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Abstract

Background: Cigarette smoke exposure during prenatal and early postnatal periods increases the incidence of a variety of 
abnormal behaviors later in life. The purpose of this study was to identify the possible critical period of susceptibility to 
cigarette smoke exposure and evaluate the possibe effects of cigarette smoke during early life on brain-derived neurotrophic 
factor/neurotrophic tyrosine kinase receptor B signaling in the brain.
Methods: Three different age of imprinting control region mice were exposed to cigarette smoke or filtered air for 10 consecutive 
days beginning on either gestational day 7 by maternal exposure, or postnatal days 2 or 21 by direct inhalation. A series of behavioral 
profiles and neurotrophins in brain were measured 24 hours after mice received acute restraint stress for 1 hour on postnatal day 59.
Results: Cigarette smoke exposure in gestational day 7 and postnatal day 2 produced depression-like behaviors as evidenced 
by significantly increased immobility in both tail suspension and forced-swim test. Increased entry latencies, but not 
ambulation in the open field test, were also observed in the gestational day 7 and postnatal day 2 cigarette smoke exposure 
groups. Genetic analysis showed that gestational day 7 cigarette smoke exposure significantly altered mRNA level of brain-
derived neurotrophic factor/tyrosine kinase receptor B in the hippocampus. However, behavioral profiles and brain-derived 
neurotrophic factor/tyrosine kinase receptor B signaling were not significantly changed in PND21 cigarette smoke exposure 
group compared with FA group.
Conclusions: These results suggest that a critical period of susceptibility to cigarette smoke exposure exists in the prenatal 
and early postnatal period, which results a downregulation in brain-derived neurotrophic factor/tyrosine kinase receptor B 
signaling in the hippocampus and enhances depression-like behaviors later in life.
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Introduction
Cigarette smoking is common among pregnant women (Allen 
et al., 2008; T. Liu et al., 2011; Cornelius et al., 2012; Elmasry et al., 
2014). Ten to fifteen percent of pregnant women continue smok-
ing despite multiple adverse outcomes in offspring (Mendola 

et  al., 2002; Cornelius et  al., 2011; Amos-Kroohs et  al., 2013). 
Maternal smoking during pregnancy has been reported associ-
ated with abnormal behaviors and cognitive development in off-
spring, and these adverse effects on neurodevelopment might 
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persist through adolescent period and extend into adulthood 
(Weitzman et al., 1992; Barros et al., 2011; Cornelius et al., 2011; 
T. Liu et al., 2011; Cornelius et al., 2012; Elmasry et al., 2014). The 
probability of developing psychiatric disorders increases in chil-
dren whose mothers smoke cigarettes during pregnancy, sug-
gesting a possible critical period of developmental sensitivity 
to cigarette smoke (CS) exposure exists during the prenatal and 
early postnatal period.

The central nervous system develops rapidly during fetal and 
early postnatal life. Given the dynamic and vulnerable nature of 
developmental processes, this period of morphogenesis is likely 
to be exquisitely sensitive to environmental insults (Slotkin et al., 
2002; Dwyer et al., 2009; La Maestra et al., 2011; Amos-Kroohs 
et al., 2013; Balsevich et al., 2014). Although little is known about 
how prenatal and early postnatal smoking exposure influences 
brain development, emerging studies have shown that neuro-
transmitters are changed in nicotine and cigarette smoking ani-
mals (Slotkin et al., 2002, 2006; Parameshwaran et al., 2012). In 
animal models, decreased brain weight, cortical thickness, and 
neural density were found in prenatal CS-exposed groups (Roy 
and Sabherwal, 1994). Similarly, clinical studies have also shown 
that prenatal CS exposure resulted in a reduction in fetal head 
growth and cerebellar development (Roza et  al., 2007; Rivkin 
et al., 2008; Ekblad et al., 2010; El Marroun et al., 2014). The imag-
ing studies further found the decreased frontal lobe, frontal 
cortex, and parahippocampal cortices in neonates with CS expo-
sure (Ekblad et al., 2010; Haghighi et al., 2013; J. Liu et al., 2013). In 
addition, reduced cerebral cortical gray matter and cortical gray 
matter, including amygdala and thalamus in CS-exposed chil-
dren, were also found (Rivkin et al., 2008). Although these stud-
ies have demonstrated prenatal CS exposure correlates with 
abnormal brain function and morphology, the signaling cascade 
underlying these alterations still remains unclear.

