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Sleep-disordered breathing (SDB) is associated with recur-
rent hypoxemia and arousal during sleep. The prevalence 
of SDB is reported to be 1.2–7.5% in the general popula-
tion.1 Intermittent hypoxemia by SDB has been reported 
to produce oxygen-derived free radicals, which can impair 
endothelial function.2 Previous studies have shown that 
endothelial dysfunction is strongly related to the pathogen-
esis of hypertension.3,4 Furthermore, endothelial dysfunc-
tion leads to cardiovascular disorders.5 Thus, hypoxemic 
stress via SDB may play a key role in inducing cardiovascular 
events in patients with SDB.6–9

However, although it is clear that SDB worsens progno-
sis and increases cardiovascular events, the previous studies 
on the relationship between the severity of SDB and cardio-
vascular events showed conflicting results.10–13 Some studies 

suggest that the frequency of apnea and hypopnea is weakly 
related with rates of cardiovascular events.10,12,13 In patients 
with chronic heart failure, complicated with Cheyne-Stokes 
respiration, mortality was shown to be related to the exist-
ence and severity of SDB, which is represented by the apnea-
hypopnea index (AHI).11 Thus far, most previous studies on 
the influence of SDB have been carried out using AHI, i.e., 
frequency of apneic/hypopneic episodes as a marker of SDB 
insult. We speculate that, as for evaluating cardiovascular 
outcome in patients with SDB, conventional indices of SDB, 
such as AHI or oxygen desaturation index (ODI), might not 
adequately indicate the effects of intermittent hypoxemia; as 
such indices do not contain enough information concerning 
the accumulation of desaturation. Therefore, we hypothe-
sized that another index, which includes information on the 
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BACKGROUND
Sleep-disordered breathing (SDB) is associated with repeated inter-
mittent hypoxemia, and it is known as one of the risk factors for 
cardiovascular diseases. Previous studies assessing the effects of 
frequency and depth of hypoxemia on cardiovascular diseases have 
shown conflicting results. The aim of the current study was to clarify 
what SDB-related parameters most predict endothelial dysfunction 
to better understand the pathogenesis of endothelial dysfunction in 
patients with SDB.

METHODS
We conducted polysomnography (PSG) and measured flow-mediated 
vasodilation response (%FMD) in 50 outpatients suspected of SDB. 
Evaluated indices included: apnea-hypopnea index (AHI), 3% oxy-
gen desaturation index (3%ODI), averaged arterial oxygen saturation 
(averaged SpO2), lowest arterial oxygen saturation (lowest SpO2), ratio 
of arterial oxygen saturation <90% (<SpO2 90%), and averaged time 
desaturation summation index (TDS: [100%-averaged SpO2] × total 
sleep time).

RESULTS
Significant differences were observed only in the TDS between the first 
and third (P = 0.03) and between the first and forth (P = 0.04) quartile 
groups, stratified by %FMD. The %FMD showed a significant relation-
ship with TDS (β = −0.47, P = 0.001), even after adjusting for confound-
ing factors (β = −0.33, P = 0.02). In contrast, AHI, 3%ODI, averaged SpO2, 
lowest SpO2, and <SpO2 90% showed no significant relationships.

CONCLUSIONS
This study shows the validity of TDS in predicting endothelial damage in 
patients with SDB. Cumulative hypoxemia, rather than the frequency of 
hypoxemic events presented as AHI, may be a greater contributing fac-
tor in causing endothelial dysfunction. A simple index like TDS may be 
a useful and novel indicator of the influence of SDB on the vasculature.
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severity and duration of hypoxemia caused by SDB, would 
be a better predictor of adverse impacts on the cardiovascu-
lar system compared with AHI. Thus, the aim of this study 
was to clarify what factors of SDB most relate to endothe-
lial dysfunction to better understand the pathogenesis of 
endothelial dysfunction in patients with SDB.

METHODS

Subjects

We recruited 50 outpatients who were referred to our 
clinic to diagnose SDB using in-hospital polysomnography 
(PSG). Inclusion criteria for this study were as follows: (i) 
patients aged 20  years or older and (ii) AHI ≥5/hour by 
measurements using Type-1 PSG. Exclusion criteria were as 
follows: (i) patients diagnosed with pulmonary or respiratory 
diseases, (ii) with overt heart failure, and (iii) that had pre-
viously undergone or were currently undergoing treatment 
for SDB. This study was approved by the Ethics Committee 
of Kyushu University Graduate School of Medical Sciences. 
The aims of the study were explained and written informed 
consent was obtained from all subjects.

