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Many problems in crystallography and other fields can be treated as nearest-

neighbor problems. The neartree data structure provides a flexible way to

organize and retrieve metric data. In some cases, it can provide near-optimal

performance. NearTree is a software tool that constructs neartrees and provides

a number of different query tools.

1. Introduction

Nearest-neighbor search (NNS) (also known as the post office

problem; Knuth, 1998), has many uses. In crystallography,

many geometric questions, e.g. inferring bonding from

distances between atoms, can be resolved by NNS. It has other

uses in pattern recognition (Zhang et al., 2006), computer

graphics (Freeman et al., 2002), machine learning (Shaw &

Jebara, 2009), tumor detection (Ballard & Sklansky, 1976) and

other fields, including being a critical component of many

data-mining algorithms. A considerable number of data

structures have been developed to speed NNS. Examples are

cubing (Levinthal, 1966), quadtrees (Samet, 1984), kd-trees

(Bentley, 1975) and R-trees (Guttman, 1984). These differ

from neartrees in that their internal structures are always

aligned along coordinate axes. In neartrees, the orientations of

the spatial divisions are derived from the relative positions of

data points, independent of the coordinate system.

There are also closely related searches, such as k-nearest

neighbors, range searches (Skiena, 1998) and farthest

neighbor, as well as corresponding approximate searches for

use when the exact answer is not required or is not feasible

(Knuth, 1998; Muja & Lowe, 2014). The neartree data struc-

ture can be used in the implementation of each of these

searches.

2. The nearest-neighbor problem

The nearest-neighbor search is well defined in any data space

that satisfies the rules of a ‘metric space’. This means that

there is a measure of distance, a ‘metric’, d(x, y), defined

between all points x and y in the space, which is a non-negative

real number for which a zero distance implies the points are

equal, for which the distance is symmetric, i.e. d(x, y) = d(y, x),

and for which the triangle inequality is satisfied, i.e. d(x, z) �

d(x, y) + d(y, z). Obviously, for a single probe datum, a simple

linear search testing the distance to each data point will

succeed. Searches can be complicated by issues such as the

metric being discontinuous, the Hausdorff dimension of the

data being high or the metric being time consuming to

calculate. Direct application of the rules of a metric space may
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not work if multiple points are at zero distance from one

another, e.g. two different atoms with partial occupancy at the

same position, or two different structures with the same unit

cell. These issues can all be addressed. If the search for the

nearest datum is to be done for each of many probe data, then

it is often advantageous to use an algorithm that reduces the

number of distance calculations that must be performed. The

linear search scales as O(n), where n is the number of points in

the space. Optimal methods can scale by O[log(n)] for the

average case (Kalantari & McDonald, 1983).

For those cases where the cost of distance evaluation is

expensive, methods to reduce the number of evaluations are

important, both in constructing the tree and in retrieving the

sought datum. When multiple searches are needed, a linear

search may be too expensive, even for testing a single probe at

a time.

3. Searches related to the nearest-neighbor problem

Searches for nearest neighbors can be useful for exploring the

vicinity of a probe. Farthest-neighbor search can be used to

estimate the diameter of a data set (note this is only guaran-

teed to be the actual diameter in the one-dimensional case).

Searches for all neighbors within a sphere or outside a sphere

centered at the probe can be useful when the properties of a

neighborhood are to be investigated (for instance, what atom

types surround a particular atom in a protein). Searches for all

the neighbors within an annulus centered at a probe can also

be useful. Finally, the exact k-nearest-neighbor search has

many uses. For instance, when a search might return a large

number of results because of an unknown density of points,

but a small sample would suffice, then the search could be

limited to k. Surprisingly, rapid exact k-nearest-neighbor

search has been found to be a somewhat difficult problem

(Bernstein & Andrews, 2016).

There is also a considerable body of literature on the

approximate k-nearest-neighbor search (see e.g. Knuth, 1998;

Muja & Lowe, 2014). For some difficult problems, it is better to

obtain at least an estimate of what the neighborhood is like.

Approximate k-nearest-neighbor searches can be much faster

than exact search, but obviously there are cases where an

exact answer is preferred.

4. The neartree data structure

The ancestor of the neartree structure was described by

Kalantari & McDonald (1983). Their structure is a double-

linked tree, and retrieval is implemented using markers of

where to resume searching when a branch has been bypassed.

The concept was streamlined by Andrews (2001), where

recursion replaces both the double linking and the inserted

markers. Although the neartree structure is simpler to

describe using recursion, implementation is more robust if one

maintains an internal stack structure.

Neartrees can be used to store many kinds of data. The two

requirements are that the data have a metric and that they

obey the triangle inequality (that is, no one side of a triangle

has a length that exceeds the sum of the lengths of the other

two sides).

The neartree structure has a close resemblance to a binary

tree. At each node, there is a right and a left point (see Fig. 1).

In leaf nodes, there will be either one or two points. Each point

stores a data object (or a reference to one) and the maximum

distance from that data object to any data object in the subtree

descending from the point. For the case of searching for the

nearest (or farthest) neighbor of some probe point, that

maximum distance frequently allows the search of some

subtrees to be pruned (i.e. ignored). Kalantari & McDonald

(1983) suggest that the use of more than two points in a node

might be useful (resembling a B+ tree; Bayer & McCreight,

2002). Some experiments did not show consistent improve-

ment in retrieval (Andrews, 1984).

