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Abstract

Computerized survival prediction in healthcare identifying the risk of disease mortality, helps 

healthcare providers to effectively manage their patients by providing appropriate treatment 

options. In this study, we propose to apply a classification algorithm, Contrast Pattern Aided 

Logistic Regression (CPXR(Log)) with the probabilistic loss function, to develop and validate 

prognostic risk models to predict 1, 2, and 5 year survival in heart failure (HF) using data from 

electronic health records (EHRs) at Mayo Clinic. The CPXR(Log) constructs a pattern aided 

logistic regression model defined by several patterns and corresponding local logistic regression 

models. One of the models generated by CPXR (Log) achieved an AUC and accuracy of 0.94 and 

0.91, respectively, and significantly outperformed prognostic models reported in prior studies. 

Data extracted from EHRs allowed incorporation of patient co-morbidities into our models which 

helped improve the performance of the CPXR(Log) models (15.9% AUC improvement), although 

did not improve the accuracy of the models built by other classifiers. We also propose a 

probabilistic loss function to determine the large error and small error instances. The new loss 

function used in the algorithm outperforms other functions used in the previous studies by 1% 

improvement in the AUC. This study revealed that using EHR data to build prediction models can 

be very challenging using existing classification methods due to the high dimensionality and 

complexity of EHR data. The risk models developed by CPXR(Log) also reveal that HF is a highly 

heterogeneous disease, i.e., different subgroups of HF patients require different types of 

considerations with their diagnosis and treatment. Our risk models provided two valuable insights 

for application of predictive modeling techniques in biomedicine: Logistic risk models often make 
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systematic prediction errors, and it is prudent to use subgroup based prediction models such as 

those given by CPXR(Log) when investigating heterogeneous diseases.
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1. Introduction

Heart Failure (HF) is a major health issue and is one of the most common causes of 

hospitalization in the United States (US) with an estimated 6.6 million US adult cases in 

2010 at a cost of 34.4 billion US dollars in healthcare expenses [1]. In the general 

population, the lifetime risk of subsequently developing HF in individuals initially free of 

the disease at the of age 40 years is 1 in 5 [2]. The high mortality rate in HF patients is a 

major public health care priority [3]. Identification of cost-effective strategies to reduce the 

incidence of hospitalization, a major driver of costs, is a major objective. Central to the 

management of HF is multifaceted pharmacological intervention that involves treatment of 

volume overload for symptom relief and disease modification in high risk patients to reduce 

mortality.

Accurate HF survival prediction models can be beneficial to both patients and physicians. 

Physicians could prescribe more aggressive treatment plans for high risk patients based on 

accurate risk predictions, and patients can have confidence in the treatment plan prescribed 

by physicians, and hence are more likely to comply with treatment. Accurate HF survival 

prediction models also help clinical researchers in designing clinical trials by targeting high 

risk patients with heterogeneous characteristics for disease modifying therapeutic 

interventions [4]. Multiple HF survival prediction models, such as the Seattle Heart Failure 

Model (SHFM) [5], [6], and [7], have been developed and validated in multiple cohorts and 

are being used in routine clinical care to manage HF patients with varying degrees of 

success and adoption [8]. However, there are two major limitations hindering the broad-scale 

adoption of such survival prediction models for HF: (1) These prognostic HF models were 

derived from clinical trials databases that represent a population of patients with limited 

generalizability (e.g., care provided in closely monitored settings in larger academic medical 

centers, smaller patient sample size, lack of heterogeneity in the patient population). Such 
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models are not very useful for making accurate predictions in real-world community based 

settings [9]. (2) These clincial trial based models do not always include multiple co-morbid 

factors found in a real-world population that can be accurately derived from EHRs. 

Incorporating co-morbdities is important because the true value of prognostic models used 

for routine clinical care can only be achieved when prognostic models can facilitate (EHR-

driven) clinical decision making at the bedside.

Consequently, with increasing availability of EHR data that allows tracking of real-world 

patient chracteristics and outcomes, it is imperative to develop and validate EHR derived 

survival prediction models for HF prognosis of patients seen in routine clincial practice 

instead of those derived from clinical trials databases. However, there are many challenges, 

at least from the modeling perspective, in developing purely EHR-driven risk prediction 

models. Some of these challenges include: (1) models need to be highly accurate with very 

few false positive cases; (2) models need to be highly interpretable [10] so that healthcare 

providers can apply them to identify clinically relevant prognostic markers, that allow them 

to make informed clinical decisions, and (3) the models need to minimize overfitting so that 

they are generalizable and can make accurate predictions on new cases.

To address these challenges, in this study, we apply the recently introduced CPXR(Log) 

method (Contrast Pattern Aided Logistic Regression) on HF survival prediction with the 

probabilistic loss function. CPXR(Log) is the classification adoption of CPXR, which was 

recently introduced in [11] by two of the current authors. The algorithm proposed in [11] 

involves prediction for numerical response variables, whereas CPXR(Log) involves 

classification for binary class labels. The CPXR(Log) method constructs a pattern aided 

logistic regression model defined by several patterns and corresponding local logistic 

regression models. CPXR(Log) has several significant advantages including

• CPXR(Log) builds highly accurate models, often outperforming standard logistic 

regression and state-of-the-art classifiers significantly on various accuracy 

measures.