Measurements

We acquired data on clinical characteristics from medical 
records. These included sex, age, body mass index (BMI), his-
tory of smoking, underlying diseases (e.g., existence of diag-
nosed hypertension, diabetes mellitus, and dyslipidemia), 
use of medications (e.g., angiotensin receptor blocker 
(ARB), angiotensin-converting enzyme inhibitor (ACE-I), 
and calcium channel blocker), and overnight PSG data. We 
developed an index called the time desaturation summation 
index (TDS) to represent cumulative hypoxemia in a simple 
fashion. The formula for obtaining TDS is expressed as fol-
lows: TDS = (100%-averaged arterial oxygen saturation dur-
ing sleep [averaged SpO2]) × (multiplied by) total sleep time 
(hours). The flow-mediated vasodilation response (%FMD) 
was measured by a single technician blinded to patient 
information using automated recording, and an analysis sys-
tem with a cross-sectional 10-MHz linear-array ultrasound 
probe (UNEX-EF, Unex, Nagoya, Japan) was used to provide 
the index of endothelial function.5 The protocol of %FMD 
measurements followed published guidelines,14 and has been 
described elsewhere.15,16 Briefly, the cuff was placed distal to 
the probe, and we measured changes in arterial diameter 
during 2 minutes after cuff release. The arterial measure-
ments were taken with electrocardiography gating. Systolic 
blood pressure and diastolic blood pressure were measured 
before %FMD measurements.

Polysomnography

Overnight PSG comprised 4-channel electroencephalog-
raphy, electrooculogram, submental and leg electromyogra-
phy, electrocardiography, nasal pressure sensor, thoracic and 
abdominal bands, oral thermistor, and oxygen saturation 
with fingertip pulse oximetry (Nihon-Koden, Tokyo, Japan). 
Respiratory events and sleep stages were scored using 

criteria as set out by the 2007 guidelines of the American 
Academy of Sleep Medicine, and Rechtschaffen and Kales, 
respectively.17,18 Briefly, an apnea event was defined as any 
reduction in nasal-oral thermistor ≥90% for over 10 sec-
onds. A  hypopnea event was defined as any reduction in 
nasal pressure ≥50% for over 10 seconds associated with 3% 
desaturation or arousal. AHI and 3%ODI were calculated as 
the number of respiratory events per hour, and the number 
of oxygen desaturations ≥3% per hour of sleep, respectively. 
The ratio of arterial oxygen saturation <90% (SpO2 < 90%) 
was defined as the percentage of time of arterial oxygen satu-
ration level <90% in total sleeping time.

Table 1. Clinical characteristics

Variable

Subjects (N) 50

Age (years) 58 ± 13

Male (N [%]) 43 [86]

BMI (kg/cm2) 27.0 ± 5.1

Smoking (N [%]) 16 [32]

Hypertension (N [%]) 31 [62]

Diabetes mellitus (N [%)) 16 [32]

Dyslipidemia (N [%]) 15 [30]

ARB (N [%]) 8 [16]

ACE-I (N [%]) 2 [4]

Ca channel blocker (N [%]) 6 [12]

SBP (mm Hg) 129.6 ± 18.9

DBP (mm Hg) 80.3 ± 10.4

HR (bpm) 72.2 ± 10.4

Polysomnography

AHI (/hour) 44.6 ± 22.5

OAI (/hour) 16.0 ± 19.4

CAI (/hour) 1.1 ± 2.9

HI (/hour) 25.4 ± 15.2

TST (minute) 392 ± 81

3%ODI (/hour) 33.5 ± 19.9

Averaged SpO2 (%) 94.0 ± 1.8

Lowest SpO2 (%) 74.9 ± 9.6

SpO2 < 90% (%) 8.1 ± 9.0

TDS (% × hour) 38.8 ± 11.5

FMD data

Arterial diameter (mm) 4.3 ± 0.6

%FMD (%) 4.2 ± 2.3

Abbreviations: N, number; BMI, body mass index; ARB, angio-
tensin receptor blocker; ACE-I, angiotensin-converting enzyme 
inhibitor; Ca, calcium; FMD, flow-mediated vasodilation; SBP, sys-
tolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; 
PSG, polysomnography; AHI, apnea-hypopnea index, OAI, obstruc-
tive apnea index; CAI, central apnea index; HI, hypopnea index; 
TST, total sleep time; SpO2, arterial oxygen saturation; ODI, oxygen 
desaturation index; TDS, time desaturation summation index.
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Statistical analysis