5. Limitations of neartrees in practice

The first limitation on neartrees is that the structure and the

retrieval both require that the metric obey the triangle

inequality. Small violations could lead to answers that are

approximately correct, but, because incorrect pruning of the

neartree search will occur, actual nearest neighbors could be

missed. This problem is related to the requirement that, in a

metric space, d(x, y) = 0 if and only if x = y. However, there is

no requirement that the metric vary continuously. Discrete

metrics, such as integers, work, and the objects stored in

neartrees can be clusters of metric equivalent points. For

example, in working with databases of unit cells, we store

collision chains of structures with identical cells and just store

a single representative of the collision chain in the tree proper.
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Figure 1
Example of a neartree containing six points. At the top of the figure we
show the points in space. At the bottom of the figure we show the
equivalent neartree. Each dashed circle in space represents one node,
containing a pair of points, and each dotted line represents the
partitioning of space for that node. The points in the root node are
labeled ‘L’ and ‘R’. The points in the left node at the next level are labeled
‘LL’ and ‘LR’.



Like any tree data structure, neartrees provide the best

performance if they are relatively well balanced. Unfortu-

nately, the standard methods for rebalancing a tree have a

major drawback in neartrees. If a data point (or a subtree) is

moved, many of the distances back to the root node will need

to be recalculated. The only place that rebalancing does not

incur a relatively large cost is at leaf nodes when a point is

being added.

The loading of data into a neartree can influence the

balancing of the tree. In a case where the data are sorted in

some way before being added, unbalancing of the whole tree

or multiple subtrees can result. As a particular unfortunate

example, consider loading a sequence of integers into a

neartree. When a datum is added to a filled node, it will be

added to the subtree below the nearer of the two points. When

the data are in sequence, then every filled node will have only

a subtree on one side: a one-sided tree (see Fig. 2). Various

schemes for randomizing the addition of data can mitigate this

problem.

Because the descending distances are stored in each node of

a neartree, there are no simple methods either to delete points

or to update the positions of points.

Bellman’s so-called ‘curse of dimensionality’ (Bellman,

1961) affects all schemes for improving NNS other than simple

linear search. In high dimensions, it has been found that

simpler NNS methods tend to become as slow as a linear

search, because more and more points must be searched,

asymptotically approaching all points.

6. Constructing a neartree

The algorithm will be described as a recursive algorithm.

However, implementation by recursion to use a stack expli-

citly has the advantage of avoiding potential stack overflow,

and it may lead to more efficient execution (see Fig. 3).

The procedure to add a new point at any node in a neartree

is as follows:

(i) If the node does not exist, create an empty node.

(ii) If the node is empty, add the point as a new left point to

the node (see the first line of Fig. 3).

(iii) Else if the node has only a left point, add the point as a

new right point to the node.

(iv) Else if the node has both a right and a left point,

determine which point contains the point that is closer to the

new point (see the second line of Fig. 3).

(a) For that closer point, update the distance to the farthest

point below in the neartree (see the final section of Fig. 3).

(b) If the distance from the point in the closer point to the

new point is larger than the stored distance to the farthest

point, update the distance (see the final section of Fig. 3).

(c) Otherwise, leave the maximum distance (below in the

tree) unchanged.

(v) Add the point to the node that descends from that closer

point, and return to step (i).

7. Searching a neartree for the nearest neighbor

As in adding a new point to a neartree, the algorithm is

described using recursion. Implementation using other

methods may be desirable.

To find the nearest point in a neartree to a probe point, start

at the root node. There should be no empty nodes. Each node

will contain one or two points.

(i) For the current node, determine which point is closer to

the probe point. (If there is only one point in the node, it will

be the left point.)

(a) For the closer point, calculate the distance from the

probe to the point. If that is less than the shortest distance

found so far, update the shortest known distance.

(b) Using the triangle inequality, determine whether the

tree descending from the closer point could possibly contain a

point closer than the current shortest distance. If the currently

known shortest distance plus the farthest distance from the
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Figure 2
An unbalanced neartree constructed by inserting, in order, the integers
from 1 to 10.

Figure 3
An example of the growth of a neartree when inserting nodes in order as
discussed in x6. The data consist of the integers 2, 3, 9, 6 and 5. The tree is
empty when 2 and 3 are inserted, so 2 goes into the left side of the root
node. 9 is closer to 3 than to 2, so it is inserted in the left side of a node
pointed to from the right side of the root node, and the maximum distance
on the right side of the root node is set to 6 = |9 � 3|. 6 is also closer to 3
than to 2, so it is inserted into the right side of the same child node. 5 is
closer to 3 than to 2, so we follow the branch from the right side of the
root node. We discover that 5 is closer to 6 than to 9, leading us to place 5
in a new child node pointed to from the right side of the previous child
node and to set the maximum distance to 1 = |5 � 6|.



current point to any point below is less than the distance from

the probe to the current point, then ignore any descending

tree (see Fig. 4).