 Neurotrophins, a group of polypeptide growth factors, 
includes nerve growth factor, brain-derived neurotrophic fac-
tor (BDNF), neurotrophin-3, and neurotrophin-4 (Huang and 
Reichardt, 2001). BDNF is the most important neurotrophic fac-
tor that promotes and maintains growth and survival of the 
central nervous system (McAllister, 2001; Soule et  al., 2006; 
Cowansage et al., 2010; Gomez-Palacio-Schjetnan and Escobar, 
2013). The function of BDNF is mainly mediated by binding to 
its receptors, such as tropomycin receptor kinase (TrkB) family 
of tyrosine kinase receptors (Lu et al., 2005; B. H. Lee and Kim, 
2010). Disruption of normal synthesis and release of BDNF has 
been reported to associate with a variety of behavioral abnor-
malities (Nibuya et al., 1995; Tang et al., 2008; Tuon et al., 2010; 
Yochum et  al., 2014). Compromised function of plasticity and 
BDNF signaling has been implied in the pathophysiology of 
depression. Duman and coworkers (1997) have shown that 
synthesis of BDNF was increased by antidepressant treatment, 
suggesting a deficiency in BDNF might contribute to depression-
like behaviors (Duman and Monteggia, 2006). Emerging studies 
have indicated that BDNF plays a critical role in development 
of depression and antidepressant treatment (Nawa et al., 1994; 
Shimizu et al., 2003; Brunoni et al., 2008; Hammack et al., 2009; 
B. H. Lee and Kim, 2010). These studies indicated that compro-
mised hippocampal neurogenesis induced by decreased BDNF 
signaling might partially contribute to the depression-like 
behaviors. However, the possibe effects of CS on behaviors and 
the molecular mechanism underlying the fact that early-life CS 
exposures affects brain function still remains undefined.

 Recent studies from Jamal’s group revealed significant asso-
ciations of cigarette smoking and BDNF concentrations in serum 
(Jamal et al., 2015b). Furthermore, they found that BDNF Val(66)

Met may moderate depression or anxiety from smoking (Jamal 
et  al., 2015a). Thus, we hypothesized that susceptibility to CS 
exposure exists during prenatal and early postnatal periods and 
that CS exposure during these “critical periods” may alter BDNF/
TrkB signaling and induce depression-like behaviors in later life. 
The present experiments are designed to identify critical devel-
opmental periods of susceptibility to CS exposure in mice and 
characterize changes in behaviors and neurotrophins expres-
sion during these critical periods to determine the possible 
underlying mechanisms.

Methods

All procedures were performed in accordance with the recom-
mendations of the Guide for the Care and Use of Laboratory Animals 
8th edition, published by the National Institutes of Health in 2011, 
and the protocols were approved by the local Animal Care and 
Use Committee.

 The central nervous system is not fully developed during 
prenatal life, and the structural and functional development 
continues until postnatal days (PND) 14 to 21 days (Arnold and 
Trojanowski, 1996; Grove and Tole, 1999; Tole and Grove, 2001). 
The effects of CS exposure were investigated in 3 different ages 
of imprinting control region (ICR) mice: gestational day (GD) 7 to 
GD 16, which corresponds to the period of human fetal develop-
ment; PND 2 to PND 11, which corresponds to the human neona-
tal period; and PND 21 to PND 30, which is similar to the human 
prepubertal time period (Pinkerton and Joad, 2000). The previous 
studies have shown that CS exposure for 6 h/d for a few weeks 
to 2 months alters pulmonary function, immune responses, and 
brain neurons in monkey, rat, and mouse models (Barrett et al., 
2002; Yu et al., 2008; Wu et al., 2012). Three different age of mice 
were exposed to either CS or filtered air (FA) for 6 h/d for 10 con-
secutive days beginning on GD7 (by maternal exposure), PND2, 
or PND21 (direct exposure) (Figure 1). The 10-day exposure peri-
ods were chosen to allow testing of our experimental design in 
nonoverlapping developmental time periods. In addition, mice 
at 2 weeks of age are nearing maturity; thus, exposure in the 
PND2 group was completed before maturity, and exposure in 
the PND21 began after maturity. During the exposure period, 
dams and infants lived in the same cage with access to food 
and water. For the GD7 group, exposure initiated 10 days prior 
to the approximate date of parturition during the period when 
the central nervous system is beginning to form. After exposure, 
mice were housed with access to food and water ad libitum in 
an FDA-approved facility.

The level of cotinine in blood was measured at the end of the 
daily CS exposure on GD 7, GD 10, and GD 15 in the GD7 group 
from dams, on PND 3, PND 6, and PND 10 in the PND2 group from 
pups, and on PND 22, PND 25, and PND 29 in the PND21 group 
from exposed mice by cotinine Elisa Kit (Sigma, St. Louis, MO).