• CPXR(Log) has the ability to handle data with diverse and heterogeneous 

predictor-response relationships.

• CPXR(Log) models are easy to interpret and are less overfitting when compared to 

other classifiers (see Table 6).

The ability to effectively handle data with diverse predictor-response relationships is 

especially useful in clinical applications, as modern medicine is becoming increasingly 

personalized, and the patient population for a given disease is often highly heterogeneous. 

As stated by President Obama when he announced the Precision Medicine Initiative [12]: 

“Most medical treatments have been designed for the average patient. As a result of this one-

size-fits-all-approach, treatments can be very successful for some patients but not for others. 

This is changing with the emergence of precision medicine, an innovative approach to 

disease prevention and treatment that takes into account individual differences in people’s 

genes, environments, and lifestyles”. CPXR(Log) can effectively identify important disease 

subgroups from patients EHR data, and it can produce localized prediction models for 

“personalized” considerations for those subgroups. In prior studies, two of the current 
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authors applied CPXR(Log) on outcome prediction for Traumatic Brain Injury (TBI) 

patients [13], where they obtained highly accurate prediction models and identified different 

patient subgroups that require different considerations for TBI. The main differences 

between the algorithm introduced in this study and [13] are the following: (1) A new 

probabilistic loss function is used to split instances into large error and small error classes. 

Our experimental results demonstrate that the new loss function returns more accurate 

models compared to methods introduced in [13]. (2) A new method is applied to select 

cutoff values in order to optimize accuracy, precision, and recall.

The major contributions of this work include:

• We demonstrate that CPXR(Log) is a powerful methodology for clinical prediction 

modeling for high dimensional complex medical data: It can

○ produce highly accurate models (One CPXR(Log) model achieved an 

AUC and accuracy of 0.94 and 0.91, respectively, significantly 

outperforming models reported in prior studies), and

○ help to identify and correct significant systematic errors of logistic 

regression models.

• We present classification models for HF which are much more accurate than 

logistic models and models produced by other state-of-the-art classifiers.

• Our CPXR(Log) models for HF reveal that HF is highly heterogeneous, suggesting 

that patients with heterogeneous characteristics (e.g, clincial characteristics, co-

morbidities) should be evaluated for different HF management strategies.

• We propose a novel probabilistic loss function in the CPXR(Log) algorithm. It 

returns more accurate models comparing to CPXR(Log) introduced in our previous 

studies.

The subsequent sections are organized as follows: In the next section, key related studies 

will be presented. In the materials and methods section, details of the Mayo Clinic EHR data 

for HF will be presented, and the CPXR(Log) algorithm will be explained. The experimental 

result section will report the prediction models produced by CPXR(Log) and other 

classification algorithms, together with an analysis of those models and discussions on 

various implications for the field of medicine. Finally, we will provide an overall summary 

in the conclusion section. The Mayo Clinic IRB approved this observational study.

2. Related Work

Studies related to our work can be categorized into three main groups:

a. Studies on general prediction models using EHR data: clinical prediction modeling 

is a very broad area of research. Logistic regression [14] is the most popular 

method in clinical prediction modeling. Most recently different machine learning 

methods such as Random Forest (RF), Support Vector Machine (SVM) and 

AdaBoost have been used in clinical prediction modeling. Kennedy et al. [15] 

applied Random Forest to predict the probability of depression after Traumatic 
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Brain Injury (TBI) diagnosis in a rehabilitation setting. In [16], Wei et al. applied 

SVM on a dataset from National Health and Nutrition Examination Survey 

(NHANES) to classify diagnosed diabetes patients from pre-diabetes and the 

reported AUC is 0.83. In a similar study, Wu et al. [17] used EHR data to develop a 

model to detect heart failure within 6 months before the actual HF diagnosis. They 

compared the performance of logistic regression, SVM and Boosting, and SVM 

had the poorest performance. Lack of balance in class distribution and difficulty to 

define patient’s outcome are two EHR related challenges reported by Wu et al. 

Similarly, Zupan et al. [18] proposed a method to adopt machine learning 

techniques to handle censored data. They applied their algorithm to predict the 

recurrence of prostate cancer and compared the performance of Naïve Bayes, 

Decision Tree, and Cox regression.

There are also some studies that used clustering techniques to identify subgroups of 

heart failure patients. Hertzong et al. [19] used hierarchical clustering to derive 3 

clusters based on 14 symptoms. In another study, Song et al. [20] also applied 

agglomerative hierarchal clustering with Ward’s method to explore which physical 

symptom clusters occur in HF patients and to determine the impact of symptom 

clusters on event-free survival.