After assessment of the Gaussian distribution of the data 
using the Kolmogorov–Smirnov test, the data were analyzed 
using analysis of variance with a Bonferroni post hoc test. 
The chi-square test was used to analyze binary data. Using 
general linear model analysis (i.e., single linear analysis and 
logistic regression analysis), we identified confounders for 
%FMD. If the significance of a variable was P < 0.1 in the 
general liner model analysis, we regarded it as a potential 
confounder. The identified confounders were included mul-
tivariate analysis as adjustments. To assess correlations, we 
used Pearson correlation analysis. All statistics were com-
piled using SPSS v21.0 (SPSS, Chicago, IL), and 2-sided tests 
were performed, with P < 0.05 being considered significant. 
Outcome values are expressed as mean ± SD, correlation 
coefficient (r), and standardized coefficient (β).

RESULTS

Clinical characteristics

A total of 50 patients with varying severity of SDB were 
included in this study. The clinical characteristics of these 

participants are shown in Table 1. The mean age was 58 years, 
with 86% being male. BMI ranged from 16 to 40 kg/m2. With 
regards to underlying health conditions, 62% of the partici-
pants were hypertensive, 32% had diabetes, and 30% had 
dyslipidemia. A total of 16% of participants used ARB (4%) 
and ACE-I and calcium channel blocker (12%). The majority 
of patients were moderate to severe SDB (AHI: 44.6 ± 22.5/
hour), and their %FMD was 4.2 ± 2.3%. The mean total sleep 
time, averaged SpO2, and SpO2 < 90% were 392 minutes, 
94.0%, and 8.1%, respectively. The mean value of calculated 
TDS taken from these values was 38.8%/hour.

The clinical characteristics among quartile groups stratified 
by %FMD

Table 2 shows the differences in clinical characteristics 
among quartile groups stratified by %FMD. Although there 
were no significant differences in age, BMI, the existence 
of comorbidities (i.e., hypertension, diabetes mellitus, and 
dyslipidemia), use of medications, AHI, 3%ODI, averaged 
SpO2, lowest arterial oxygen saturation (lowest SpO2), and 
SpO2 < 90% among any of the 4 groups, significant differ-
ences were observed in TDS between the 1st and 3rd and 

Table 2. The clinical characteristics in the patients stratified by flow-mediated vasodilation

