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particular, we welcome the authors’ clear 
statement that “AAV2 insertions in sponta-
neous human HCC...are clearly unrelated 
to vectorized AAV used in gene therapy” 
and the open discourse on the interpreta-
tion of the authors’ scientific findings with 
regard to wild-type (wt) AAV2 biology 
and cancer. We note here a few points that 
we think ought to be discussed further.

Were the identified wtAAV2 sequence 
fragments driver or passenger muta-
tions? As Nault and colleagues point 
out, the development of solid tumors is 
a multiple-step process involving many 
mutations. Hence, a retrospective analysis 
of the sequential steps leading to tumori-
genesis is challenging, and often impos-
sible. As such, the authors’ contention that 
the identified partial wtAAV sequences 
represent activating driver mutations re-
mains unproven for us. (i) How can one 
rule out that a passenger wtAAV mutation 
became clonally expanded because it had 
integrated into a cell that subsequently be-
came cancerous? In that case, how would 
it differ in appearance from a driver mu-
tation? (ii) Based on the data provided in 
their paper,3 81.1% of the AAV-positive 
hepatocellular carcinoma (HCC) cases 
(9/11 biopsies) are attributable to AAV- 
unrelated etiologies or mutations, and some 
of these are suggested to be driver muta-
tions whereas others have not been studied. 
(iii) Furthermore, if wtAAV sequences in-
deed function as driver mutations, should 
they not be clonal in all rather than only 
7/11 of the wtAAV-positive biopsies? (iv) 
According to the authors’ work in 2013, 
TERT promoter mutations are present in 
~60% of HCC,3 but, intriguingly, only one 
wtAAV-related TERT promoter mutation 
was identified among the AAV-positive 
HCCs. (v) Induced overexpression does 
not necessarily equate to driving cancer 
development, because—particularly fol-
lowing integration events—the resulting 
messenger RNA might not be functional. 
Experiments to evaluate these possibilities 
are lacking. Along these lines, how many 
AAV integrations did the authors identify 
in “HCC-related genes” in nontumor tis-
sues, and did these also lead to overexpres-
sion of the affected genes? Some of these 
aspects may become much clearer once a 
complete integration analysis of both the 
tumor and nontumor samples is available. 
Nevertheless, given the small number of 
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We greatly appreciate the letter by Jean-
Charles Nault and colleagues1 in response 
to our recent editorial2 in Molecular Ther-
apy discussing their paper, “Recurrent 
AAV2-Related Insertional Mutagenesis in 
Human Hepatocellular Carcinomas.”3 In 

related events in this first report linking 
wtAAV sequence fragments and HCC, a 
statistical consideration is impossible.

The authors draw a parallel between 
HBV or EBV and AAV. As far as tumori-
genic potential is concerned, HBV-in-
duced HCC is not necessarily a conse-
quence of HBV integration. Chronic HBV 
infection is also characterized by chronic 
inflammation, oxidative stress, disruption 
of cellular pathways, and other effects, 
which are all associated with increased 
risk of cancer. From a virology point of 
view, HBV and wtAAV are quite differ-
ent: the former exhibits several genomic 
stages, active replication, a high rate of 
mutation, and the presence of HBV pro-
teins affecting cellular pathways; most im-
portantly, HBV lacks an active integrase. 
Furthermore, the EBV–host interaction 
differs substantially from that of AAV. In 
particular, one has to take into account that 
EBV (like HBV) is replication-competent, 
in contrast to wtAAV, which is dependent 
on helper viruses for replication.

The authors did not observe wtAAV 
integration in AAV integration site 1 
(AAVS1). Numerous groundbreaking stud-
ies, although not based on high-through-
put sequencing, have demonstrated the 
preferred integration of wtAAV2 into 
AAVS1––located at human chromosome 
19––and have uncovered the molecular 
mechanism underlying this integration 
preference, identifying the multifunc-
tional, nonstructural wtAAV Rep proteins 
and specific sequence elements shared 
by AAV2’s inverted terminal repeats and 
AAVS1 (Rep-binding sites and terminal 
resolution sequence motifs) as key fac-
tors.5–8 Consistent with this, several pub-
lications have shown that Rep-deficient 
vectors gained AAVS1 targeting upon 
administration of Rep protein.9–12 As yet, 
only two large-scale wtAAV integra-
tion analyses performed on primary cells 
have been published. They differed with 
respect to the frequency of integration 
into AAVS1 that was determined (2.5% 
and 8.9%, respectively), but nevertheless 
confirmed AAVS1 as an integration hot 
spot.13,14 Thus, although we acknowledge 
that one has to assume not only method-
ological variations in integration site re-
trieval but also cell-intrinsic factors that 
may bias integration site distribution of 
wtAAV, we do still find it quite remark-
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able that Nault and co-workers did not find 
a single wtAAV integration in AAVS1. 

To summarize, although we acknowl-
edge Nault and colleagues’ clear statement 
regarding the structural and functional 
discrimination between wtAAV and AAV 
vectors, we continue to challenge the sug-
gested oncogenic role for wtAAV-derived 
sequences. It will be very interesting to 
follow future studies addressing this top-
ic, including those revealing differences 
between integration events in mice and 
humans.15 Given the large number of se-
quenced HCCs worldwide, such sequence 
data should shed more light on wtAAV’s 
oncogenic or even antioncogenic role in 
HCC formation.16
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