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Abstract

Peripheral artery disease (PAD) produces significant disability attributable to lower extremity 

ischemia. Limited treatment modalities exist to ameliorate clinical symptoms in patients with 

PAD. Growing evidence links microRNAs to key processes that govern disease expression in PAD 

including angiogenesis, endothelial function, inflammation, vascular regeneration, vascular 

smooth muscle cell function, restenosis, and mitochondrial function. MicroRNAs have been 

identified in circulation and may serve as novel biomarkers in PAD. This article reviews the 

potential contribution of microRNA to key pathways of disease development in PAD that may lead 

to microRNA-based diagnostic and therapeutic approaches.
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There is a rising worldwide prevalence of disability attributable to peripheral artery disease 

(PAD).[1,2] Lower extremity ischemia in PAD causes suffering and functional impairment.

[3] Cardiovascular complications of systemic atherosclerosis are markedly increased in PAD 

and persist despite available treatments.[4,5] In addition, the majority of patients with PAD 

remain undiagnosed and undertreated.[6] New methods for detecting PAD along with an 

improved understanding of the mechanisms driving vascular injury are critical to develop 

innovative strategies for prevention and management.

Emerging evidence identifies microRNAs (miRNAs) as novel regulators of vascular biology.

[7] miRNAs are small, noncoding RNAs that interact with gene transcripts to repress 

expression.[8] Experimental work links miRNAs to key processes relevant to PAD including 

inflammation, angiogenesis, endothelial function, smooth muscle cell biology and restenosis 

(see Figure). Interestingly, miRNAs are present in circulating blood in humans and have 

potential as PAD disease biomarkers.[9] Endothelial-specific miRNAs may have specific 
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relevance in atherosclerotic disease. Modulation of miRNA levels represents a novel 

treatment approach for limb ischemia. The current review focuses on miRNA in the 

mechanisms of disease development in PAD that may provide opportunities for miRNA-

based therapies.

Determinants of Clinical Status in PAD

Atherosclerotic PAD involves the development of obstructive lesions in the arteries of the 

lower extremities. Patients with PAD have even higher cardiovascular event rates than 

patients with established coronary artery disease (CAD) that persist with aggressive risk 

factor control.[4] Epidemiologic evidence indicates that the relative impact of traditional risk 

factors differs between PAD and CAD.[10,11] In addition, prior studies report a stronger 

association of selected inflammatory markers with PAD as compared to CAD.[12,13] These 

findings substantiate the premise that the pathophysiology of PAD has distinctions from 

CAD. Thus, the miRNA signature and treatment approach may be different in PAD.

The determinants of clinical status and prognosis in PAD are complex. Classically, lower 

extremity symptoms have been attributed to fixed obstruction to flow. However, the severity 

of arterial obstruction is an incomplete predictor of clinical symptoms.[14–16] Vascular 

dysfunction may accelerate the clinical expression and progression of PAD.[17,18] 

Experimental studies suggest that endothelial-expressed miRNA have particular importance 

in vascular processes relevant to PAD.

MicroRNA in Vascular Function

miRNAs are small RNAs that regulate gene expression and direct vascular biology. Initially 

transcribed as long primary miRNAs, sequential processing by the enzymes Drosha and 

Dicer produces mature ≈22 nucleotide miRNAs. miRNA binding to the 3′ untranslated 

region of messenger RNA (mRNA) alters protein expression through translational repression 

or mRNA transcript degradation.[19] Individual miRNA may associate with functionally-

related transcripts thereby governing complex processes in a coordinated fashion. There is 

considerable interest in miRNAs as therapeutic targets in vascular diseases as a single 

miRNA has the potential to influence entire gene networks.[8]

The broad role of miRNAs in vascular biology was established by studies examining genetic 

disruption of the processing enzyme, Dicer. Genetic disruption of Dicer impairs blood vessel 

formation leading to embryonic lethality in mice.[20] In cultured endothelial cells, silencing 

Dicer had marked effects on gene expression and functional properties. [21–23] In a mouse 

model, endothelial-targeted Dicer deletion reduced growth factor-mediated angiogenic 

responses confirming the importance of miRNAs to endothelial control of vascular growth.