All groups of mice received acute restraint stress (ARS) for 1 
hour on PND59 and then were challenged with behavioral tests 
24 hours later. After behavioral tests, mice were sacrificed by 
decapitation. The hippocampus and prefrontal cortex were dis-
sected and immediately frozen on dry ice and kept at -80°C for 
PCR array, Western blotting, and ELISA test. The intent of this 
design was to examine the effects of CS on behaviors and poten-
tial mechanisms associated with early-life exposure by com-
paring responsiveness to CS after a period of recovery in naive 
mice and mice exposed to CS at 3 stages of life. ARS for 1 hour 
could not decrease exploration in the open arm of elevated plus-
maze (Vargas-Lopez et al., 2015). In our preliminary experiment, 
we also found that ARS in our stress model for 1 hour did not 
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produce significant endocrinological or behavioral changes in 
naive mice. Restraint stress for a minimum 4 hours was required 
to produce depression-like and anxiety-like behaviors. To test 
whether CS exposure increased the vulnerability and risk of 
depression-like behaviors, mice were challenged with ARS for 1 
hour, and behavioral tests were performed 24 hours later.

CS Exposure

The CS exposure with the same exposure equipment and meth-
ods was used in our studies as described previously (Wu et al., 
2009, 2012). Briefly, mice were randomly placed in an exposure 
chamber (BioClean, DuoFlo, model H 5500, Lab Products Inc) that 
measured 1.92 x 1.92 x 0.97 m (3.58 m3). The mice were housed 
in separate cages located at the exposure chamber. CS generated 
from 3R4F Kentucky Reference Research Cigarettes was intro-
duced into the exposure chamber at a rate of 4 cigarettes every 
15 minutes for 6 h/d using a smoking machine (RM 1/G, Heinr 
Borgwald GmbH, Hamburg, Germany). The smoking machine can 
produce isolated side-stream smoke (passive tobacco smoke) or 
a combination of mainstream and side-stream smoke (active 
tobacco smoke). For the present study, pregnant mice were 
exposed by combination of mainstream and side-stream smoke 
(active tobacco smoke), and PD2 and PD21 groups were exposed 
by side-stream (passive) smoke. At the end of the 6-hour expo-
sure period, the exhaust fan on the BioClean unit was turned 
on to rapidly lower the level of CS in the exposure chamber. 
The mice were then transported to the animal facilities. The 
concentrations of carbon monoxide in the exposure chamber 
were monitored and kept at an average of about 50 parts per 
million (ppm). Relative humidity was about 50% and tempera-
ture was about 23°C. Total suspended particulate concentration 
was about 1.1 mg/m3. Control animals were sham exposed to FA 
in whole body inhalation chambers under identical conditions 
(temperature, humidity and flow rate) to CS exposed mice.

Behavioral Procedures

Before the behavioral testing, animals were habituated for 1 
week by being transferred from the housing room to the testing 
room, being allowed to sit for 45 minutes, gently handled, and 
then returned to the housing room. The behavioral tests were 

conducted in the following order 24 hours after ARS: open field 
test (OFT), forced-swim test (FST), and tail-suspension test (TST) 
on 3 consecutive days.

ARS
The experiment was conducted as described previously (Hare 
et  al., 2014). Briefly, mice were restrained in 50-mL centrifuge 
tubes modified to allow air circulation for 1 hour. Mice were not 
physically squeezed and not able to move forward or backward. 
Mice were deprived of food and water during the entire period 
of exposure to stress.

OFT
The OFT was performed as previously described (Li et al., 2009; 
Masood et al., 2009). The open field was made of white acrylic 
(50 × 50) with 22-cm-high walls. The floor was divided into 
16 squares by black parallel and intersecting lines. Mice were 
placed individually in one corner of the open-field and entry 
latency (time to enter the rest of the open field from the start 
location), ambulation (with all 4 paws placed into a new square), 
and rearing (with both front paws raised from the floor) were 
recorded for 5 minutes. The apparatus was thoroughly cleaned 
using 70% ethanol after each animal.

FST 
The FST was described previously (Page et  al., 1999). Briefly, a 
mouse was placed individually in a Plexiglas cylinder (45 cm 
high × 20 cm diameter) containing water at 22 to 23°C and at 
a depth of 28 cm. Immobility, which was defined as floating in 
an upright position without additional activity other than nec-
essary for the mouse to keep its head above the water, was 
recorded for 6 minutes.

TST
The tail suspension test was performed as previously described 
(Steru et al., 1985). Briefly, each mouse was suspended 50 cm 
above the floor using adhesive tape placed approximately 
1 cm from the tip of its tail. The duration of immobility was 
recorded during the 6-minute test period. Mice were consid-
ered immobile only when they hung passively and completely 
motionless.
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Figure 1.  Time line for cigarette smoke (CS) exposure and experimental measurement. Prenatal exposures occurred at gestational day (GD) 7–16; early postnatal expo-

sure occurred at postnatal day (PND) 2–11; and late postnatal exposure occurred PND 21–30. All groups were exposed to acute restraint stress for 1 hour on PND59 and 

followed by behavioral testing 24 hours later. Brain samples were harvested for all the other evaluations after the last behavioral testing.



