

Congenital heart
disease with

PAH
193

Dominant
negative
transgene

Smooth
muscle

PAH and pulmonary

vascular remodelling
130

HPAH
121,194

R899X
(premature
truncation)

Smooth
muscle or
global

PAH and pulmonary

vascular lesions
195,196

HPAH
121,194

Acvrl1/
Alk1

Null Global Midgestational lethality due
to cavernous vessel defects,
arterial dilation, smooth
muscle recruitment defects
155,156

Heterozygous Global Arteriovenous
malformations with HHT-

like features
155,197

HHT-2
198

 with
or without PAH
199

Endoglin Null Global Embryonal lethality at
E10.5 due to yolk-sac

angiogenesis defect
154200

Heterozygous Global Protection against RV
hypertrophy in RV pressure

overload
178,179

HHT-1
201

BMP9 Null Global Viable with abnormal
lymphatic development and

drainage
202

HHT-5
160

BMP10 Null Global Embryonal lethality with
diminished cardiomyocyte

proliferation
96

BMP6 Null Global Massive iron overload due
to defective hepcidin

expression
203

Hemochromatosis due to
mutations at
other loci

BMP2 Null Global Embryonic lethality with
defects in extra-embryonic

and cardiac development
204

BMP4 Null Myocardium Defects in atrioventricular

septation
205

Atrioventricular
canal defect

Alk2 Null Endocardial cells Defects in atrioventricular

septa and valves
95

Congenital septal
and valvular
defects

Bmpr1a/
Alk3

Null Global Early embryonal lethality

(E7.5)
206

Null Smooth
muscle

Cardiac structural and
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Gene/Protein Mutation Tissue Phenotype Analogous
human
syndrome

vasculogenesis defect
207

Heterozygous
or Null

Patchy
smooth
muscle

Decreased susceptibility to
hypoxic PAH and increased
proximal pulmonary arterial

stiffness
208,209

Familial juvenile

polyposis
210,211

Bmpr1b/
Alk6

Null Global Chondrogenesis defects
212 Associated

mutations in
pediatric PAH
213
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Table 3

Cardiovascular disease models probed with BMP inhibitors

Inhibitor Model Route Impact Application

Dorsomorphin TNF-α
induced
vascular

inflammation in mice
214

Systemic Inhibited leukocyte
adhesion following
challenge with TNF-α

Vascular
inflammation

Dorsomorphinand
LDN-
193189

Zebrafish

vasculogenesis
215

Embryonal
(24 hpf)

Dorsalization without
intersomitic vessel
disruption using selective
inhibitor LDN-193189

LDN-
193189

Subtotal
nephrectomy model in

mice
216

Systemic Attenuation of chronic
kidney disease induced
endothelial dysfunction
and smooth muscle
osteogenic differentiation

Chronic kidney
disease and
associated
vascular
calcification

LDN-
193189 and
ALK3-Fc

LDLr-
deficient

hyperlipidemic mice
31

Systemic Attenuation of vascular
calcification, vascular
inflammation, and
atherosclerosis

Atherosclerosis
and vascular
calcification

LDN-
193189 and
ALK3-Fc

MGP-
deficient

mice
30

Systemic Attenuated vascular
calcification and improved
survival

Vascular medial
(Monckeberg’s)
calcification

LDN-
193189

ApoE-
deficient

hyperlipidemic mice
173

Systemic Reduced foam cell
formation, atherosclerotic
plaque formation, and
vascular inflammation via
inhibition of hepcidin to
reduce macrophage iron
stores

Atherosclerosis
and vascular
inflammation

Anti-ALK1 In vitro
endothelial
cell

sprouting
217

In vitro Inhibited in vitro
angiogenic activity in a
VEGF-independent
manner

Solid tumour
angiogenesis

sEng-Fc Angiogenesis and
tumour
xenograft

vascularization
180

Systemic Inhibited tumor xenograft
vascularization in a BMP9
and BMP10-dependent
manner

Solid tumour
angiogenesis

ALK1-Fc Angiogenesis and
tumour
xenograft

vascularization
56

Systemic Inhibited tumour
xenograft vascularization

Solid tumour
angiogenesis

LDN-
193189 and
HJV-Fc

Rats with
anemia of
chronic

disease
187

Systemic Blockade of BMP
signalling mobilized iron
from reticuloendothelial
cells and reversed anemia

Anaemia of
chronic disease

LDN-
193189 and
ALK3-Fc

Mice with
anemia of
chronic

disease
186

Systemic Blockade of BMP
signalling restores iron
bioavailability, decreases
hepcidin, prevents
development of anemia,
and reverses established
anemia due to chronic
inflammation

Anemia of
chronic disease

LDN-
193189

Wild-type

mice
188

Oral Oral administration of
BMP inhibitor prevents
anaemia associated with
inflammation

Anemia of
chronic disease
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