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Abstract
In the recent decades, the evolution of omics technologies has led to advances in all biological fields, creating a demand for
effective storage, management and exchange of rapidly generated data and research discoveries. To address this need, the
development of databases of experimental outputs has become a common part of scientific practice in order to serve as
knowledge sources and data-sharing platforms, providing information about genes, transcripts, proteins ormetabolites. In this
review,wepresent omics databases available currently, with a special focus on their application in kidney research and possibly
in clinical practice. Databases are divided into two categories: general databases with a broad information scope and kidney-
specific databases distinctively concentrated on kidney pathologies. In research, databases can be used as a rich source of
information about pathophysiological mechanisms andmolecular targets. In the future, databases will support clinicians with
their decisions, providing better and faster diagnoses and setting the direction towards more preventive, personalized
medicine. We also provide a test case demonstrating the potential of biological databases in comparing multi-omics datasets
and generating new hypotheses to answer a critical and common diagnostic problem in nephrology practice. In the future,
employment of databases combinedwith data integration and datamining should provide powerful insights into unlocking the
mysteries of kidney disease, leading to a potential impact on pharmacological intervention and therapeutic disease
management.
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Introduction
In recent decades, major advances in the field of omics analyses
have led to an exponential increase in available experimental
data. Omics platforms offer high-throughput, detailed explor-
ation of the genome, transcriptome, proteome and metabolome,
analysed using a variety of techniques including mRNA and
miRNA arrays, next-generation sequencing and mass spectrom-
etry. In the light of technological improvements, generation of
large amounts of high-quality data is no longer the main chal-
lenge in all fields of research, as the bottleneck has now shifted
to the handling and extensive analysis of these omics datasets.
Thus, the huge volume of data produced by each platform is
still largely underexplored and leads in the majority of cases to
the study of a restricted number of molecules, focusing on
those that are of direct interest to the researchers and thus
ignoring (and maybe wasting) the vast majority of the remaining
information. Moreover, the increased number of omics-based
publications hinders the thorough and effective reuse of data;
the task becomes laborious and significantly prolongs the re-
search process. Hence, efficient data storage and fast information
retrieval based on data and literature mining becomes vital
in order to confirm the findings from omic studies, avoiding
incorrect data interpretation and ultimately elucidating novel
hypotheses, which can be beneficial in answering everyday clin-
ical problems. For these reasons, the creation, management and
utilization of omics databases is particularly important. In this
context, the field of nephrology is no exception.

Kidney disease can be defined as any disorder that affects
renal structure and function, thus high-throughput methods
have become essential to capture the complex molecular signa-
tures underlying this broad spectrum of distinct pathologies.
Therefore, in chronic and acute kidney diseases,which arehighly
variable and multifactorial, a large number of differentially
expressedmoleculeswill varywith regards to cause of pathology,
severity and rate of progression [1]. Moreover, renal function
decline is commonly accompanied by comorbidities such as
diabetes, cardiovascular disease, mineral and bone disorder or
anaemia, adding further layers of complexity to the picture of
the dysregulated molecular networks associated with the dis-
ease. The wealth of information produced by omics experiments
has allowedparallel analysis ofmodifications of large numbers of
molecules in different parts of the kidney, across different dis-
eases and sometimes from rare samples such as kidney biopsies.

Omics databases are invaluable tools in nephrology research
and greatly facilitate the work of scientists. For each omics
platform, available data repositories contain information about
molecules of interest coming from experimental datasets, com-
putational annotations or manually curated literature searches.
Most of the database resources are of high quality, publicly
accessible and frequently updated. They provide up-to-date in-
formation about the function, the localization and the expression
of the molecules and can help with study design. They also store
information about similar experiments that have already been
conducted, thus easing literature searches and facilitating fast
results validation and confirmation of findings.