4  |  International Journal of Neuropsychopharmacology, 2016

Gene Expression of Neurotrophins and Receptors

Mice were sacrificed by decapitation after the last behavioral 
test. The hippocampus and prefrontal cortex were dissected 
and immediately frozen on dry ice and kept at -80°C. To deter-
mine neurotrophins and their receptors, RNA was extracted 
using TRIzol reagent (Invitrogen), and a portion (2 μg) of total 
RNA isolated was treated with Turbo DNase (Turbo DNA-free 
kit; Ambion) and reverse-transcribed into cDNA with the use 
of the RT2 first strand kit (Qiagen Inc, Valencia, CA) follow-
ing the manufacturer’s instructions. Mouse neurotrophin and 
receptors RT2 Profiler PCR Array kit (Qiagen Inc) was selected 
for the present study. PCR Array was performed according to 
the manufacturer’s protocol. Briefly, an experimental cock-
tail was prepared for each plate made up of the processed 
cDNA and 2× instrument-specific and ready-to-use array RT2 
qPCR master mix, containing SYBR Green and a reference dye. 
A portion (25 μL) of the experimental cocktail was placed into 
each well of the PCR array plate containing the predispensed 
gene-specific primer sets, and PCR was performed on the ABI 
Prism 7500 Sequence Detection System. A 2-step cycling pro-
gram was used (10 minutes at 95°C to activate the HotStart 
DNA polymerase, followed by 40 cycles of denaturing for 15 
seconds at 95°C and annealing for 1 minute at 60°C). Data 
collected was entered into online software PCR Array Data 
Analysis Web Portal provided by the manufacturer for data 
analysis. Gene expression levels were normalized against 
the housekeeping genes, including GUSB (glucuronidase β), 
HPRT1 (hypoxanthine guanine phosphoribosyl transferase 1), 
HSP90AB1 (heat-shock protein α class B member 1), GAPDH, 
and ACTB (β-actin). Fold changes in gene expression were 
calculated using the 2−ΔΔC

t method using the manufacturer’s 
software.

Immunoblotting Analyses

The hippocampus and prefrontal cortex were homogenized 
in ice-cold RIPA lysis buffer (Upstate, Temecula, CA) and cen-
trifuged at 16 000 × g for 30 minutes. Supernatant was mixed 
with an equal volume of Laemmli sample buffer and heated 
to 100°C for 2 minutes. Variable volumes of sample contain-
ing equal amounts of protein were loaded onto gels for SDS-
PAGE. Following separation by electrophoresis, proteins in 
the gels were transferred to nitrocellulose membranes, which 
were incubated with rabbit phospho-TrkB antibody (1:500; 
Santa Cruz, Dallas,Tx) or β-actin antibodies (1:1000; Chemicon, 
Temecula, CA) overnight at 4°C and then with Alexa Fluor 
680-conjugated secondary antibody (1:20 000; Invitrogen) for 30 
minutes at room temperature. The detection and quantification 
of specific bands were carried out using a fluorescence scan-
ner (Odyssey Infrared Imaging System, LI-COR Biotechnology, 
Lincoln, NE).

Enzyme-Linked Immunosorbent Assay (ELISA)

Hippocampus and prefrontal cortex were homogenized in ice-
cold lysis buffer (Upstate,Temecula, CA) and then centrifuged 
at 16 000 × g for 20 minutes (4°C). The supernatants were sub-
sequently analyzed by ELISA for BDNF (Promega, Madison, WI) 
according to the manufacturer’s instructions. All samples were 
run in triplicate, and as a negative control, a Phosphate-buffered 
saline sample was run with each assay.

Data Analysis

Unless otherwise stated, results are expressed as mean ± SEM. 
Statistical analyses of behavioral test, ELISA, and Western 
blotting were performed using 2-way ANOVA followed by 
Bonferroni’s posthoc test. One factor is age, and another fac-
tor is CS exposure. The data of PCR array were calculated using 
the 2−ΔΔC

t method using the manufacturer’s software. P < .05 was 
considered significant, and n represents the number of animals 
studied.

Results

Effect of the Prenatal and Postnatal CS Exposure on 
Depression-Like Behaviors

The level of serum cotinine was monitored at GD 7, GD 10, and 
GD 15 in GD7 group from dams, PND 3, PND 6, and PND 10 in 
PND2 group from pups, and PND 22, PND 25, and PND 29 in 
PND21 group (Table 1).