There are some substantial differences between the CPXR methodologies and 

clustering based methodologies. CPXR(Log) models are easier to understand as 

each subgroup of a CPXR(Log) model is described by a pattern (which is a simple 

condition involving a small number of variables); in contrast the subgroups 

(clusters) obtained by clustering methods do not have natural discriminative 

descriptions other than cluster means. Secondly, Clustering methods are typically 

based on distance functions where the features are usually treated as equally 

important, but in practice, not all features are equally important. CPXR(Log) uses 

contrast mining algorithms to extract the most informative interactions between 

predictor variables and response variable and utilize them to build accurate 

prediction models.

b. Studies on HF survival prediction models: The Seattle Heart Failure Model 

(SHFM) is a well known HF risk model. It was derived from a cohort of 1125 HF 

patients from the PRAISE I clinical trial using a multivariate Cox model [21]. The 

model has been prospectively validated in 5 other cohorts totaling 9942 heart 

failure patients and 17307 person-years of follow-up. In addition to SHFM, several 

other risk prediction models have been developed including SHOCKED, 

Frankenstein, PACE Risk Score, and HFSS [7]; these 4 models were validated in 

independent cohorts along with SHFM. The Heart Failure Survival Score (HFSS) 

was validated in 8 cohorts (2240 patients), showing poor-to-modest accuracy 

(AUC, 0.56–0.79); the score is lower in more recent cohorts. In [2], Ouwerkerk et 

al. compared the performance of 117 HF models with 249 different variables. They 

concluded that clinical trial based models have lower performance compared to 

EHR based models.
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Furthermore, there are studies that applied machine learning algorithms to study 

risk factors and predict patient outcomes in HF. For example, Dai et al. [22] used 

boosting and SVM to build models to predict heart failure around 6 months before 

the actual diagnosis. Their results show that SVM has poor performance. Similarly, 

Panahiazar et al. [23] used decision tree, Random Forest, AdaBoost, SVM and 

logistic regression to predict survival risk of HF patients. They concluded that 

logistic regression generates more accurate models.

c. Studies on applying CPXR methodology: There are two studies that applied CPXR 

method. In [13], we applied CPXR(Log) to predict patient outcomes with 

Traumatic Brain Injury (TBI) within 6 months after the injury using admission time 

data. CPXR achieved AUC as high as 0.93. In [24], Ghanbarian et al. used CPXR 

to predict Saturated Hydraulic Conductivity, and the R2 of their models was 0.98. 

Another advantage of this method was that the effect of sample size on the 

performance that was not detectable by linear regression.

3. Materials and Methods

3.1. Study population

Our primary goal in this study is to develop classifiers to predict survival in 1-, 2- and 5- 

years after HF diagnosis. Our classifiers are built using EHR data on 119,749 patients 

admitted to Mayo Clinic between 1993 and 2013. Some patient records (N=842) were 

excluded due to incomplete and missing data. In consultation with cardiologists and 

cardiovascular epidemiologists, the following cohort identification criteria were developed:

• A diagnosis of HF based on the ICD9-CM code (428.x).

• An EF measurement of ≤50% within two months of HF diagnoses.

• No prior diagnosis of coronary artery disease, myocarditis, infiltrative 

cardiomyopathy and severe valvular disease.

• Authorization to access EHR data for research.

To be included in this cohort, patients needed to meet all four criteria, leading to a final 

cohort size of 5044 HF patients admitted to Mayo Clinic between 1993 and 2013. To select 

predictor variables, we followed the SHFM [2] and added a series of new variables derived 

from the EHR data that were grouped into the following categories:

• Demographics including age, gender, race, and ethnicity.

• Vitals including Blood Pressure (BP), and Body Mass Index (BMI).

• Lab results including cholesterol, sodium, hemoglobin, lymphocytes, and ejection 

fraction (EF) measurements.

• Medications including Angiotensin Converting Enzyme (ACE) inhibitors, 

Angiotensin Receptor Blockers (ARBs), β-adrenoceptor antagonists (β-blockers), 

Statins, Calcium Channel Blocker (CCB), Diuretics, Allopurinol, and Aldosterone 

blocker.
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• A list of 24 major chronic conditions [25] as co-morbidities including Acquired 

hypothyroidism, Acute myocardial infarction, Alzheimer, Anemia, Asthma, Atrial 

fibrillation, Benign prostatic hyperplasia, Breast cancer, Cataract, Chronic kidney 

disease, Colorectal cancer, Depression, Diabetes, Glaucoma, Hip/pelvic fracture, 

Hyperlipidemia, Hypertension, Ischemic heart disease, Lung cancer, Osteoporosis, 

Prostate cancer, Pulmonary disease, Rheumatoid arthritis, and Stroke.

Since our EHR data is time dependent, we considered the records that are closest to the HF 

event. Our class variable (response) is mortality status. For the 1-year version of the dataset, 

if a patient was dead within 1-year after the heart failure event, the class variable is 1, 

otherwise it is 0. We created 3-year and 5-year versions of the dataset similarly.