[24] Specific miRNAs demonstrate higher expression in endothelial cells.[25] Collectively, 

these findings indicate that miRNAs influence endothelial functions important to PAD.

MicroRNA in the Angiogenic Response to Limb Ischemia

An inadequate angiogenic response to lower extremity ischemia contributes to symptom 

manifestation in PAD patients. Growing evidence from animal models of limb ischemia 
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confirms the physiological role of miRNAs in angiogenesis. Conditional inactivation of 

Dicer in the endothelium impairs capillary growth and blood flow recovery after femoral 

artery disruption.[24] Dicer knockdown reduced expression of endothelial specific miRNAs 

and altered expression of proteins in the vascular endothelial growth factor (VEGF) 

signaling pathways including VEGF receptor 2 and Tie-1.[21] Further, vascular endothelial 

growth factor regulates expression levels of angiogenesis-related miRNAs in endothelial 

cells.[24]

More recent work has identified many specific miRNAs that modify the vascular growth 

response to limb ischemia (see Table 1). The endothelial expressed miRNA, miR-92a, is 

induced by ischemia and blocks blood vessel growth.[26] Inhibition of miR-92a enhanced 

neovascularization, reduced tissue necrosis and increased blood flow in a mouse model of 

limb ischemia.[26] Several proteins that facilitate angiogenesis including the integrin subunit 

alpha 5 and endothelial nitric oxide synthase are potential miR-92a targets. Similarly, 

miR-100 is suppressed by hindlimb ischemia and represses angiogenesis through 

mammalian target of rapamycin (mTOR).[27] Endothelial-selective overexpression of the 

anti-angiogenic miR-15a diminished leg perfusion recovery and capillary density in 

response to limb ischemia.[28]

Patients with diabetes have worse outcomes in PAD with a higher risk of limb loss reflective 

in part of limited angiogenic response.[29] A recent study provided evidence that microRNA 

are a novel mechanism for dysfunctional angiogenesis in diabetes.[30] MicroRNA analysis 

of endothelial cells exposed to high glucose demonstrated elevated miRNA-503. 

Overexpression of miRNA attenuated endothelial proliferation, migration and tube 

formation consistent with reduced angiogenic potential. In diabetic mice, delivery of a 

mir-503 inhibitory decoy restored the blood flow recovery response to hindlimb ischemia. 

The significance to clinical PAD was corroborated by the observation of higher miRNA-503 

levels in the skeletal muscle of diabetic patients with critical limb ischemia, compared to 

controls. It should be noted that the sample size in the clinical portion of the study was small 

that limited the ability to control for potential confounders including diabetes and smoking. 

Taken together, these findings suggest that antagonism of miRNA-503 has therapeutic 

potential to improve limb ischemia in patients with diabetes.

Individual miRNAs may also facilitate angiogenesis. In limb ischemia models, injection of 

an antagomir that silenced the endothelial miR-126 reduced capillary growth though overall 

blood flow recovery was similar suggesting that compensatory mechanisms may exist to 

limit the effect of loss of a single miRNA.[31] The pro-angiogenic properties of miR-126 are 

mediated by targeting SPRED1 and PIK3R2, endogenous inhibitors of VEGF signaling.

[32,33]

MicroRNA in the Regulation of Endothelial Function

In addition to participating in the control of angiogenesis, vascular miRNAs influence 

aspects of endothelial function critical to PAD. Recent investigations have characterized 

miRNAs that alter endothelial phenotype to affect atherogenic potential. Interestingly, global 

reduction of miRNAs through Dicer silencing increased eNOS expression and nitric oxide 
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bioavailability in cultured endothelial cells.[21] Thus, miRNAs serve as endogenous 

suppressors of eNOS levels suggesting that targeting specific miRNAs may enhance nitric 

oxide production. Subsequent work showed that miR-92a antagonism improved endothelial 

nitric oxide signaling, improved nitric oxide bioavailability, and increased flow-mediated 

dilation in cell culture and animal models.[26] [34] Further studies are needed to evaluate 

the relation of miRNA levels and nitric-oxide mediated endothelial function in patients with 

PAD.