Before the experiment on PND 59, the weights (mean ± SEM) 
of CS exposure in GD7 (25.5 ± 1.2 g, n = 9), PND2 (26.1 ± 1.1 g, n = 9), 
and PND21 (26.4 ± 1.4 g, n = 9) were not significantly different from 
corresponding FA control groups (GD7: 26.6 ± 1.2 g, n = 9, t = 0.779, 
P  =  .436; PND2: 27.1 ± 1.4 g, n  =  9, t  =  0.597, P = .559 and PND2: 
27.2 ± 1.3 g, n = 9, t = 0.523, P = .608, respectively) (Figure 2A).

 In the OFT, there was no significant difference in ambula-
tion between the FA and CS exposure groups at any time period 
(GD7, PND2, or PND21) (Figure  2B). However, the prenatal and 
early postnatal (GD7 and PND2), but not PND21 CS exposure, sig-
nificantly increased entry latency by 70.61% (t = 5.66, P < .001) 
and 75.13% (t = 5.24, P < .001), respectively, compared with their 
FA exposure groups (Figure 1C). Only GD7 CS exposure induced a 
decrease by 38.93% in rearing (t = 7.36, P < .001). In contrast, both 
PND2 and PND21 CS exposure did not result in any changes in 
numbers of rearing (Figure 2D).

In the FST, immobility of GD7 and PND2 CS exposure groups 
was significantly increased by 108.69% (t  =  7.28, P < .001) and 
79.72% (t = 4.69, P =  .024) respectively compared with their FA 
exposure. By contrast, immobility was not changed significantly 
by CS exposure in the PND21 groups (Figure 3A). A similar pattern 
of changes was also found in the TST (Figure 3B). Immobility was 

Table 1.  The Levels of Cotinine (ng/mL) at Different Times during CS or FA Exposure

First Monitoring Second Monitoring Third Monitoring

CS FA CS FA CS FA

GD7 46.01 ± 5.18 0.21 ± 0.08 49.99 ± 6.08 0.19 ± 0.09 51.98 ± 5.13 0.20 ± 0.08
PND2 50.98 ± 5.14 0.20 ± 0.09 51.97 ± 6.69 0.22 ± 0.08 52.96 ± 6.53 0.20 ± 0.09
PND21 48.01 ± 6.30 0.19 ± 0.08 49.99 ± 6.08 0.19 ± 0.09 55.44 ± 6.21 0.22 ± 0.09

Data are means ± SEM. n= 5 mice samples/monitoring/group.
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significantly increased by 89.36% in the GD7 CS exposure group 
in comparison with FA control (t = 7.28, P < .001). However, PND2 
CS exposure only increased immobility by 41.79% compared 
with FA exposure control, but not significantly (t = 3.01, P = .061). 
In addition, no significant differences were found in PND21 CS 
exposure groups compared with FA control. These findings sug-
gest that the initial exposure to CS during the prenatal or early 
postnatal period significantly enhanced depression-like behav-
iors in offspring.

Effect of the Prenatal and Postnatal CS Exposure on 
mRNA Levels of Neurotrophins and Receptors

The gene expressions of neurotrophins and their receptors 
in the hippocampus and prefrontal cortex were tested using 
RT2 Profiler PCR Array. As shown in Figure 4A and D, CS expo-
sure in the GD7 group significantly decreased BDNF mRNA 
by 79% (P  =  .021) and 68% (P  =  .024) respectively in the hip-
pocampus and prefrontal cortex compared with their FA con-
trols. In addition, TrkB mRNA was increased by 186% (P = .001) 
and 98% (P =  .006) in the hippocampus and prefrontal cortex, 
respectively, in comparison with FA exposure groups. In PND2 
group, CS exposure also induced a significant decrease in BDNF 
mRNA by 48% (P = .038) and an increase in TrkB mRNA by 132% 
(P =  .003) by compensation in the hippocampus. However, no 
similar changes in either BDNF mRNA or TrkB mRNA were 
found in prefrontal cortex (Figure  4B,E). In the PND21 group, 
CS exposure did not produce any significant changes in mRNA 
levels of any neurotrophins and their receptors (Figure 4C,F). 
Other genes analyzed in GD7, PND2, and PND21, which included 
nerve growth factor, neurotrophin-3, neurotrophin-4, and neu-
rotrophic tyrosine kinase receptor A, did not demonstrate any 
significant changes in CS exposure groups in comparison with 
FA control groups.

Effect of the Prenatal or Postnatal CS Exposure on 
BDNF Protein Levels

To measure whether CS exposure influences protein level, BDNF 
in the hippocampus and prefrontal cortex was measured by 
ELISA. Data showed that BDNF protein level was significantly 
decreased in the GD7 CS exposure group by 55.08% (t  =  4.52, 
P = .022) (Figure 5A) and 61.26% (t=5.02, P = .013) (Figure 5B) in the 
hippocampus and prefrontal cortex, respectively, compared with 
FA controls. Similarly, PND2 CS exposure also induced a trend of 
reduction in BDNF protein level in hippocampus and prefrontal 
cortex by 32.31% (t = 3.22, P = .063) and 27.79% (t = 2.69, P = .072) 
(Figure 5A-B), but not statistically significant. By contrast, PND21 
CS exposure did not induce any significant changes in the pro-
tein level of BDNF compared with FA control.