Table 1 represents demographics, vitals and lab characteristics of patients in our cohort, and 

Table 2 shows frequencies of co-morbidities. It can be observed that hypertension, ischemic 

heart disease, hyperlipidemia, chronic kidney disease and atrial fibrillation are the most 

frequent co-morbidities. Table 3 represents the frequency of different medication classes 

used in the cohort; apparently ACE inhibitors, β-blockers, and diuretics are the most popular 

medications used to treat heart failure.

Out of a total of 43 predictor variables, there are 35 binary predictor variables, which include 

race, ethnicity, gender, and all co-morbidities and medications, and there are 8 numerical 

variables, including lab results, age, BP, BMI and, EF measurement.

In the next section, we first discuss about preliminaries required by CPXR(Log) and then the 

CPXR(Log) algorithm will be presented.

3.2. The CPXR(Log) Algorithm

Preliminaries—Let D be a training dataset. A pattern is a finite set of single-variable 

conditions in one of two forms: (1) “A=a” where a is a constant, if A is a categorical 

variable, (2) “v1 ≤ A <v2”, where v1 and v2 are constants, if A is numerical. For us, the 

numerical constants are usually the bin boundaries produced when discretizing numerical 

variables using the entropy-based method [26]. A data instance X is said to satisfy, or match, 

a pattern P if X satisfies every condition in P. The matching dataset of P within a dataset D is 

mds(P,D) = {X∈D | X matches P}. The support of P in D is .

Definition—Given two classes C1 and C2, the support ratio of P from C1 to C2 is 

. Given a support ratio threshold γ, a contrast/emerging 

pattern[27] of class C2 is a pattern P satisfying . Thus, a pattern is a 

contrast pattern if its supports in different classes are very different. We may use a minSupp 
threshold, to limit contrast patterns to those P satisfying supp(P,C2) ≥ minSupp.

3.2.1. CPXR(Log) concepts—This section presents the main ideas of the CPXR(Log) 

algorithm. More details can be found in [11] and [13]. We will also discuss our new 

contribution to the alogorithm where we measure errors in a probabilistic manner. Let D = 
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{(Xi, Yi)|1 ≤ i ≤ n} be a given training dataset for regression. Let f be a regression model 

built on D, which we will call the baseline model.

The main idea of CPXR is to use a pattern as logical characterization of a subgroup of data, 

and a regression model called local model as a behavioral characterization of the predictor-

response relationship for data instances of that subgroup of data. CPXR is a powerful 

method, because it can pair a pattern and a local regression model to represent a specific 

predictor-response relationship for a subgroup of data and it has the flexibility in pairing 

multiple patterns and local regression models to represent diverse and distinct predictor-

response relationships for multiple subgroups of data.

Definition: A pattern aided regression (PXR) model is represented by a tuple PM = 

((Pi,fi,wi),…,(Pk,fk,wk), fd) where, for each i, Pi (i=1,…,k) is a pattern, fi (i = 1,…,k) is Pi′s 
local regression model, and is wi ≥ 0 (i = 1,…,k) is fi′s weight; fd is the default model. The 

regression function of PM is defined (for each instance X) by

(1)

where πX = {Pi|1≤ i ≤ k, X satisfies Pi}.

Remark: fi is applied on instances satisfying pattern Pi; fd is used on instances not 

satisfying any pattern in PM.

In this study, we use standard logistic regression to build local regression models fi. Standard 

logistic regression is a simple method producing interpretable models which have been used 

extensively in the field of biomedicine and bioinformatics [6].

Since the number of extracted patterns is huge and we want to have a small set of patterns 

with higher accuracy, it is necessary to define quality measures to remove patterns which 

reduce the overall accuracy of the models generated.

Let rX(g) denote a function g’s residual on an instance X. The residual of logit function g on 

an instance X is the difference between the predicted and observed binary outcome variable 

values. The predicted outcome variable value of logit function is in the form of probability 

and is bounded to zero and one.

Definition: The average residual reduction (arr) of a pattern w.r.t. a prediction model f 

and a dataset D is

(2)

and the total residual reduction (trr) of a pattern set PS = {P1,…Pk} w.r.t. to a prediction 

model f and a dataset D is:
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(3)

where PM = ((Pi,fi,wi),…,(Pk,fk,wk), f), wi = arr(Pi), mds(PS) = ∪P∈PS mds(P).

We use arr to remove those patterns with little positive impact on the accuracy or those 

patterns that do not reduce the residual error. trr is used to measure how much a pattern set 

can reduce the residual error of the baseline model. Since some instances match more than 

one pattern, we need to use (1) to calculate the response (outcome) variable values.

3.2.2. Description of the CPXR(Log) algorithm—In this section, we explain the 

process of the CPXR(Log) algorithm. Readers can refer to [11] and [13] for more details on 

the algorithm. An outline of the CPXR(Log) algorithm is the following:

• Input: Training dataset D, ρ and minSup.