Developing evidence links miRNAs to the endothelial response to flow. Local shear stress 

patterns modify endothelial biology in part through altered gene expression levels.[35] 

Laminar flow maintains endothelial health, whereas disturbed flow produces an adverse, 

pro-inflammatory endothelial state.[36] Multiple studies have demonstrated changes in 

miRNA expression with endothelial cell exposure to varying shear stress patterns.[37] 

Arterial regions exposed to pro-atherogenic flow display distinct miRNA expression 

profiles.[38,39]

Flow-sensitive miRNAs have also been studied in hindlimb ischemia reinforcing a potential 

connection to PAD. In endothelial cells, flow patterns induce differential expression of 

miR-92a with increased levels with oscillatory compared to pulsatile shear.[34] 

Complementary findings from porcine aorta showed higher miR-92a levels in regions 

exposed to flow turbulence.[39] Conversion from atheroprotective to atheroprone gene 

expression by oscillatory shear was mediated by a post-transcriptional reduction in kruppel-

like factor (KLF) 2 and 4 levels through miR-92a.[34,39] miR-92a inhibition also prevented 

tumor necrosis factor alpha-mediated endothelial inflammatory activation by augmenting 

KLF4 levels.[39] A study in zebrafish embryos suggested flow-induced modulation of 

miR-126; however, miR-126 was not upregulated by laminar flow in cultured human 

endothelial cells.[40,41] miR-126 does appear to moderate endothelial inflammation by 

reducing vascular cell adhesion molecule-1 expression and decreasing leukocyte adherence.

[42]

Additional miRNAs have been characterized that impact flow-dependent vascular 

inflammation. The amount of miR-10a is diminished in abnormal flow areas. In endothelial 

cells, mir-10a has anti-inflammatory properties by reducing expression of nuclear factor 

kappa B activators.[38] Conversely, oscillatory shear stress stimulates pro-inflammatory 

miR-663 and upregulates inflammatory gene expression and enhances leukocyte adhesion to 

endothelial cells.[43] Separate reports showed higher miR-21 levels with both oscillatory 

shear and laminar shear.[44,45] miR-21 exerts diverse endothelial effects by decreasing 

peroxisome proliferators-activated receptor-α expression and promoting adhesion molecule 

expression. However, beneficial effects have also been shown with miR-21 overexpression 

with reduction of PTEN, an inhibitor of eNOS activation, and increased nitric oxide activity.

[45] Overexpression of miR-181b blunted endothelial inflammatory activation by 

suppressing importin-α3, a facilitator of NFκB activation.[46] Additional work will be 

required to determine whether the vascular inflammation present in PAD can be mitigated by 

microRNA-based therapies.[47]
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MicroRNA and Vascular Reparative Function

Considerable enthusiasm exists for the prospects of employing cell-based interventions to 

facilitate vascular growth in PAD. The isolation of bone-marrow derived progenitor cells that 

promote neovascularization has prompted the development of investigational therapeutic 

strategies for advanced vascular disease. [48] Results from early clinical studies in patients 

with PAD have revealed modest benefits; however, multiple impediments persist that limit 

clinical efficacy. There is accumulating support for the role of miRNAs in optimizing stem 

cell function.[49] Investigations using Dicer reduction established that miRNAs are an 

essential component of stem cell maintenance and differentiation.[50,51] A recent study in 

cardiomyocytes detected a set of miRNAs that stimulated cell proliferation and cardiac 

regeneration following myocardial infarction.[52] These findings provide support for the 

concept that miRNA administration may bolster functional recovery produced by stem cells.

miRNAs have been detected that contribute to pluripotency, vascular differentiation, and 

adult progenitor cell function. [49,53,54] The transformation of embryonic stem cells to 

endothelial cells is accompanied by changes in miRNA levels relevant to angiogenesis 

including higher (miR-126, miR-210, let-7, mir-130a, miR-133, and miR-196) and lower 

(miR-20a, miR-20b, miR-221, and miR-222) expression.[55,56] In an animal model, genetic 

augmentation of embryonic stem cells to increase miRNAs critical to endothelial cell 

differentiation (miR-99b, miR-181a, miR-181b) improved blood flow recovery from 

hindlimb ischemia.[57]