Figure 2.  Effects of the prenatal and postnatal cigarette smoke (CS) exposure on weight (A), ambulation (B), latency (C), and rearing (D) in the open field test (OFT). Data 

shown represent means ± SEM; n = 9/group. *P < .05, **P < .01, Significant difference comparing corresponding data between filtered air (FA) and CS animals.

Figure 3.  Effects of the prenatal and postnatal cigarette smoke (CS) exposure 

on immobility in forced-swim test (FST) (A) and tail suspension test (TST) (B). 

Immobility in gestational day (GD)7 CS exposure groups was increased in both 

TST and FST, indicating depression-like behaviors. Data shown represent means 

± SEM; n = 9/group. *P ≤ 0.05, **P < .01 Significant difference comparing corre-

sponding data between filtered air (FA) and CS groups.
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Effect of the Prenatal or Postnatal CS Exposure on 
Levels of Phosphorylated TrkB

To determine whether the activation of TrkB receptor is altered as the 
downstream target of BDNF signaling, phosphorylated TrkB in hip-
pocampus and prefrontal cortex were studied. The results showed 
that the level of phosphorylated TrkB was significantly decreased 
by 47.02% (t = 7.69, P =  .029) in the hippocampus (Figure 6A) and 
by 42.72% (t = 6.67, P = .031) in prefrontal cortex (Figure 6B) in GD7 
CS exposure group compared with control. PND2 CS exposure 
only induced a trend of decrease in phosphorylated TrkB by 26.8% 
(t = 3.28, P = .059) in hippocampus and by 15.3% (t = 2.77, P = .074) 
in prefrontal cortex respectively. In contrast to the GD7 and PND2 
groups, PND21 CS exposure did not induce any significant changes 
in either hippocampus or prefrontal cortex (Figure 6A-B).

Discussion

Recent studies have shown that maternal smoking during preg-
nancy and childhood secondhand smoke may increase risk for 

depression in later life (Herrmann et al., 2008; Cornelius et al., 2011; 
Mbah et al., 2013; Elmasry et al., 2014; Holz et al., 2014; Yochum 
et al., 2014). Epidemiological studies also found that children are 
more susceptible to adverse behavioral effects of passive smok-
ing than adults (Herrmann et al., 2008; Cornelius et al., 2011; Holz 
et al., 2014), suggesting that exposure to environmental tobacco 
smoke in early life might be a predisposing factor for such condi-
tions. The results obtained from the current study showed that 
the changes of behaviors were significantly different between 
the GD7 CS exposure and control groups, and the levels of BDNF 
and phosphorylated TrkB in hippocampus were significantly 
decreased in mice initially exposed to CS during early periods of 
development (prenatal and early postnatal period). However, ini-
tial exposure to CS during a late period of development (PND21) 
did not appear to affect depression-like behaviors and BDNF/TrkB 
in hippocampus, suggesting that a critical period of susceptibility 
exists during prenatal and early postnatal periods.

During the prenatal and early postnatal stage of life, the 
central nervous system is not fully developed. The sensitivity 
of the central nervous system in newborns is higher than in 

Figure 4.  Effects of the prenatal and postnatal cigarette smoke (CS) exposure on gene expression of neurotrophins and their receptors in the hippocampus (A-C) and 

prefrontal cortex (D-F). Neurotrophins and their receptors including nerve growth factor, brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotro-

phin-4, low-affinity nerve growth factor receptor P75, neurotrophic tyrosine kinase receptor A (TrkA), and neurotrophic tyrosine kinase receptor B (TrkB) were measured 

by RT2 Profiler PCR Array. Data shown represent means ± SEM; n = 6/group. *P ≤ .05, **P < .01 vs filtered air (FA) exposure.
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adults (Larsen, 1993). This might be due to the level of BDNF in 
brain during the early development period. BDNF is lowest dur-
ing the embryo period and then gradually increases into adult-
hood, especially in the hippocampus (Maisonpierre et al., 1990), 
which is consistent with the timing of robust neurogenesis in 
the central nervous system (Altman and Bayer, 1984; Lehuen 
et al., 1990). Throughout the development of the central nerv-
ous system, BDNF is responsible for proliferation and mainte-
nance via regulating neuronal plasticity, influencing neuronal 

differentiation, and survival (Soule et al., 2006; Cowansage et al., 
2010). Mice lacking BDNF demonstrated severe deficiencies in 
central nervous system development (Ernfors et al., 1994; Pozzo-
Miller et al., 1999). Thus, dysregulated BDNF level by CS expo-
sure during the critical period of rapid brain growth may alter 
the normal developmental process and lead to long-term cel-
lular alterations that result in the inability of the brain to make 
appropriate adaptive responses (Cornelius and Day, 2009) and 
contribute to the depression-like behaviors in later life.