Yet how can the omics databases be helpful for clinical prac-
tice? It is a long way from data collection to clinical usage, but
the databases are the core of this process, being the central
storage of the raw data. Databases currently utilized by clinicians
are mostly used for administrative purposes—electronic patient
records (EPR) store clinical and health information, allowing
treatment of the patients to be more effective [2]. Nevertheless,
systems biology approaches and high-throughput technologies

push the revolution of medicine from reactive towards proactive
and preventive. This so-called P4 medicine is defined by four
features—predictive, preventive, personalized and participatory—
and is fuelled by systems approaches to disease, emerging tech-
nologies and novel analytical tools [3]. Omics sciences provide a
wealth of information that, with the use of powerful computa-
tional methods, can be used for patient screening, diagnosis,
monitoring and prevention. The development of omics diagnos-
tic tools is ongoing [4], and it is expected that theywill be gradual-
ly introduced in clinical practice within the next decade [5].
Moreover, integrative methods of data analysis can lead to the
discovery of new biomarkers, correlation of molecular changes
with disease outcome and ultimately elucidation ofmechanisms
of various diseases [6]. Pharmacogenomic companies benefit the
most from the use of these databases by creatingmodels for pos-
sible therapies, which later can be proven essential for treatment
during clinical practice [7]. Additionally, databases may work as
an encyclopaedia for clinicians by offering a collective list of
the molecules of interest with fast retrieval of information and
possibly ‘connecting the dots’ in cases without prior logical
links. To conclude, in the future, omics databases will be proven
to be vital tools for the treatment of the patients, as personalized
medicine is coming of age [8].

In this review, we focus on and describe the application of the
main resources that can be useful in kidney disease studies: the
general omics databases that cover a wide range of information
on molecules and pathologies (Table 1), as well as the specific
databases that target information explicitly connected to kidney
diseases and the urinary tract (Table 2). Furthermore, we will in-
troduce basic technical aspects and showcase the use of these
databases in an attempt to solve an everyday problem in clinical
practice, distinguishing diabetic nephropathy from other causes
of glomerular disease, such as IgA nephropathy.

General databases
Functional genomics and transcriptomics are considered the
most advanced omics technologies, due to early (compared to
other omics traits) major technological improvements and pro-
gress in data analysis [9]. One of the universal resources in
the field of genomics, the Online Mendelian Inheritance in
Man (OMIM) [10] represents a publicly available, daily updated
source of information about human genes. The OMIM catalogues
>15 000 gene entries focusing mainly on the molecular relation-
ships between genetic and phenotypic variations, with a special
emphasis on, but not restricted to, human genetic disorders.
Observations on animal models are also available. By obtaining
knowledge from the OMIM on genetic disorders, a researcher
can acquire some clues about particular genes, observe the phe-
notyping changes and further evaluate putative differences at
the proteome level, setting the OMIM ultimately as an all-around
omics database. Due to this universality, theOMIM canbe used as
a source of information to connect genes and renal phenotypes,
as was presented by Parsa et al. [11]. In this publication, the
authors systematically compiled the 258 OMIM genes described
to be responsible for diseases associatedwith kidney phenotypes
such as renal hypoplasia, dysplasia or agenesis, end-stage renal
disease and proteinuria and excluding those causing renalmalig-
nancy. Using the previously published genome-wide association
study (GWAS) meta-analysis data of the CKDGen Consortium
[12], they further studied the potential association of common
variants within these genes and kidney function in the general
population. Although the authors did not find any new gene
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variants that could be linked to kidney function decline, this
study highlights the value of the OMIM as a source of information
to connect genes and renal phenotypes [11].

Besides providing information about the function of genes
and/or proteins, databases can be a useful source of information
about their localization within the kidney or other organs. One of
the largest resources on spatial protein tissue expression is the
Human Protein Atlas (HPA) [13]. The HPA database regroups mil-
lions of immunohistochemistry-based high-resolution images,
presenting the spatial distribution of proteins in human tissues
(44 tissue types), cancer types (20 types) and human cell lines
(46 types). In the context of renal pathophysiology, the HPA has
been used mostly as a downstream resource to validate the ex-
pression of newly identified kidney or urinary proteins, following
transcriptomics or proteomics experiments, in the different renal

compartments [14–18]. Regarding the very limited access to kid-
ney tissue, especially fromhealthy individuals, the HPA database
is an important resource to considerwhen searching for informa-
tion regarding kidney protein expression and localization.