Circulating pro-angiogenic endothelial progenitor cells have the capacity to foster vascular 

repair.[58] It has been proposed that in disease states, progenitor cell scarcity and 

dysfunction impair vascular regeneration.[59] In patients with coronary artery disease, 

endothelial progenitor cells showed differential expression of miRNAs related to 

angiogenesis, a phenotype that was reversed with statin therapy.[60] In patients with 

diabetes, endothelial progenitor cells displayed lower miR-126 expression that was 

associated with impaired angiogenic function.[61] A recent study demonstrated higher 

expression of miRNA-15a and 16 in endothelial progenitor cells from patients with critical 

limb ischemia.[62] These miRNAs reduced VEGF expression and alteration of endothelial 

progenitor cells to reduce the levels of miRNA-15a and 16 improved hindlimb blood flow 

recovery in a murine model. Together, the current evidence suggests that miRNA 

manipulation may be an approach to enhance cell-based therapies for PAD.

MicroRNA in the Development of Restenosis

In the past decade, the use of endovascular therapies to treat advance PAD has risen 

dramatically.[63] However, the efficacy of lower extremity revascularization is limited by the 

high rate of restenosis.[64] In vitro studies have identified miRNAs which regulate vascular 

SMC de-differentiation and processes relevant to myointimal hyperplasia.[65] Studies in 

animal models also demonstrate miRNA-dependent regulation of neointimal lesion 

formation.[66] Following carotid balloon injury in rats, expression profiling detects 

deviation in the vascular wall levels of multiple microRNAs.[67]
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Endothelial damage with angioplasty depresses expression of miR-143 and 145, key 

supervisors of vascular smooth muscle cell phenotype.[67–69] Overexpression of miR-145 

inhibits lesion formation and vascular smooth muscle proliferation.[70–72] Genetic models 

with miR-143/145 knockout mice have yielded complex information about neointimal 

growth. One study showed that young mice lacking miR-143/145 spontaneously develop 

femoral artery proliferative lesions.[69] Another report demonstrated limited neointimal 

growth to carotid artery injury in miR-143/145 depleted mice.[70] It may be that the proper 

regulation of miR-143/145 levels is required to stabilize downstream gene expression and 

prevent an aberrant injury response. Downstream targets of miR-143 and 145 that shift 

vascular smooth cell phenotype include KLF4, KLF5, platelet derived growth factor 

receptor, and angiotensin-converting enzyme.[68,69,71,73,74] Smooth muscle calcification 

is induced by bone morphogenetic protein-2 (BMP-2) downregulation of miR-30b and 30c, 

which increases Runx2 expression.[75]

Arterial injury also elevates levels of selected vascular smooth cell microRNAs. 

Angioplasty-induced vessel damage resulted in an increase in miR-21 levels in rats.[67] 

Depletion of miR-21 constrained the development of restenotic lesions along with lower 

vascular smooth muscle cell proliferation in both carotid and iliac artery models.[67,76] 

Fibroblast proliferation is also activated by miR-21 through programmed cell death 4/JNK 

pathway.[76] In vascular smooth muscle cells, the proliferative actions of miR-21 are 

mediated through PTEN and Bcl-2.[67,77] In patients with thromboangiitis obliterans, a 

non-atherosclerotic peripheral vascular disease, arterial miR-21 levels were increased and 

shown to modulate smooth muscle proliferation by targeting tropomyosin 1.[78] The 

number of samples in the clinical study was relatively small precluding any adjustment for 

potential confounders; thus a larger study will be necessary to replicate these findings. In a 

comparable fashion, angioplasty injury produces greater miR-221 and 222 expression.[79] 

Reduction of miR-221 and 222 interfered with vascular smooth muscle proliferation and 

neointimal hyperplasia through suppression of p27(Kip1) and p57 (Kip2). It is possible that 

derangements of miRNA expression translate to restenosis in PAD patients and could be 

manipulated by therapeutic inteventions.