• Step 1: Train a baseline model on dataset D and calculate the residual error for each 

training instances using a loss function.

• Step 2: Split D into LE and SE using a splitting point cutr.

• Step 3: Discretize numerical predictor variables into bins using the equi-width or 

entropy binning method.

• Step 4: Mine contrast patterns of the LE dataset.

• Step 5: Perform a set of filtering methods to remove patterns that are highly similar 

to others or are not very generalizable (to avoid overfitting).

• Step 6: Train local models for the remaining patterns.

• Step 7: Remove patterns of low utility.

• Step 8: Select an optimal set of patterns, PS = {P1,…Pk} with the highest trr.

• Step 9: Determine arr and local model fP associated to each pattern in PS (to be 

used as weightes of local models).

• Step 10: Train the default model fd.

• Output: A set of patterns associated with local models, weights, and default model; 

PXR = ((P1,f1,w1), …,((Pk,fk,wk), fd).

The CPXR(Log) algorithm has three inputs: a training dataset D, a ratio ρ to split dataset 

into large error (LE) and small error (SE) instances and a minSup threshold on the support of 

contrast patterns.

In the first step, CPXR(Log) builds a standard regression model f, called the baseline model, 

using a standard regression model. The model f returns a residual error for each instance X 

in dataset D. The residual error is calculated using a loss function. Then we use a parameter 

ρ to find a splitting point cutr (on residuals) to divide D into LE (large error) and SE (small 
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error); we define . Then we have a dataset with two classes LE and SE. 

LE instances have large residuals (≥cutr) and SE instances have small residuals (< cutr) 
based on the baseline model f. Then the algorithm mines all contrast patterns of LE. These 

contrast patterns are more frequent on LE instances and less frequent on SE instances. 

Subsequently, filters are applied to remove some patterns with highly similar matching 

datasets.

In the next step, a local model fP is built corresponding to each remaining contrast patterns. 

Some of these patterns do not improve the accuracy or have a small residual reduction. We 

use arr to identify and remove those patterns. Then the algorithm uses a double loop to 

search for a desirable pattern set with large trr. The inner loop performs repeated pattern 

replacements, and the outer loop adds a new pattern to the pattern set and then calls the inner 

loop. The inner loop terminates when the improvement of the best replacement is smaller 

than a threshold. The outer loop terminates when the improvement of the previous iteration 

is too small. The output of CPXR(Log) is a set of patterns PS = {P1,…Pk}, a set of 

associated local standard regression models  for patterns in PS and arr(P1),

…,arr(Pk). arrs will be used when a new test case is matched with more than one pattern in 

PS. The algorithm also builds a logistic regression model fd for the set of instances that do 

not match any pattern in PS.

3.2.3: The CPXR(Log) algorithm: new techniques and advancements—This 

section describes some new techniques and advancements introduced in the CPXR(Log) 

algorithm that were not used in previous studies involving CPXR and CPXR(Log).

The loss function is a key part of the CPXR(Log) algorithm, which is needed to measure 

classification errors on individual data instances. We now present three methods to measure 

classification error. Let h be a classifier, x be a data instance and y be the response variable 

of data instance x. In the first option h is assumed to return a class label and in the other two 

options h is assumed to return a probalility (of x being in one fixed class, e.g., the positive 

class).

• The binary error measure is defined by

• The probabilistic error measure is defined by

• The Pearson residual error (standardized) is defined by
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Pearson residual error is a well-known formula used to measure the goodness of fit for 

logistic regression models and it was used in [13]. In this study, we evaluated the above 

functions, and our results suggest that probabilistic loss function returns more accurate 

models (see details in Section 4).

We also consider how to select the cutoff value in order to optimize accuracy, precision, and 

recall. The default cutoff value is usually 0.5 (if the predicted value is larger than 0.5, then 

the predicted class is 1, otherwise the predicted class is 0). In some experiments, we 

observed that 0.5 is not an optimal cutoff value for classification of the instances. Looking 

deeper at the predicted probabilities, we observed that, in some datasets, there are many 

false positive instances with the predicted probabilities close to 0.5 or there are many false 

negative instances with the predicted probabilities close to 0.5. To solve this problem, we 

designed the following simple method to find the optimal cutoff values: After CPXR(Log) 

returns a PXR model, we evaluate different cutoff values ranging from 0.3 to 0.8 on the 

training data; for each potential cutoff value, we calculate accuracy × precision × recall on 

the training data; the cutoff value that yields the optimal accuracy × precision × recall is 

chosen as the final cutoff value. This final cutoff value is used to classify new data instances, 

including to measure accuracy, precision and recall on the testing data.

4. Results and Discussions

This section presents the results of CPXR(Log) on HF risk prediction models, which are 

focused on four main aspects: (1) We compare the performance of CPXR(Log) against state-

of-the-art classification algorithms such as Logistic Regression, Decision Tree, Support 

Vector Machine, Random Forest and AdaBoost. The results show that CPXR(Log) is much 

more accurate and outperforms other classifiers significantly. (2) We also present details on 

patterns and local models found by CPXR(Log) for HF risk prediction. Each pattern and the 

corresponding local model extracted by CPXR(Log) represent a distinct subgroup of patients 

with specific behaviors, whose survival risk should be calculated based on the local model 

assigned specifically to that subgroup of patients. Distinct pairs of patterns and local models 

are highly different from each other and they are highly different from the baseline model. 