Other general databases are listed non-exhaustively in
Table 1. These resources include the genomics data repository
GeneCards [19] for storing annotated and predicted human
genes, databases aboutmicroRNAs and their targets such asmiR-
Base [20], miRDB [21] and microCosm (http://www.ebi.ac.uk/
enright-srv/microcosm) and the Human Metabolome Database
[22] for small molecule metabolites. A number of databases at
the European Bioinformatics Institute website (http://www.ebi.
ac.uk) are also worth mentioning since they host a number of
popular and frequently used omics databases, including Expres-
sion Atlas, PRIDE and ArrayExpress [23]. All these databases

Table 1. General omics databases

Name Description Main features

Genomics
GeneCards (http://www.genecards.
org/)

Detailed information on all annotated and
predicted human genes

Contains >152 000 GeneCards genes
Gene-centric data from >100Web sources from all kind
of omics

Very detailed description of genes (aliases,
compounds, proteins, domains, expression, related
publications, transcripts, pathways)

Online Mendelian Inheritance in
Man (http://www.omim.org/)

Comprehensive, authoritative compendium of
human genes and genetic phenotypes

>15 000 genes
Information on all known Mendelian disorders
Relationship between phenotype and genotype

Transcriptomics
Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/
gds)

Repository for gene expression datasets
supplied by researchers

3848 array and sequence-based datasets
Common data submission procedures ensure good
data quality

Tools for data analysis and visualization are provided
ArrayExpress (https://www.ebi.ac.
uk/arrayexpress/)

Functional genomics archive 60 054 high-throughput experiments
Stores both processed and raw data
Standardized data submission process, frequent
updates, connected with GEO

Expression Atlas (https://www.ebi.
ac.uk/gxa/)

Similar to GEO but with fewer datasets that are
more focused on baseline experiments

1572 datasets
Two components: Baseline Atlas for expression in
‘normal’ conditions and differential Atlas for
experimental expression data

miRBase (http://www.mirbase.org) Detailed information on all published and
annotated miRNAs

28 645 entries of miRNAs from 223 species

DIANA tools (http://diana.imis.
athena-innovation.gr)

Web tool dedicated to miRNA studies miRNA target identification, and pathway analysis
Published validated miRNA–gene interactions
Automated pipelines to analyse user data
miRNA-related publication search

Proteomics
PRoteomics IDEntifications
(PRIDE) (https://www.ebi.ac.uk/
pride/archive/)

Proteomics data repository Stores 3342 projects on protein/peptide identifications
and post-translational modifications and supporting
spectral evidence

Additional annotation of datasets for better
organization

Human Protein Atlas (http://www.
proteinatlas.org/)

Protein expression and localization in different
tissues and organs (immunochemistry)

Additional information regarding genes, annotations
and organs

Nice graphical interface
Metabolomics
Human Metabolome Database
(http://www.hmdb.ca/)

Detailed information onmetabolites (chemical,
clinical and molecular biology/biochemistry
levels)

Contains thousands of metabolites
Search in 17 different biofluids and 617 diseases
Connections with pathways, proteins and reactions

Multi-omics
Multi-Omics Profiling Expression
Database (www.proteinspire.org/
MOPED/)

Processed multi-omics data Interactive visualization tools
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integrate clinical, functional and molecular annotation and en-
able fast information retrieval with the use of advanced search
engines. Moreover, they are often cross-linked with large bio-
logical data repositories (e.g. UniProt, GenBank, KEGG, etc.) and
are equipped with various tools for data analysis and visualiza-
tion. Altogether, although not kidney specific, these general
databases provide valuable information about newly identified
molecular pathways, drug targets or potential biomarkers asso-
ciated with kidney disease.