MicroRNA and Mitochondrial Function

There is growing appreciation that peripheral artery disease produces skeletal muscle 

abnormalities characterized by mitochondrial dysfunction.[80,81] Abnormal muscle 

energetics combined with ischemia and endothelial dysfunction may amplify functional 

limitations in PAD.[82] Increasing experimental data associate miRNA with mitochondrial 

biology in muscle and the vasculature.[83] In skeletal muscle, limb ischemia induces 

differences in a set of miRNAs in mice.[84] Recent work shows detectable miRNA in the 

mitochondria that regulate energetics.[85,86]

Ischemia drives changes in miRNA expression relevant to mitochondrial function.[87] 

Multiple lines of evidence indicate that miR-210 is an integral regulator of the response to 

hypoxia.[88] miR-210 expression is stimulated in hypoxic conditions, in part, through 

HIF1α and suppresses mitochondrial respiration and reactive oxygen species generation.

[89,90] MiR-210 expression, in the setting of hypoxia, augments the angiogenic response to 
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VEGF by suppressing Ephrin-A3 expression.[91] Additional studies show that ischemia 

generates a transition to greater mitochondrial fragmentation and apoptosis. Ischemic 

conditions decrease miR-499 that promotes DRP-1 expression and increased mitochondrial 

fission.[92] In patients with diabetes, aberrant mitochondrial dynamics relates to endothelial 

dysfunction.[93]

Restoration of mitochondrial function is a proposed pathway underlying the dramatic 

benefits of exercise therapy in PAD patients.[3,94]In animal models, specific miRNA have 

been isolated that couple physical activity with mitochondrial biogenesis. Exercise 

intervention reduced the expression of miR-494, a microRNA that is stimulated by limb 

ischemia.[84,95] Through an interaction with mitochondrial transcription factor A, miR-494 

modulates mitochondrial content.[95] In a similar fashion, skeletal muscle levels of miR-696 

decreased with exercise training and increased with inactivity. [96] The amount of miR-696 

associated with proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α) 

expression and with mitochondrial number.[96] Notably, PGC-1α, a controller of 

mitochondrial biogenesis, also determines blood flow recovery from limb ischemia and 

exercise-induced angiogenesis.[97,98] Further studies are warranted to establish whether 

miRNAs contribute to mitochondrial dysfunction in patients with PAD.

Circulating MicroRNA in PAD

Recent investigations demonstrate detectable levels of circulating miRNAs that serve as 

novel biomarkers in cardiovascular disease.[9,99,100] Prior studies show elevation of 

cardiac-specific miRNAs following acute myocardial infarction.[101–103] In prospective 

studies, miRNA expression profiles in plasma predicted cardiovascular outcomes in patients 

with atherosclerotic disease.[104,105] Levels of multiple miRNAs known to be expressed in 

cultured endothelial cells were lower in CAD patients.[106] Importantly, changes in 

circulating miRNA expression differ in animal models of myocardial infarction as compared 

to limb ischemia.[103] Potential advantages of miRNAs as biomarkers include: the ability to 

use amplification techniques to detect low level expression; long-term stability in blood; 

and, most interestingly, the possibility of evaluating expression networks across multiple 

miRNAs to examine coordinated responses to disease.[107]

In patients with PAD, individual miRNAs have been shown to be differentially expressed in 

circulation (see Table 2). Many of the miRNAs that have been studied in PAD were selected 

based on the animal studies discussed above that demonstrate relevance to limb ischemia. In 

diabetic patients, there was an association of lower circulating miR-126 with lower ankle-

brachial index.[108] In patients with critical limb ischemia, levels of the anti-angiogenic 

miRs 15a and 16 were higher in serum and predicted the occurrence of amputation amongst 

diabetic individuals.[62] Similarly, plasma levels of miR-503 were higher in diabetic 

patients with critical limb ischemia.[30] In patients with thromboangiitis obliterans, 

circulating levels of miR-130, miR-27b, and miR-210 were increased.[109] Future studies 

are needed to perform a full profile of circulating miRNAs in a large cohort of PAD patients 

and controls.
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The source and biological function of circulating miRNA remain a subject of active 

investigation. Developing evidence suggests cells actively release miRNA into 

microvesicles, which protects them from degradation by endogenous RNAses.[32,110] 

miRNAs specifically expressed in endothelial cells are enriched in plasma suggesting 

endothelial injury as a source.[106] In addition, miRNAs can be delivered to target cells.