Previous studies have reported that mice with deficiency in 
BDNF demonstrated depression-like behaviors, and adminis-
tration of BDNF produced antidepressant effects (Nawa et  al., 
1994; Karege et al., 2002; Shimizu et al., 2003; Karege et al., 2005; 
Brunoni et al., 2008; Hammack et al., 2009; B. H. Lee and Kim, 
2010), indicating BDNF correlates with development of depres-
sion. In addition, plasma level of BDNF in patients with major 
depression was significantly lower than healthy participants 
(Gonul et al., 2005; Karege et al., 2005; Brunoni et al., 2008), and 
chronic antidepressant treatment significantly relieved the 
clinical symptoms by increasing BDNF (Shimizu et al., 2003) and 
activation of TrkB in the brain (Castren et al., 2007; Monteggia 
et al., 2007; B. H. Lee and Kim, 2010). These findings are consist-
ent with our finding that prenatal and early postnatal (GD7 and 
PND2) CS exposure decreased BDNF level and TrkB activation 
and increased depression-like behaviors. However, other stud-
ies have shown that deficiency of BDNF or TrkB cannot induce 
depressed behaviors, although BDNF is required for effective 
antidepressant treatment and recovery of neuronal networks 
(Nawa et  al., 1994; Pozzo-Miller et  al., 1999; Saarelainen et  al., 
2003; B.  H. Lee and Kim, 2010; Papaleo et  al., 2011). Therefore, 
further studies are needed to investigate whether BDNF or 
TrkB receptor agonist can reverse abnormal neuronal networks 
and behavioral changes induced by CS exposure. Recent stud-
ies found that glial cell derived neurotrophic factor promoted 
development of neurons and played an important role in the 
pathogenesis of mood disorders (Barbosa et  al., 2011; Tunca 
et al., 2014, 2015). It is not clear whether it functions simulta-
neously as BDNF via same mechanism in CS exposure-induced 
abnormalities during early life and needs further investigation 
in the future.

Structural and morphological abnormalities in specific 
brain regions such as prefrontal cortex and hippocampus are 

Figure 6.  Effects of the prenatal and postnatal cigarette smoke (CS) exposure on phosphorylated neurotrophic tyrosine kinase receptor B (TrkB) in hippocampus (A) 

and prefrontal cortex (B). Phosphorylated TrkB was significantly decreased in GD7 CS exposure group in comparison with filtered air (FA) control in both hippocampus 

and prefrontal cortex. Data shown represent means ± SEM; n = 6/group. *P ≤ .05, **P < .01 vs FA exposure.

Figure 5.  Effects of the prenatal and postnatal cigarette smoke (CS) exposure on 

protein level of brain derived neurotrophic factor (BDNF) in the hippocampus 

and prefrontal cortex. Gestation day (GD)7 CS exposure significantly decreased 

BDNF protein level in both hippocampus (A) and prefrontal cortex (B). Data 

shown represent means ± SEM; n = 6/group. *P ≤ .05, **P < .01 vs filtered air (FA) 

exposure.
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associated with depression. MRI studies showed that depressed 
patients had significantly decreased left and right hippocam-
pal volumes compared with controls (Harrison, 2002; Campbell 
et  al., 2004). PET imaging studies also demonstrated that pre-
frontal lobe hypometabolism in primary and secondary depres-
sion correlated with the degree of frontal inactivity in clinical 
patients (Kimbrell et al., 1999; Hastings et al., 2004). In animals, 
the reduction in volume might be due to abnormal cellular 
developments, including decreased neurogenesis, loss of glial 
cells, and retraction of dendrites. In addition, abnormal neural 
circuits and structure (Folstein et al., 1985; Phillips et al., 2003) 
and imbalance of activity in prefrontal cortex and hippocam-
pus contribute to the depression (Koenigs and Grafman, 2009). 
These studies from both clinical and animal models have dem-
onstrated that hippocampus and prefrontal cortex play an 
important role in depression. Our results showed that prenatal 
CS exposure decreased BDNF/pTrkB in both hippocampus and 
prefrontal cortex. Especially, GD7 and PD2 CS exposure down-
regulated BDNF/TrkB in hippocampus, while only GD7 CS expo-
sure decreased BDNF/TrkB in prefrontal cortex significantly, 
suggesting hippocampus and prefrontal cortex are more sensi-
tive to CS exposure during the prenatal period and may produce 
prolonged effects on brain morphology or neuronal plasticity 
due to deficiency of BDNF. These findings parallel clinical stud-
ies that CS exposure reduced cortical gray matter in teenagers 
(Rivkin et al., 2008) and decreased frontal cortex and hippocam-
pal gyrus in adolescents (Toro et al., 2008; Lotfipour et al., 2009), 
indicating the effect of CS exposure on the brain might be in 
a region-specific manner or a time-specific manner throughout 
the neural development (El Marroun et al., 2014).