Kidney-specific: focus on omics data originating
from urine, kidney and kidney disease
Apart from the various general databases, some resources specif-
ically focus on omics data related to kidney and/or kidney
diseases and provide knowledge and support in nephrology
research.

Proteomics

The Human Kidney and Urine Proteome Project (HKUPP) [24]
database was created in 2006 and hosts experimental data from
the human kidney and urine proteome usingmass spectrometry.
The goal of the HKUPP is to facilitate the analysis of proteomes in
normal and disease conditions, provide open-source access to
experimental data and help with identification of novel putative
biomarkers and drug targets for kidney disease. The database
consists of proteomic profiles of kidney structures (glomerulus,
renal medulla) as well as urine (normal, proteinuric, exosomes)
obtained from the experiments performed in the context of the
HKUPP consortium. In addition to human datasets, the HKUPP
database also stores profiling data from rat inner medullary col-
lecting ducts (IMCDs) [25]. Therefore, it is feasible to search and

compare human and rat data, correlate findings between the
two species and thus enrich the proteomic knowledge of
kidney development and pathology. Besides these advantages,
some limitations have to be mentioned. First, despite being
of high quality, the entries are limited to results generated
by the HKUPP consortium, while many other urinary or kidney
proteomics experiments have been published. Moreover,
although some new features have been added recently, such as
the ‘Human Renal Medulla Identified Proteome and Mass and
Antibody-based Proteomics databases, the resource is neither
updated nor upgraded regularly and the data are not confirmed
with another technology or with other publications. Finally,
proteins have been attributed accession numbers based on the
international protein index (IPI), an outdated and obsolete pro-
tein database that was closed in 2011 and replaced by Uniprot
identifiers, making it difficult to search for information about a
protein. Despite these shortcomings, in 2012, Simonson et al.
[26] successfully used theHKUPPdatabase as part of an analytical
workflow designed to identify novel non-invasive biomarkers of
early renal damage associated with type 2 diabetic nephropathy.
Using transcriptomics, 36 mRNAs coding for secreted proteins
were differentially expressed in the kidney of diabetic db/db
mice compared with non-diabetic db/m mice. The HKUPP was
used to verify whether some or all of the corresponding proteins
were known to be present in human urine. Six of these potential
urinary biomarkers of diabetic kidney disease [endothelin-1,
lipocalin-2, transforming growth factor β (TGF-β), growth and
differentiation factor-15 (GDF-15), interleukin-6 (IL-6) andmacro-
phage chemoattractant protein-1] were further validated in a
cohort of 56 patientswith type 2 diabetes using ELISA. Urinary pro-
tein levels of all six candidates were elevated in type 2 diabetic pa-
tients with renal function decline and three of them (endothelin-1,
GDF-15 and IL-6) were also associated with proximal tubular

Table 2. Kidney-specific databases

Name Description Main features

Transcriptomics
Nephroseq (https://www.nephroseq.org/) Gene expression in renal disease;

integration with clinical data
26 datasets (1989 samples)
Analysis and visualization tools (differential
expression, co-expression, outlier, etc.)

Upload and export tools
Renal Gene Expression Database (http://rged.
wall-eva.net/)

Gene expression in renal disease 88 research papers analysed
Easy-to-use interface

Proteomics
Human Kidney and Urine Proteome Project
(HKUPP) (http://www.hkupp.org/)

Protein expression in normal urine and
normal or diseased kidney

Search for proteins in kidney structures
(glomerulus, human medulla) and urine

Enables viewing two-dimensional gels and
query fractions

Urinary Protein Biomarker Database (http://
122.70.220.102/biomarker)

Candidate protein biomarkers in urine >400 reports on human and animals
819 human biomarkers, 33 animal biomarkers

Peptidomics
Urinary Peptidomics and Peak-maps (http://
www.padb.org/updb)

Urinary peptides modified in disease Search by detection methodology and disease

Multi-omics
Kidney and Urinary Pathway Knowledge
Base (KUPKB) (http://www.kupkb.org/)

Collection of publically available omics data
related to renal disease

>220 experiments
Easy and fast interface
Pathway visualization with KUPKB Network
Visualizer

Chronic Kidney Disease database (CKDdb)
(http://www.padb.org/ckddb)

Collection of publically available omics data
related to chronic kidney disease

366 datasets
Search by study, sample, tissue, disease and
molecule type
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damage [26]. This study demonstrates that the HKUPP database,
as a resource for reference proteomics datasets, can be easily
integrated in basic and clinical research workflows to facilitate
studies to understand kidney biology and disease.