1st quartile 2nd quartile 3rd quartile 4th quartile P value

Number 12 13 12 13 —

%FMD (%) 7.3 ± 1.4 4.7 ± 0.3** 3.3 ± 0.4**,† 1.5 ± 0.9**,‡,§ <0.001

Age (years) 57 ± 15 59 ± 12 61 ± 10 57 ± 16 0.87

BMI (kg/cm2) 25.0 ± 6.2 27.0 ± 4.9 28.2 ± 4.3 27.8 ± 4.7 0.43

Smoking (N [%]) 3 [25] 6 [46] 3 [25] 4 [31] 0.63

Hypertension (N [%]) 6 [50] 5 [39] 9 [75] 11 [85] 0.06

Diabetes mellitus (N [%]) 3 [25] 2 [15] 4 [33] 7 [54] 0.19

Dyslipidemia (N [%]) 2 [17] 5 [39] 2 [17] 6 [46] 0.25

ARB (N [%]) 1 [8] 1 [8] 1 [8] 5 [38] 0.09

ACE-I (N [%]) 1 [8] 0 [0] 0 [0] 1 [8] 0.55

Ca channel blocker (N [%]) 1 [8] 1 [8] 0 [0] 4 [31] 0.10

AHI (/hour) 49.3 ± 24.6 41.3 ± 21.2 50.0 ± 23.9 38.7 ± 20.9 0.51

OAI (/hour) 24.6 ± 26.1 13.4 ± 10.6 18.3 ± 25.2 8.4 ± 8.8 0.19

CAI (/hour) 0.6 ± 0.7 1.1 ± 1.7 2.3 ± 5.4 0.4 ± 1.0 0.36

HI (/hour) 22.0 ± 12.7 23.7 ± 16.2 26.5 ± 16.1 29.1 ± 16.4 0.67

TST (minute) 347 ± 80 425 ± 103 373 ± 55 418 ± 60 0.04

3%ODI (/hour) 33.3 ± 21.0 27.2 ± 13.4 43.7 ± 21.9 30.5 ± 20.9 0.19

Averaged SpO2 (%) 94.5 ± 1.8 94.5 ± 1.8 93.2 ± 1.6 93.9 ± 1.7 0.22

Lowest SpO2 (%) 73.7 ± 11.5 77.4 ± 7.7 75.5 ± 8.1 73.0 ± 11.0 0.66

SpO2 < 90% (%) 7.9 ± 10.2 6.7 ± 6.9 9.5 ± 10.4 8.3 ± 9.1 0.90

TDS (% × hour) 30.6 ± 6.8 38.4 ± 11.8 43.2 ± 10.7* 42.8 ± 12.1* 0.02

Abbreviations: FMD, flow-mediated vasodilation; BMI, body mass index; ARB, angiotensin receptor blocker; ACE-I, angiotensin-converting 
enzyme inhibitor; Ca, calcium; AHI, apnea-hypopnea index; OAI, obstructive apnea index; CAI, central apnea index; HI, hypopnea index; TST, 
total sleep time; ODI, oxygen desaturation index; SpO2, arterial oxygen saturation; TDS, time desaturation summation index.

*vs. 1st quartile group, P < 0.05. †vs. 2nd quartile group, P < 0.01. **vs. 1st quartile group, P < 0.001. ‡vs. 2nd quartile group, P < 0.001. 
§vs. 3rd quartile group, P < 0.001.
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between the 1st and 4th quartile groups (F[49, 9] = 3.72, 
P = 0.02; 1st vs. 3rd quartile, P = 0.03; 1st vs. 4th quartile, 
P = 0.04).

The relationships between clinical characteristics and flow-
mediated vasodilation response

%FMD was marginally related to BMI, the existence 
of hypertension, and use of ARB in a single regression 
model (BMI: β = −0.26, P = 0.07; hypertension: β = −0.25, 
P = 0.07; ARB: β = −0.38, P = 0.08; Table 3). %FMD showed 
a significant relationship with TDS only (P = 0.001; Table 3, 
Figure 1). Even in multiple regression analysis after adjusting 
for BMI, the existence of hypertension, and use of ARB, the 
relationship between %FMD and TDS remained significant 
(β = −0.33, P = 0.02).

DISCUSSION

The current study revealed that endothelial function was 
most strongly and inversely related to cumulative hypox-
emia during sleep, as expressed by the TDS index in patients 
with SDB. In addition, we did not find any significant cor-
relations between %FMD and traditional indices; AHI, 
3%ODI, averaged SpO2, or lowest SpO2. This result suggests 
that cumulative hypoxemia during sleep is likely to be the 
most influential factor leading to cardiovascular diseases in 
patients with SDB.

Previous studies reported that hypertension is com-
mon in patients with SDB, ranging from 37% to 54%.19 
Moreover, a European-based large cohort study showed 
that the hypoxic state associated with SDB was significantly 
related to new onset hypertension.20 An etiology of hyper-
tension in patients with SDB is endothelial dysfunction.21 
The mechanisms of endothelial dysfunction associated with 
SDB, caused by hypoxemia during apneic sleep, involve the 
hypoxic state increasing the amount of inflammatory agents, 
such as hypoxia-inducible factor and nuclear factor-κB.22,23 
Hypoxia-inducible factor upregulation leads to loss of p27 
induction, which is a cyclin-dependent kinase that plays a 
critical role in cell cycle arrest.24 nuclear factor-κB upregula-
tion contributes to the hypoxic state of cells through DNA 
binding activity, which leads to inflammation, increases in 
various cytokines, and adhesion of monocytes.25 Finally, the 
actions of hypoxia-inducible factor and nuclear factor-κB 
can lead to endothelial cell apoptosis.26,27 Thus, cumula-
tive hypoxemia during sleep may have a strong impact on 
endothelial function. Specifically, hypoxia-inducible factor 
and nuclear factor-κB are known to increase according to the 
lowered oxygen saturation level and sustained hypoxemia.28 
Conventional indices of SDB such as AHI and 3%ODI do 
not directly reflect the degree of hypoxemia. This may be one 
of the possible reasons for the inconsistent results regarding 
the relationships between %FMD, AHI, and 3%ODI.29–32 On 
the other hand, SpO2 < 90% reflects the degree of hypoxemia 
to a limited extent, because this index measures the dura-
tion of atrial oxygen level under 90% only. In contrast, the 
TDS index contains information concerning oxygen satura-
tion level and duration of hypoxemia during the entire sleep 
period. Although TDS may not perfectly reflect the actual 
amount of inflammatory agents, we believe that TDS would 
approximate actual cumulative hypoxemia more accurately 
compared with other conventional indices. We set the base-
line saturation level as 100% in calculations of TDS, because 
the fluctuation of “baseline” oxygen level was quite large in 
some patients even while they were awake. It is likely dif-
ficult to set an accurate “baseline” level for these types of 
patients. Moreover, clinically, it would be easier to measure a 
total decrease from 100%.