Nicotine and carbon monoxide are of major concern because 
of their known toxic actions and their responsibility for most of 
the harmful effects during the perinatal CS exposure. Cotinine is 
the major proximate metabolite of nicotine and has been widely 
used as a biomarker in active and secondhand tobacco smoke. 
The average level of cotinine in our experiment was around 
50 ng/mL, which was similar with the cotinine level typically 
found in human light smokers (30–100 ng/mL) and less than 
the cotinine level in 17-cigarette/d smokers (average 122 ng/mL) 
(Pirkle et al., 1996; Benowitz et al., 2009). Serum cotinine level 
reflects nicotine level after recent exposure to CS. Nicotine can 
cross biological membranes including the placental barrier into 
the fetal and blood brain barrier. Navarro et al. (1989) showed 
that prenatal exposure to high doses of nicotine via maternal 
infusions impaired nervous system development. Eriksson 
et al. (2000) also found that exposure to nicotine in the prenatal 
period stimulated the nicotinic acetylcholine receptor in brain 
and modified behavior of mice later in life. In rat models, expo-
sure to nicotine during utero has demonstrated behavioral, neu-
rochemical, and cognitive abnormalities in offspring (Bertolini 
et  al., 1982; Levin et  al., 1996). Neonatal exposure to nicotine 
also elicited neurobehavioral defects in adult (Ankarberg et al., 
2001). These studies indicate that nicotine potentially alters nor-
mal brain growth or nicotinic acetylcholine receptor during the 
prenatal and early postnatal period, which may subsequently 
affect behaviors later in life. Carbon monoxide can also cross the 
placenta and combines reversibly with hemoglobin to form car-
boxyhemoglobin in both maternal and fetal blood. It is also well 
known that the reduction of oxygen and the increase of carbon 
monoxide during CS exposure are detrimental to brain develop-
ment (Caravati et al., 1988; Fogh-Andersen et al., 1988; Parslow 
et al., 2004; J. H. Lee et al., 2012). Due to the complexity of CS 
exposure, we could not identify specific components involved in 
the abnormalities in our study.

Previous studies have found that significant strain differences 
exist for variables used to measure depression-like behaviors in 
mice models such as FST and TST (Lucki et al., 2001; Mineur et al., 
2006; Sade et al., 2014). C57BL/6 mice demonstrate a decrease in 
immobility in TST, whereas BALB/C mice show an increase in 
immobility after chronic mild stress (Mineur et al., 2006). A study 
comparing 11 mouse strains in the FST showed that there is a 
10-fold range of immobility values (Lucki et al., 2001). These sug-
gest the existence of substantial behavioral differences between 
mouse strains in the baseline performance. ICR mouse is a well-
established animal model that has been used extensively for 
studying behavioral profiles (Sade et al., 2014; Avitsur et al., 2015; 
Yokota et al., 2015). Recent studies showed that prenatal expo-
sure to diesel exhaust particles and fluoxetine affects behavio-
ral response in ICR mice (Avitsur et al., 2015; Yokota et al., 2015). 
Thus, ICR mice were used in our behavioral studies. In addition, 
gender differences exist in the etiology and responses to stress 
in mice (Palanza, 2001; Frye and Walf, 2009). Emerging evidence 
has demonstrated that antidepressant-induced behavioral 
effects vary with the estrous cycle in female animals (Carrier and 
Kabbaj, 2013; Franceschelli et al., 2015), indicating that gonadal 
hormones can at least partially contribute to the differences 
of responses to antidepressant treatment between male and 
female rodents. To avoid the influence of gonadal hormones to 
our experiment, male ICR were used in our study.

In conclusion, the results showed that exposure to CS during 
prenatal (maternal exposure) and early postnatal life increased 
the depression-like behaviors and decreased BDNF/TrkB signal-
ing later in life. Interestingly, these responses were not observed 
when CS exposure occurred in late postnatal life (near puberty 
in mice), suggesting that a critical period of susceptibility to 
CS exposure exists in the prenatal and early postnatal period 
of brain development in mice, which results in a downregula-
tion in BDNF/TrkB signaling in the hippocampus and enhances 
depression-like behaviors later in life.
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