The Urinary Protein Biomarker Database (UPBD) [27] contains
approximately 1500 urinary protein entries, extracted manually
from the literature from >500 reports associated with different
human and animal disorders, including a wide range of acute
and chronic kidney diseases (CKDs) such as acute renal allograft
rejection, diabetic nephropathy or polycystic kidney disease. The
proteins of interest can be searched individually, but the data-
base also allows all the proteins modified in one specific condi-
tion (disease and/or species) to be found. An interesting feature
of the database is the possibility to download the entries, as
well as to contribute to the database by submitting third-party
study results. In contrast to the HKUPP database, which is
based on the presence or absence of a given protein in normal
urine (or renal tissue), the UPBD can be used to examine if and
when the level of the protein of interest was modified in urine
in human or animal models of kidney disease [28–30]. Such an
application was described in the publication from Jia et al. [30].
In this work the authors sought to identify new potential urinary
biomarkers of kidney disease by targeting specifically the pro-
teins of kidneyorigin in urine. Indeed, determination of quantita-
tive changes in those protein levels in urine may have a greater
potential for detecting modifications of renal function at early
stages than proteins deriving from plasma and/or other organs.
In order to exclude proteins present in urine as the result of plas-
ma ultrafiltration and selectively collecting proteins from kidney
tissue, a model of isolated rat kidney perfusion was used. A total
of 1400 proteins were identified in the isolated rat kidney perfu-
sion-driven urine, including 990 proteins expressed in the
human kidney. After comparison with the UPBD, 923 of these
990 potential human kidney origin proteins in urine were found
to have never been studied as candidate biomarkers of kidney
diseases and, hence, could be examined using direct targeted
proteomics studies in the discovery phase for new kidney disease
biomarkers [30]. The UPBD is an interesting resource compiling
modifications of urinary proteins in the context of renal disease.
The term ‘biomarker’, however, should be considered with cau-
tion. In the past decade, an increasingly large number of papers
have been published onnovel so-called biomarkers of kidney dis-
ease. Yet, their translation to clinical practice is limited. This
might be due to problems associatedwith the design of discovery
and validation studies and/or the lack of real clinical benefit of
these proteins, which could be associated with the disease
pathophysiological mechanisms without any diagnosis or prog-
nosis value [31]. Therefore, most of the proteins present in the
database might be considered preferably as candidate biomar-
kers awaiting validation instead of as biomarkers per se.

Transcriptomics

Nephroseq [32, 33] combines 26 publicly available renal gene
expression profiles from renal disease studies and related disor-
ders in humans and mice with a sophisticated analysis engine
and an application for data mining and visualization of gene
expression data. The power of this database is that the transcrip-
tomics data are reanalysed and associated with detailed clinical
information, which allows formore thorough analysis. The inter-
face integrates different analysismodules for differential expres-
sion, cluster, outliers and concept analysis. Analysis results
can be visualized in the form of summary tables, block plots
and co-expression matrices. The success of Nephroseq can be