(3) We show that the incorporation of co-morbidities extracted from EHR into our models 

improves the accuracy of CPXR(Log) and gives us more insights about the complexity of 

heart failure. We also show that the predictive power of co-morbidities has not been fully 

utilized by other classification algorithms – in fact those algorithms produced less accurate 

prediction models when they use the co-morbidities as features for modeling building. (4) 

We examine the effect of the probabilistic loss function and compare it with the loss function 

used in [13].

CPXR(Log) depends on two parameters, minSup and ρ. In this study, we used fixed 

parameter values (minSup = 0.03 and ρ = 0.45). Regarding the other classifiers, we used 

their implementation in standard R packages [28] Note that there are patient records with 

missing values for certain lab results and blood pressure measurements, a characteristic 

typical for real-world EHR data. We used multiple imputation to handle those missing 

values using a package called mi in R [29].
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As explained earlier our problem is classifying patients who survived after a diagnosis of HF 

vs those who did not survive using the CPXR(Log) algorithm based on EHR data. Hence, 

our outcome (response) variable is mortality status. In this study, we developed and 

validated three models to predict 1-, 2-, and 5- years survival in HF patients with the use of 

EHR extracted variables including demographic, vitals, lab results, medications, and co-

morbidities.

To enhance the generalizability of CPXR(Log) models, following common practice in 

clinical prediction modeling, we divide our dataset into two separate parts: a training part 

and a test part; the training dataset contains data for 1560 out of the 5044 patients, and the 

test dataset contains data for the remaining 3484 patients. The training and test datasets do 

not overlap.

We now compare the performance of CPXR(Log) against standard logistic regression and 

state-of-the-art classifiers concerning accuracy. Table 4 presents the AUC of the three 

models built by different classification algorithms. The results show that CPXR(Log) 

outperforms other classifiers consistently by large margins. The strong performance of 

CPXR(Log) implies there are highly diverse predictor-response relationships for HF patients 

and they were successfully extracted by CPXR(Log).

Furthermore, all CPXR(Log) models outperformed corresponding logistic regression and 

SVM models on all three other performance measures, as shown in Table 5. In Table 5, the 

cutoff values to optimize accuracy, precision and recall are determined in the way described 

in the previous section. In particular, CPXR(Log) improved the AUC of logistic regression, 

SVM, Random Forest and AdaBoost models by 15.6%, 58.8%, 17.1% and 26.6% on 

average, respectively. Further, Figures 1, 2 and 3 show that the ROC curves of all three 

CPXR(Log) models have larger true positive rate for every false positive rate, than that of 

logistic regression and SVM models. Our results are also better than those reported by prior 

from Levy et al. [5]. Specifically, the AUC of 1- year model developed by CPXR(Log) is 

5.6% larger than the most accurate model developed by Levy et al. [5].

Next we present the CPXR(Log) patterns and models. Table 7 represents CPXR(Log) 

patterns and the odds ratios according to CPXR(Log) shown in Table 6. If a patient’s data 

matches any of the patterns listed in Table 7, then we should not follow the baseline model 

built for the whole population. Instead, to measure the survival risk, we should use the local 

model built specifically for the subgroup of patients associated with the matched pattern. 

The last column of Table 7 shows which model should be used to calculate the risk for 

which pattern. For example, according to pattern P9, if a patient has a history of stroke, then 

the patient should be evaluated using model 9 (f9) concerning his/her mortality risk. The 4th 

column of Table 7 represents the coverage or support for each pattern in the training dataset.

As we said earlier, Table 6 gives the odds ratios of variables, according to the local models 

of the 1-year CPXR(Log) model and the baseline model. (fi is the local model of pattern i). 
Large differences in odds ratio between the baseline model and the CPXR(Log) local models 

can be of interest to physicians, as they indicate that for certain large population groups, 

survival risk should be evaluated in a manner different from how the risk is evaluated based 
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on the standard logistic regression model for the whole patient population. Due to the 

popularity of logistic regression, one can assume that physicians are familiar with logistic 

regression models and they may have been using the information implied by such models in 

practice.