[111,112] Thus, there is the potential that the endothelium absorbs circulating miRNAs 

thereby regulating cell phenotype.[113,114] Transfer of microRNA from endothelial 

progenitor cell-derived circulating microvesicles improved perfusion recovery after hindlimb 

ischemia.[115] Platelets may also be an important determinant of circulating miRNA levels.

[116] The diagnostic and prognostic implications of miRNA profiles require further 

characterization in patients with PAD.

MicroRNA therapies in PAD

Treatments based on miRNA targets are an area of active investigation.[8] In principle, both 

stimulation of beneficial miRNA pathways and inhibition of adverse miRNAs could be 

employed to confer clinical benefit in PAD.[117,118] Administration of mimics of pro-

angiogenic miRNA or delivery with trophic expression vectors could promote 

neovascularization in PAD. The technology for opposing microRNA action systemically is 

further developed. Antimir development involves the creation of complementary 

oligonucleotides that reduce the levels of specific miRNAs. Multiple strategies permit 

adequate delivery and repression of miRNAs by antimirs including modification to increase 

binding capacity, avoid breakdown by nucleases, and enhance cell uptake, though novel 

tissue targeting modalities are sought. As described above, several strategies have been used 

successfully to promote vascular growth in animal models of hindlimb ischemia by 

antagonizing miRNAs known to be upregulated in ischemic tissue. Advantages of antimir 

therapies include the coordinated regulation of multiple gene targets by single miRNAs and 

the potential specificity of miRNA dysregulation to ischemic tissues. However, the fact that 

individual miRNAs have multiple targets also raises concern for off-target effects of 

antimirs. Additional approaches may be required to restrict the influence of antimirs to 

specific tissues or regions.

Conclusions

In summary, there is extensive support for intersections of miRNAs and vascular functions 

that determine clinical disease status in PAD. Individual miRNAs have been characterized 

that influence the lower extremity response to ischemia in animal models. Clinical studies in 

patients with PAD confirm alterations in vascular miRNAs in ischemic regions and in 

circulation. The translation of miRNA biology to the clinical arena for detection and 

management of clinical PAD holds significant promise.
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Figure 1. 
Potential Contributions of MicroRNAs to PAD. MicroRNAs (miR) have been identified that 

determine key processes relevant to disease manifestation in PAD including 

neoangiogenesis, endothelial shear stress response, endothelial function, restenosis, vascular 

regenerative capacity, and mitochondrial function.
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Table 1

MicroRNAs Relevant to Peripheral Artery Disease

MicroRNA Putative Target Putative Mechanism

miR-92a eNOS, integrin-α5
KLF2/4

Anti-angiogenic, Inhibit NO
Pro-inflammatory

miR-100 mTOR Anti-angiogenic

miR-503 Cell cycle regulators Anti-angiogenic

miR-126 SPRED1/PIK3R2/VEGF
VCAM1

Pro-angiogenic, EPC function
Anti-inflammatory

miR-10a NFκB Anti-inflammatory

miR-663 KLF4, ATF6 Pro-inflammatory

miR-21 PPARα
PTEN
PCD4/JNK
PTEN/BC12

Pro-inflammatory
Increase NO
Restenosis
SMC Proliferation

miR-181b Importin-α3 Anti-inflammatory

miR-15a/16 VEGF Impair EPC function

miR-143/145 KLF4/5, ACE, PDGFR SMC Proliferation

miR-221/222 p27, p57 SMC Proliferation

miR-210 Ephrin A3/VEGF Pro-angiogenic

miR-499 DRP-1 Mitochondrial dynamics

miR-494 MTF A Mitochondrial biogenesis

miR-699 PGC1α Mitochondrial biogenesis
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Table 2

Circulating MicroRNAs as Biomarkers in Peripheral Artery Disease

MicroRNA Clinical Findings

miR-503 Higher in patients with diabetes and critical limb ischemia

miR-126 Lower levels correlate with lower ankle-brachial index in patients with diabetes

miR-15a/16 Lower in patients with critical limb ischemia

miR-130, -27b,-210 Higher in patients with thromboangiitis obliterans
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