assessed by the number of publications that used the database
as part of their analysis workflow [34–40]. It is interesting to
note that although Nephroseq compiles transcriptomics data
from different kidney diseases such as IgA nephropathy, aging,
focal and segmental glomerulosclerosis, transplantation, hyper-
tension or lupus, so far themajority (if not all) of the publications
that have used the resource were interested in the datasets
associated with diabetic nephropathy. For example, in a recent
report, McKay et al. [34] combined two bioinformatics databases,
Nephroseq and the Jaspar database (a database containing a set
of transcription factor binding sites), in order to predict in silico
the involvement of key transcription factors regulating the devel-
opment of diabetic nephropathy, identifying the transcription
factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1) and spe-
cificity protein 1 (SP1) [34]. Literaturemining relieved thatTFAP2A
and MZF1 are involved in epithelial-to-mesenchymal transition
and SP1 regulates TGF-β signalling and fibrogenesis, three me-
chanisms related to diabetic nephropathy pathogenesis. Using
Nephroseq, the authors further confirmed that gene expression
of MZF1 was increased in diabetic nephropathy and gene expres-
sion of TFAP2Awas decreased in an in vitromodel of tubular fibro-
sis (HK2 cells treated with TGF-β). This publication is an example
of how the use of databases and bioinformatics tools may offer
potential therapeutic targets for the treatment of renal disorders.

Another kidney-specific database of renal gene expression
profiles is the Renal Gene Expression Database [41]. This resource
consolidates information on gene expression from next-
generation sequencing and microarrays from renal cell lines,
human kidney tissue and animal models related to various kid-
ney diseases. A user interface enables querying of the database
by gene or disease and plots gene expressionwithin the samples.
Additionally, a SimilarityAnalysis Tool Box allows the comparison
of selected gene expression with other gene sets from Biocarta,
KEGG and Reactome Pathways. It is a newand promising database
with a goal to link genes of interest with their expression in differ-
ent kidneydiseases andpathways involved,providingpossibilities
to drive researchers towards biomarker and drug discovery.

Multi-omics

The Kidney and Urinary Pathway Knowledge Base (KUPKB) is a
web tool that includes data from different omics datasets on kid-
ney diseases and facilitates rapid hypothesis generation in the
context of renal pathophysiology in a simple environment [42].
The KUPKB offers the network visualization tool KUPNetViz,
which enables users to integrate multilayered experimental
data over different species, renal locations and renal diseases
and protein–protein interaction networks and identify associa-
tions with biological functions, biochemical pathways and other
functional elements such asmiRNAs [43]. In a recent publication,
Sanchez-Nino et al. [44] examined the role of the brain abundant
signal protein 1 (BASP1) in albumin-induced tubular cell death
and its correlation with CKD. BASP1 was increased in apopto-
tic tubular cells in response to puromycin aminonucleoside–
induced nephritic syndrome in rats and in human renal biopsies
of proteinuric nephropathy. In vitro, albumin-induced BASP1
expression in tubular cells and inhibition of BASP1 protected from
albumin-induced apoptosis. Using the KUPKB, the authors also
found that the BASP1 protein was increased in urine from patients
with type 2 diabetes with microalbuminuria as compared with
those with normoalbuminuria, despite both groups displaying
high glucose levels. These results suggest that tubular apoptosis
observed in diabetic nephropathy cannot be solely attributed to
high glucose levels but also to albumin-induced toxicity [44].
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The Chronic Kidney Disease database (CKDdb) [45] is an inte-
grated and clustered information resource that covers multi-
omic studies (microRNA, genomics, peptidomics, proteomics
and metabolomics) of CKD. The resource was developed by min-
ing the existing literature on the featured topic followed by man-
ual curation of the assembled data. In order to deal with the high
heterogeneity and diversity of the gathered data, a specific ontol-
ogy was applied to tie together and harmonise multilevel omic
studies based on gene andprotein clusters andmapping of ortho-
logous genes across species. This database is primarily aimed at
allowing disease pathway analysis by a data-driven system ap-
proach. Aworkflow utilizing the design of interlinked kidney dis-
ease–themed databases, including CKDdb (http://www.padb.org/),
was recently published byHusi et al. [46]. It consistedof combined
top-down and bottom-up systems biology methods to find novel
disease pathways in diabetic arteriopathy. Proteomics analysis
was used to identify statistically significant proteins further inte-
grated using GO terms and cluster analysis into interactomes of
metabolic and signalling pathways. Additionally, OMIM disease
clustering combined with literature mining found the link to
human disease pathways and identified decreased glycolysis
and fatty acid metabolism as the molecular processes perturbed
in diabetic arteriopathy.