In Table 6, we use bold to indicate cases where odds ratio based on CPXR(Log) models is 

significantly higher or lower than that based on the standard logistic regression model (by at 

least 30% relative difference). There are quite a number of variables and value pairs where 

odds ratio differences are much larger. For example, the odds ratio for depression is 0.99 

based on the baseline model, which says that if a patient has been diagnosed with depression 

within 3 years before the HF event, depression almost does not have any effect on increasing 

or decreasing the survival risk. However, if the patient’s data matches pattern 2 from Table 

7, the odds ratio for depression is 1.46, making depression a very significant risk factor. We 

also highlight to indicate cases where the odds ratio changed from larger than one (positive 

effect) to smaller than one (negative effect). For example, the odds ratio of breast cancer 

according to the baseline model is 0.63, which says that if a patient has been diagnosed with 

breast cancer within 3 years before the HF event, the risk of death decreases. However, if a 

patient matches any of patterns 1, 2, 3, 6 or, 10 from Table 7, the risk of death increases. The 

above shows that local models can be different from the baseline model concerning both the 

positive and negative effects on the response variable.

Another interesting aspect of CPXR(Log) models is that they help identify diversity and 

heterogeneity of subgroups of HF patients. CPXR(Log) models are not only significantly 

different from the standard logistic regression model but also they are different from each 

other; such differences indicate that each (pattern, model) pair represents a distinct subgroup 

of patients with different behavior. For example, patterns 1 and 2 do not share any item with 

each other, and their odds ratios are significantly different in some of the predictor variables 

such as β-blockers use and Alzheimer disease.

We now give a concrete example where CPXR(Log) corrected a large prediction error 

observed in the baseline model. This is regarding a 39 years old male patient who was 

diagnosed with HF with a previous history of hypertension, but blood tests are normal. Since 

the patient is young and does not have abnormal lab results, the effect of hypertension is 

downgraded by SHFM [5] and the logistic model, and the risk of death is estimated at 38% 

and 47% by SHFM and logistic regression model, respectively. However, the observed 

outcome is that the patient deceased within one year after the HF event. We also had 

additional information about the patient that was not considered (or may have been ignored) 

by the other models. The EHR data indicate that the patient had a history of hip replacement 

surgery and had been diagnosed with pulmonary embolism. Many studies have found that 

hip and knee arthroplasty have high impact on the risk of pulmonary embolism [30]. This 

patient matches pattern 6 (BP >= 130 AND history of pulmonary embolism) of our 

CPXR(Log) model which includes patient co-morbidities, and the mortality risk is estimated 

to be 58% by the local model associated with pattern 6 – much higher compared to what was 

observed using SHFM and standard logistic regression. This example illustrates 

heterogeneity in HF, and highlights that co-morbidities play an important role in making 

accurate predictions of patients’ outcomes.

Taslimitehrani et al. Page 13

J Biomed Inform. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We now use our experimental results to discuss and highlight one of the main strengths of 

CPXR(Log), namely its ability to effectively utilize more predictor variables to derive more 

accurate models (a fact also observed in [24] when CPXR was used for linear regression), 

and to highlight the observation that large number of dimensions is also one of the 

challenges of EHR datasets (for traditional classification algorithms). EHR datasets often 

have a large number of variables and traditional classifiers fail to handle the high 

dimensionality data robustly, Table 8 demonstrates the extent to which AUC improved/

decreased when more variables are used for CPXR(Log) and other classifiers. As we 

discussed earlier, we divided our predictor variables into four groups of Demographics and 

Vitals, labs, medications, and co-morbidities (Demographics and Vitals are in one group). 

We started with demographic and vital variables, and then in each step, added more variables 

in the model building process. In general, CPXR(Log) consistently produced better AUCs 

when more variables are added, and it also obtained larger improvement in most cases than 

other classifiers. Interestingly, other classifiers sometimes performed worse when additional 

variables were included in the models. For example, adding the 24 co-morbidity variables 

improved the AUC of CPXR(Log) models by 15.9%; in contrast, the accuracy of other 

classifiers did not improve – in fact they decreased by 5.3% on average. It shows CPXR can 

effectively extract useful information capturing interactions among multiple predictor 

variables such as co-morbidities that are often missed by other classification algorithms.

In the last part of our experimental results, we turn to the impact of the loss function on the 

CPXR(Log) algorithm. As mentioned earlier, (at least) three different loss functions can be 

used in CPXR(Log). Figure 4 shows how CPXR(Log)’s performance changes when 

different loss functions are used in the algorithm.

Clearly, the probabilistic loss function returns the most accurate models. In fact, the AUC 

obtained when the probabilistic loss function is used is 1% more than the AUC obtained 

when Pearson’s loss function, and 4.8% more than the AUC obtained when the binary loss 

function is used, on average for the 1 year, 3 year and 5 year HF survival models.

5. Conclusion

We used a new clinical prediction modeling algorithm, CPXR(Log) to build heart failure 

survival prediction models, for 1-, 2-, and 5-years after HF is diagnosed based on EHR data. 

The models built by CPXR(Log) achieved much higher accuracy than standard logistic 

regression, Random Forest, SVM, decision tree and AdaBoost, which implies that there are 

fairly complicated interactions between predictor and response variables for heart failure. 