(c) Otherwise, continue to search by taking the probe as the

descending point [step (i)] (see Fig. 5).

(ii) Repeat the previous step [i.e. step (i)(a)] for the farther

point (if any).

(iii) Output the shortest distance found from the probe to

any point in the neartree.

8. Improving a neartree

One limitation of neartrees listed above is that inserting sorted

data can lead to excessively unbalanced trees. Three schemes

have been found to improve the balancing. The first (and

simplest) is to delay insertion of new points into the tree until

it is absolutely necessary to insert them (for instance, when a

retrieval from the tree is requested). At that point in time, a

random selection of points are added to the tree in random

order. The best number of randomly selected points to use to

initialize a balanced scaffold in the tree in this way is some-

what arbitrary; however, for n points, n1/2 has been found to

function relatively well.

The second scheme involves monitoring the depth of the

tree during construction. When the currently constructed tree

becomes too unbalanced, the random scheme (described

above) can be invoked for the remaining uninserted points.

This scheme can be particularly effective for cases such as the

coordinates of a protein molecule, where the separate domains

can cause a group of well sorted atoms to be processed

sequentially.

The third scheme (the ‘flip’) improves the depth of the tree

by improving the separation between pairs of points in nodes.

In the course of inserting a new point P in the tree, when a leaf

node with left point L and right point R is encountered, the

distances d(P, L) and d(P, R) have to be computed in order to

decide whether to insert P in the subtree that descends from L

or in the one that descends from R. If d(P, L) is larger than

d(L, R), replace L with P in the node and insert P in the

subtree that now descends from P. If d(P, R) is larger than

d(L, R), replace R with P in the node and insert R in the

subtree that now descends from P. See Fig. 6 for an example of

the process.

Each of these schemes contributes to shallower trees, which

result in a shorter average time to retrieve nearest neighbors

(see Fig. 7). However, the third scheme does result in some-

what slower tree builds (see Fig. 8). For a tree of fewer than

100 000 nodes, the cost is justified if there will be at least two

searches for each tree build. For larger trees with several
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Figure 4
An example of a step in a search. Any possible objects that are closer than
the current search radius lie only within the intersection of the circle
around the probe point and the circle around the node object (with radius
Dmax, the largest distance to any point below in the neartree). Only points
in the crosshatched region can satisfy the triangle inequality for the
particular objects. They satisfy the triangle inequality for the two circle
centers.

Figure 5
An example of a step in a search where the search cannot be completed.
If the two circles do not intersect, then no object exists in the neartree
that could form a triangle with the probe and the node object. In other
words, D � dradius � Dmax, where D is the distance between the probe
point and the node object, and dradius is the current search radius. The
inequality must be true if any further solutions are possible deeper in the
tree.

Figure 6
An example of the growth of a neartree when inserting nodes in order,
with the ‘flip’ logic discussed in x8 enabled. We use the same data as in
Fig. 3, but the tree grows differently because we are allowed to flip
already-inserted data further down into the tree to achieve a better
balance. The first two data points, 2 and 3, are first inserted as before, but
when we get to 9, as before we see that 9 is closer to 3 than it is to 2, but
also further from 2 than 3 is, so we replace 3 in the root node with 9 and
insert 3 on the left side of a node pointed to by the right side of the root
node, where 9 would have gone before. Note that the maximum distance
on the right side of the root node is still 6 = |3 � 9|. The inserted 6 goes as
before, because 6 is closer to 9 than it is to 2, but 5 now goes to the left
branch of the root node, because 5 is closer to 2 than it is to 9.



million nodes and more and a small number of searches per

build, the second scheme is sometimes preferable.

9. NearTree, a package and interface for searching

NearTree is a collection of functions for constructing and

searching a neartree data structure. NearTree has been used

for a wide range of applications, including as the engine for

inferring the connectivity of molecular structures for which

only three-dimensional atomic coordinates are known

(replacing the traditional use of Levinthal cubing in RasMol;

Bernstein, 2000), and in ocean color analysis (Klein et al.,

2001), sonic boom prediction (Park & Darmofal, 2010),

elastoplastics simulations (Wicke et al., 2010), transportation

systems (Homerick, 2010), estimation of molecular surfaces

(Bernstein & Craig, 2010), lattice identification (Andrews &

Bernstein, 2014) and searching the Protein Data Bank (PDB)

for entries matching experimental cells (McGill et al., 2014).

10. Conclusion

The neartree structure enables simple methods for probing the

environments of points in a geometric space. Many important

problems in engineering and science can be addressed as

problems in geometry. Neartrees provide a technique for

creating databases that can be queried using user-selected

precision, rather than requiring fixed scalar key values. The

NearTree implementation has been found to outperform other

software for the NNS (Bernstein & Craig, 2010). The NearTree

package of open source code provides code to construct

neartrees and to retrieve results using several search techni-

ques: nearest point, all nearest within a zone and all within a

zone around the probe. The same are provided for farthest

points and for only some specified number of results.

11. Availability of NearTree

The latest version of the source code of NearTree is main-

tained at http://sf.net/projects/neartree.
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