Technical note on data integration: from
databases to model development
Combinations of different omics data sources obtained from
various biological levels and/or closely related conditions should
allow for better understanding of complex biological systems and

elucidation of progression mechanisms, hence enabling the dis-
covery of novel biomarkers and therapeutic targets [47]. However,
integration and analysis of heterogeneous omics data is difficult
and, until recently, was not a common approach in data analysis
workflows. A detailed discussion on the bioinformatic tools
for data integration and system biology approaches in CKD can
be found in the recent review by Cisek et al. [48]. After data
acquisition via different high-throughput omics platforms, pre-
processing steps are required to obtain normalized, standar-
dized, high-quality and statistically significant data. Such data
can be later used for initial meta-analysis and to perform further
iterative, single and multicombinatorial analysis to elucidate ex-
isting inter- and intradependencies in the form of interaction
pathways, statistical models and others [49]. Database systems
have found their position as the tools to bridge this gap, as they
can provide data in a common form, both in structure and con-
tent, that facilitates data analysis, comparison and integration
on a greater scale [50]. Analysis outcomes can provide novel in-
sights that need to be further validated in either clinical or re-
search environments to ultimately be used in the clinic or to
pursue new research hypotheses [51]. In Figure 1 we describe
this approach fromomics data generation to the creation and val-
idation of a model via the use of databases.

Showcasing the use of different databases in
kidney research
In order to showcase the potential utility of combining the exist-
ing kidney disease databases, we analysed kidney transcriptomic
and proteomic datasets originating from diabetic nephropathy

Fig. 1. Proposedworkflow for a data-driven approach inmulti-omics data integration. After data acquisition via different high-throughput omic platforms, rawdata can be

stored locally in the owner’s database and be pre-processed (data cleaning, filtering, normalization, reduction, etc.). After the pre-processing steps the data are matched

with current reference repositories (data curation). The latter metadata can be then deposited in a different database that only displays statistically relevant features,

which is much more amenable for collaborative use for researchers in a common project. Single and/or multiple combinations can be used in order to integrate data

coming from up- and downstream levels and then used to develop models that together try to mimic the cell environment and represent their own interactome. The

state-of-art model would consider simultaneously any network topology, molecular interaction and statistical relevance in order to provide the most robust

representation of the cell dynamics when undergoing disease. Every new model requires confirmation by validating some selected molecular features using in vivo or

in vitro experiments (immunohistochemistry, qRT-PCR, ELISA, etc.) This is an iterative step, in which to obtain a final model, it could involve several cycles of

incrementing new data and testing its validity until an optimal phase is reached where the model is considered suitable for scientific scrutiny.

348 | T. Papadopoulos et al.

C
L
IN

IC
A
L
K

ID
N
E
Y
JO

U
R
N
A
L

http://www.padb.org/
http://www.padb.org/
http://www.padb.org/
http://www.padb.org/
http://www.padb.org/


and IgA nephropathy human studies with the aim to propose
markers of IgA nephropathy in diabetic individuals. In most
patients with type 2 diabetes, renal disease is due to diabetic
nephropathy. However, the prevalence of other, non-diabetic
nephropathies such as IgA nephropathy, isolated or superim-
posed on a diabetic nephropathy, can range from 6 to 64% [52].
Therefore, in everyday clinical practice, there is a critical need
to identify specific biomarkers to exclude the possibility of
a non-diabetic, potentially treatable glomerulonephritis in dia-
betic patients [53]. The aim of this analysis was to identify new
potential biomarkers and/or mechanistic targets that could

help differentiate diabetic and/or IgA nephropathy in diabetic
patients. To do so we chose to further analyse the study from
Jia et al. [30], where the authors investigated the proteome from
perfused rat kidneys and identified 990 proteins as kidney pro-
teins with human orthologs. By comparing this dataset with
the UPBD, 67 proteins were already described as candidate
biomarkers for human kidney diseases, leaving 923 proteins
with unknown potential association to nephropathy. In the
test case, we compared the 990 proteins with Nephroseq, the
KUPKB and the CKDdb, focusing on identifying proteins for IgA
nephropathy and diabetic nephropathy. Comparison of the 107