We also included 24 co-morbidities into our models and showed that adding these new 

variables gives us both more insights and improved accuracy of our models. In general, 

CPXR(Log) can effectively build highly accurate prediction models on datasets with diverse 

predictor-response relationships, but the other classification algorithms cannot effectively 

handle the high dimensionality and complexity of EHR data in order to build accurate 

prediction models. This study indicates that the behavior of HF patients is highly 

heterogeneous and that different pat terns and local prediction models better suitable in 

predicting HF survival to properly handle the disease heterogeneity. We also proposed to use 
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the probabilistic loss function in the CPXR(Log) algorithm, and the results showed the new 

loss function outperforms other loss function used in the previous studies.
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Highlights

• An approach called Contrast Pattern Aided Regression, CPXR(Log) with a new 

loss function is proposed.

• A series of heart failure survival risk models are developed using CPXR (Log) 

on an EHR dataset.

• The performance of CPXR(Log) models are compared with some of the state-

of-the-art classification methods.
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Figure 1. 
ROC curves for one year models
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Figure 2. 
ROC curve for two year models
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Figure 3. 
ROC curve for five year models
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Figure 4. 
Impact of the loss function on CPXR(Log)’s performance
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Table 1

Clinical characteristics of patients in the Mayo Clinic EHR-derived heart failure cohort

Age (in years) 78±10

Sex (male) 52%

Race (White) 94%

Ethnicity (Not Hispanic or Latino) 84%

BMI 28.7±11.25

Systolic Blood Pressure (mm/Hg) 120±25

Ejection Fraction (EF %) 36%±10.3

Hemoglobin (g/dL) 11.8±1.2

Cholesterol (mg/dL) 144±35

Sodium (mEq/L) 128±4.2

Lymphocytes (×10(9)/L) 1.32±0.7
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Table 2

Frequency of co-morbidities in the Mayo Clinic EHR-derived heart failure cohort

Co-morbidities Frequency (N=5044)

Acquired hypothyroidism 21.20%

Acute myocardial infarction 16.30%

Alzheimer 11.90%

Anemia 53.01%

Asthma 10.72%

Atrial fibrillation 48.56%

Benign prostatic hyperplasia 9.50%

Cataract 31.40%

Chronic Kidney Disease 55.83%

Pulmonary disease 30.40%

Depression 25.50%

Diabetes 37.40%

Glaucoma 9.40%

Hip/pelvic fracture 4.30%

Hyperlipidemia 64.30%

Hypertension 81.06%

Ischemic heart disease 70.20%

Osteoporosis 18.30%

Rheumatoid Arthritis 39.20%

Stroke 12.40%

Breast cancer 2.20%

Colorectal cancer 1.58%

Prostate cancer 4.50%

Lung cancer 2.45%
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Table 3

Frequency of medication classes in the EHR-derived Mayo Clinic heart failure cohort

Medication class Frequency (N=5044)

ACE inhibitor 55.7%

B blocker 48.6%

Angiotensin Receptor Blocker 12.8%

Calcium Channel Blocker 4.1%

STATIN use 43.2%

Diuretic use 68.7%

Allopurinol use 18.5%

Aldosterone Blocker 18.5%
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Table 4

AUC of different classifiers for HF risk prediction using EHR-derived Mayo Clinic cohort

Algorithm 1 year 2 years 5 years

Decision Tree 0.66 0.5 0.5

Random Forest 0.8 0.72 0.72

Ada boost 0.74 0.71 0.68

SVM 0.59 0.52 0.52

Logistic Regression 0.81 0.74 0.73

CPXR(Log) 0.937 0.83 0.786
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Table 5

Precision, recall, and accuracy of different classifiers

Measure Model SVM Log Reg. CPXR (Log)

1 year 0.66 0.752 0.82

Precision 2 Years 0.42 0.703 0.78

5 years 0.2 0.513 0.721

1 year 0.7 0.66 0.782

Recall 2 Years 0.68 0.643 0.76

5 years 0.5 0.506 0.615

1 year 0.75 0.89 0.914

Accuracy 2 Years 0.55 0.758 0.83

5 years 0.66 0.717 0.809
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Table 7

Details on CPXR(Log) patterns

ID Pattern arr Coverage Model

P1 History of Asthma AND without history of Glaucoma 0.0007 10.6% f1

P2 Age < 40 AND Cholesterol > 230 (mg/dL) AND EF =< 35 AND history of diabetes AND history of 
atrial fibrillation AND without history of Alzheimer

0.0021 6.2% f2

P3 History of diabetes AND History of ARB use 0.0022 19.7% f3

P4 Ethnicity = white AND history of kidney disease 0.0024 11.9% f4

P5 History of CCB use AND history of Alzheimer 0.0022 8.7% f5

P6 History of asthma AND without history of glaucoma 0.0021 10.5% f6

P7 Lymphocyte < 2.4 (mg/dL) AND history of Alzheimer AND history of myocardial infarction 0.0014 3.6% f7

P8 BP >= 130 AND history of pulmonary embolism 0.0018 21.8% f8

P9 History of lung cancer AND history of ARB use 0.0027 5.3% f9

P10 History of hypothyroid 0.0009 16.1% f10
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