Recently, SDB has been shown to have a strong, negative 
impact on the cardiovascular system through activation of 
the sympathetic nervous system, negative intra-thoracic 
pressure, and hypoxemia.33,34 Since the endothelial layer 
is involved in critical functions such as preventing blood 
coagulation, controlling vascular tone, and anti-inflamma-
tory actions,35 its dysfunction can cause hypertension and 
arteriosclerosis,36,37 leading to heart failure, coronary artery 

Table 3. Unadjusted single regression analysis about the 
relationships between clinical characteristics and flow-mediated 
vasodilation

Variable β P value

Age 0.01 0.94

Sex 0.12 0.51

BMI −0.26 0.07

Smoking 0.04 0.77

Hypertension −0.25 0.07

Diabetes mellitus −0.20 0.17

Dyslipidemia −0.24 0.12

ARB −0.38 0.08

ACE-I 0.16 0.58

Ca channel blocker −0.35 0.14

SBP −0.15 0.30

DBP 0.17 0.25

HR 0.02 0.91

AHI 0.06 0.68

OAI 0.20 0.18

CAI −0.09 0.52

HI −0.15 0.29

3%ODI −0.13 0.37

Averaged SpO2 0.29 0.11

Lowest SpO2 0.10 0.70

SpO2 < 90% −0.10 0.48

Arterial diameter −0.23 0.11

TDS −0.47 0.001

Abbreviations: β, standardizing coefficient; BMI, body mass 
index; ARB, angiotensin receptor blocker; ACE-I, angiotensin-con-
verting enzyme inhibitor; Ca, calcium; SBP, systolic blood pressure; 
DBP, diastolic blood pressure; HR, heart rate; AHI, apnea-hypopnea 
index; OAI, obstructive apnea index; CAI, central apnea index; HI, 
hypopnea index; ODI, oxygen desaturation index; SpO2, arterial 
oxygen saturation; TDS, time desaturation summation index.
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stenosis, and stroke.33,38 Thus, a reliable index that correctly 
indicates cumulative hypoxemia during sleep is critical for 
the accurate estimation of the negative impact of SDB on the 
cardiovascular system.

There are some limitations of the current study. Endothelial 
function was likely strongly affected by plasma glucose and 
lipoprotein levels (i.e., hemoglobin A1c, low-density lipo-
protein, and high-density lipoprotein).39,40 In this study, we 
acquired data from a limited number (33 of 50) of patients. 
However, of these patients, %FMD was associated with BMI, 
hemoglobin A1c, high-density lipoprotein, hypertension, 
use of ARB, and TDS in a single regression analysis, but only 
%FMD was independently associated with TDS after adjusting 
for BMI, hemoglobin A1c, high-density lipoprotein, hyperten-
sion, and use of ARB (data not shown). Furthermore, %FMD 
was strongly correlated with TDS even in single regression 
analysis, indicating that TDS may be a powerful predictor.

We did not assess the nitroglycerin-induced vasodilation 
response. We recognize that this is a limitation that requires 
further study to clarify our findings. In addition, as this study 
was retrospective in nature, we were unable to eliminate the 
possibility of selection bias, though we collected patients as 
evenly as possible. Finally, we adopted all patients irrespective 
of total sleep time in this study, but patients with SDB with 
excessively short sleep times (e.g., 3 hours) during PSG might 
have significantly confounded the data because of the calcula-
tions involved in the TDS index formula. Future, large sample 
size, prospective studies are needed to address these issues.

In conclusion, cumulative hypoxemia during sleep, 
expressed by an index such as TDS in this study, may pro-
vide important information concerning endothelial func-
tion though the causality was not established, and such an 
index may more properly predict endothelial dysfunction in 
patients with SDB compared with traditional indices repre-
senting SDB severity.
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