Fig. 2.The test case pipeline. The comparison of the transcriptomics and proteomics datasets for Diabetic Nephropathy (DN) and IgA nephropathy (IgAN) from the CKDdb,

the KUPKB andNephroseqwith the 990 proteins identified in urine in the Jia et al. [30] study yielded 37 common proteins, 25 DN-specific proteins, 9 IgAN-specific and 3 for

both cases (Venn diagram). The proteins found as possible biomarker candidates in Jia et al. through analysis in the Urinary Proteome Biomarker Databasewere excluded,

resulting to 21 proteins specific for DN and 5 proteins specific for IgAN.
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IgA nephropathy proteins and 212 diabetic nephropathy proteins
extracted from the kidney-specific databases and the 990 pro-
teins from Jia et al. yielded 5 proteins specific for IgA nephropathy
and 21 proteins specific for diabetic nephropathy that were not
present in the UPBD. Analysis workflow is depicted in Figure 2.
In addition to the kidney-specific databases, we also used the
general databases OMIM and Human Protein Atlas in order to
gather further knowledge about these proteins. Some of these
proteins are already known to be potentially involved in diabetic
and IgA nephropathies, such as aminopeptidase N [54], vinculin
[55], plasmolipin [56, 57], transglutaminase-2 [58, 59] and signal
transducer and activator of transcription 1-α/β [60, 61]. Some pro-
teins, however, although not yet found to be directly involved,
showed potential interest, as they were associated withmechan-
isms related to diabetic nephropathy. For example, 78-kDa
glucose-regulated protein is a molecular chaperone involved in
endoplasmic reticulum stress, a mechanism mediating cell
death in diabetic nephropathy [62, 63]. Another example is gan-
glioside GM2 activator, an enzyme involved in lipid metabolism,
which could be of significant interest as a biomarker regarding
the pathogenic potential of gangliosides in the development of
diabetic nephropathy [64, 65].

In conclusion, we show with this example that the combin-
ation of different general and kidney-specific databases can
lead to the generation of new hypotheses and to new candidate
molecules for further in-depth research for mechanistic, drug
and/or biomarker discovery to help answer some frequent pro-
blems that clinicians face, such as the precise diagnosis of diabet-
ic nephropathy versus IgA nephropathy in diabetic individuals.

Conclusion
Kidney-specific databases are becoming more mature. Techno-
logical progress, additional knowledge and information on
kidney pathology and physiology and the plurality of information
found in the different kidney-specific and general databases
produces confidence in the presented results. Web resources
such as Nephroseq, the KUPKB and the CKDdb attempt to
unify all available information from different sample origins
and omics levels and provide nephrology researchers with tools
for more comprehensive research and analysis. Conversely, in
scientificfields like biology andmolecular biology that are advan-
cing at a rapid pace, the limited rate of updates in these resources
may lead to a large number of false discoveries. Users must be
careful when selecting a database to support their research.
They should take into consideration the source of the experimen-
tal data (e.g. Nephroseq for genes or UPBD for urinary proteins).
Most importantly, users must keep in mind that the databases
provide a static picture which might be true only until proven
otherwise at a later point in time. Nevertheless, the development
and use of omics databases represents amajor step forward in aid-
ing the fast confirmationoffindings, but also toultimatelyelucidate
novel hypotheses in the context of renal diseases. These databases
at the current formdonot yet change everyday life of the clinicians.
Nevertheless, it is likely that in the near future this large amount of
available data, combined with powerful in silico analysis tools and
user friendly interfaces, will provide significant help to shed light
on the pathophysiology of the kidney and improve future diagnosis
and treatment options in clinical nephrology.
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